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Abstract

Multivariate pattern analysis techniques have been increasingly used over the past decade to derive 

highly sensitive and specific biomarkers of diseases on an individual basis. The driving assumption 

behind the vast majority of the existing methodologies is that a single imaging pattern can 

distinguish between healthy and diseased populations, or between two subgroups of patients (e.g., 
progressors vs. non-progressors). This assumption effectively ignores the ample evidence for the 

heterogeneous nature of brain diseases. Neurodegenerative, neuropsychiatric and 

neurodevelopmental disorders are largely characterized by high clinical heterogeneity, which 

likely stems in part from underlying neuroanatomical heterogeneity of various pathologies. 

Detecting and characterizing heterogeneity may deepen our understanding of disease mechanisms 

and lead to patient-specific treatments. However, few approaches tackle disease subtype discovery 

in a principled machine learning framework. To address this challenge, we present a novel non-

linear learning algorithm for simultaneous binary classification and subtype identification, termed 

HYDRA (Heterogeneity through Discriminative Analysis). Neuroanatomical subtypes are 

effectively captured by multiple linear hyperplanes, which form a convex polytope that separates 

two groups (e.g., healthy controls from pathologic samples); each face of this polytope effectively 

defines a disease subtype. We validated HYDRA on simulated and clinical data. In the latter case, 

we applied the proposed method independently to the imaging and genetic datasets of Alzheimer’s 

Disease Neuroimaging Initiative (ADNI 1) study. The imaging dataset consisted of T1-weighted 

volumetric magnetic resonance images of 123 AD patients and 177 controls. The genetic dataset 

consisted of single nucleotide polymorphism information of 103 AD patients and 139 controls. We 

identified 3 reproducible subtypes of atrophy in AD relative to controls: 1) diffuse and extensive 
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atrophy, 2) precuneus and extensive temporal lobe atrophy, as well some prefrontal atrophy, 3) 

atrophy pattern very much confined to the hippocampus and the medial temporal lobe. The 

genetics dataset yielded two subtypes of AD characterized mainly by the presence/absence of the 

apolipoprotein E (APOE) ε4 genotype, but also involving differential presence of risk alleles of 

CD2AP, SPON1 and LOC39095 SNPs that were associated with differences in the respective 

patterns of brain atrophy, especially in the precuneus. The results demonstrate the potential of the 

proposed approach to map disease heterogeneity in neuroimaging and genetic studies.

Graphical abstract
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1. Introduction

Automated analysis of spatially aligned medical images has become the main framework for 

studying the anatomy and function of the human brain. This is typically performed by either 

employing voxel-based (VBA) or multivariate pattern analysis (MVPA) techniques.

VBA complements region of interest (ROI) volumetry by providing a comprehensive 

assessment of anatomical differences throughout the brain, while not being limited by a-
priori regional hypotheses. VBA typically performs mass-univariate statistical tests on either 

tissue composition or deformation fields, aiming to reveal regional anatomical or shape 

differences (Ashburner et al., 1998; Goldszal et al., 1998; Ashburner and Friston, 2000; 

Davatzikos et al., 2001; Chung et al., 2001; Fox et al., 2001; Job et al., 2002; Kubicki et al., 

2002; Chung et al., 2003; Studholme et al., 2004; Bernasconi et al., 2004; Giuliani et al., 

2005; Job et al., 2005; Meda et al., 2008; Ashburner, 2009). However, voxel-wise methods 

often suffer from low statistical power and more importantly, ignore multivariate 

relationships in the data.

On the other hand, MVPA techniques have gained significant attention due to their ability to 

capture complex relationships of imaging signals among brain regions. This property allows 

to better characterize group differences and could potentially lead to improved diagnosis and 

personalized prognosis. As a consequence, machine learning methods have been used with 

increased success to derive highly sensitive and specific biomarkers of diseases on individual 

basis (Mourão Miranda et al., 2005; Klöppel et al., 2008; Davatzikos et al., 2008; Vemuri et 
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al., 2008; Duchesne et al., 2008; Sabuncu et al., 2009; McEvoy et al., 2009; Ecker et al., 

2010; Hinrichs et al., 2011; Cuingnet et al., 2011).

A common assumption behind both VBA and MVPA methods is that there is a single pattern 

that distinguishes the two contrasted groups. In other words, most computational 

neuroimaging analyses assume a single unifying pathophysiological process and perform a 

monistic analysis to identify it. However, this approach ignores the heterogeneous nature of 

diseases, which is supported by ample evidence. Typical examples of brain disorders that are 

characterized by a heterogeneous clinical presentation include both neurodevelopmental and 

neurodegenerative disorders: Autism Spectrum Disorder (ASD) comprises 

neurodevelopmental disorders characterized by deficits in social communication and 

repetitive behaviors (Geschwind and Levitt, 2007; Jeste and Geschwind, 2014); 

Schizophrenia and Parkinson’s Disease can be subdivided into distinct groups by separating 

its symptomatology to discrete symptom domains (Buchanan and Carpenter, 1994; Graham 

and Sagar, 1999; Koutsouleris et al., 2008; Nenadic et al., 2010; Zhang et al., 2015; Lewis et 

al., 2005); Alzheimer’s Disease (AD) can be separated into three subtypes on the basis of the 

distribution of neurofibrillary tangles (Murray et al., 2011); and Mild Cognitive Impairment 

(MCI) may be further classified based on the type of specific cognitive impairment (Huang 

et al., 2003; Whitwell et al., 2007).

Disentangling disease heterogeneity may significantly contribute to our understanding and 

lead to a more accurate diagnosis, prognosis, and targeted treatment. However, few research 

efforts have been focused on revealing the inherent disease heterogeneity. These approaches 

can be categorized into two distinct classes. The first class assumes an a priori subdivision of 

the diseased samples into coherent groups, based on independent (e.g., clinical) criteria, and 

opts to identify group-level anatomical or functional differences using univariate statistical 

methods (Huang et al., 2003; Koutsouleris et al., 2008; Nenadic et al., 2010; Whitwell et al., 

2012; Zhang et al., 2015). As a consequence, multivariate relationships in the data are 

ignored. Moreover, and more importantly, these methods depend on an a priori disease 

subtype definition, which may be either difficult to obtain (e.g., from autopsy near the date 

of imaging), or noisy and non-specific (e.g., cognitive or clinical evaluations). Methods 

belonging to the second class apply multivariate clustering (typically driven by all image 

elements) directly to the diseased population towards segregating subsets of distinct 

anatomical subtypes (Graham and Sagar, 1999; Whitwell et al., 2007; Lewis et al., 2005; 

Noh et al., 2014). Such an approach aims to cluster brain anatomies instead of pathological 

patterns. Thus, it has the potential risk of estimating clusters that reflect normal inter-

individual variability, some of which is due to sex, age, and other confounds, instead of 

highlighting disease heterogeneity.

In order to tackle the aforementioned limitations, it is necessary to develop a principled 

machine learning approach that is able to simultaneously identify a class of pathological 

samples and separate them into coherent subgroups based on multivariate pathological 

patterns. To the best of our knowledge, one approach has been previously proposed in this 

direction (Filipovych et al., 2012). That work tackled disease subtype discovery by 

simultaneously solving classification and clustering in a semi-supervised maximum margin 

framework. It jointly estimated two hyperplanes, one that separates the diseased population 

Varol et al. Page 3

Neuroimage. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the healthy one, and another hyperplane that splits the estimated diseased population 

into two groups. Thus, only one linear classifier was used to separate patients from controls, 

thereby limiting its ability to capture heterogeneous pathologic processes. Moreover, it 

arbitrarily assumed that exactly two disease subgroups exist, rather than attempting to 

determine the number of subtypes from the data.

Here, we propose a novel non-linear semi-supervised2 machine learning algorithm for 

integrated binary classification and subpopulation clustering aiming to reveal HeterogeneitY 
through DiscRiminant Analysis (HYDRA). To the best of our knowledge, ours is the first 

algorithm to deal with anatomical/genetic heterogeneity in a supervised-clustering fashion 

with arbitrary number of clusters. The proposed approach is motivated by recent machine 

learning methods that derive non-linear classifiers through the use of multiple-

hyperplanes(Fu et al., 2010; Gu and Han, 2013; Varol and Davatzikos, 2014; Kantchelian et 

al., 2014; Takács, 2009; Osadchy et al., 2015). Classification is performed through the 

separation of healthy controls from pathological samples by a convex polytope that is 

formed by combining multiple linear max-margin classifiers. Heterogeneity is disentangled 

by implicitly clustering pathologic samples through their association to single linear sub-

classifiers. Multiple dimensions of heterogeneity may be captured by varying the number of 

estimated hyperplanes (faces of the polytope). This is in contrast to non-linear kernel 

classification methods which may accurately fit to heterogeneous data in terms of disease 

prediction, but do not provide any explicit clustering information that can be used to 

determine subtypes of pathology. HYDRA is a hybrid between unsupervised clustering and 

supervised classification methods; it can simultaneously fit maximum margin classification 

boundaries and elucidate disease subtypes, which is not possible with neither unsupervised 

clustering methods nor non-linear kernel classifiers.

Note that a preliminary version of this work was presented in (Varol et al., 2015). The 

current paper extends our previous work in multiple ways: i) A more sophisticated 

initialization scheme based on Determinental Point Processes is employed (Sec. Appendix 

A.1); ii) The sensitivity to initialization due to the non-convexity of the objective function 

has been improved by using multiple initializations and consensus strategies (Sec. Appendix 

A.4); iii) A symmetric version of the algorithm is developed towards accounting for the 

heterogeneity of the healthy controls and avoiding over-learning (Sec. 2.4). iv) A detailed 

description of the proposed methodology is provided. v) We extensively evaluate our 

method, HYDRA, by using additional (imaging and genetic) datasets and comparing it to 

unsupervised clustering and non-linear classification methods.

The remainder of this paper is organized as follows. In section 2, we detail the proposed 

approach. Next, we experimentally validate our method using synthetic (Sec. 3) and clinical 

(Sec. 4) data. We discuss the results in Sec. 5, while section 6 concludes the paper with our 

final remarks.

2The term semi-supervised is in reference to lack of disease subtype labels that must be inferred from data
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2. Method

In high dimensional spaces, the modeling capacity of linear Support Vector Machines 

(SVMs) is theoretically rich enough to discriminate between two homogeneous classes. 

However, while two classes are linearly separable with high probability, the resulting margin 

may be small. This case arises for example when one class is generated by a multimodal 

distribution that models a heterogeneous process (see Fig. 1a). This may be remedied by the 

use of non-linear classifiers, allowing for larger margins and thus, better generalization. 

However, while kernel methods, such as Gaussian Radial Basis Function (GRBF) kernel 

SVM, provide non-linearity, they lack interpretability when aiming to characterize 

heterogeneity.

Here, we take advantage of the previous intuition to design a novel machine learning 

technique that will provide larger margins while being able to elucidate heterogeneity. We 

introduce non-linearity using multiple linear classifiers that form locally linear hyperplanes 

whose linear segments separate the clusters of negative samples from the positive class (see 

Fig. 1b). In this way, subjects are explicitly clustered by being assigned to different 

hyperplanes, giving rise to interpretable directions of variability that may be useful in 

discovering heterogeneity.

Suppose that our dataset consists of n binary labelled d-dimensional data points 

( , xi ∈ ℝd and yi ∈ {−1, 1}). Without loss of generality, we assign the negative 

class to the pathological population whose heterogeneity we seek to reveal. Let us note that 

while there may be heterogeneity in the healthy population, we focus here on revealing 

disease heterogeneity. Our aim is twofold. First, we aim to estimate k hyperplanes that form 

a convex polytope that separates the two classes with a large margin. Second, we aim to 

assign each pathological sample to the hyperplane that best separates it from the normal 

controls. The main idea is that samples that belong to different pathological subgroups will 

be assigned to different hyperplanes, each of which reflects a respective pathological process 

(see Fig. 1c). Towards fulfilling the aforementioned aims, we introduce the proposed 

approach by extending standard linear maximum margin classifiers.

2.1. Large Margin Classification

For completeness, let us briefly introduce standard linear maximum margin classifiers. 

Maximum margin classifiers aim to estimate a hyperplane that separates the two classes by a 

half space, while ensuring that the distance (or margin) from the decision boundary for each 

sample is maximized. More formally, suppose that the set  comprises the set of all linear 

classifiers w such that for the given dataset  all samples are correctly classified, or ∀i, 
yi(wT xi) + b ≥ 1. The goal is to find the classifier w belonging to the set  that maximizes 

the margin between classes. The margin is defined as the orthogonal distance between the 

two hyperplanes:
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where the set of points u, v that satisfy the equations, represent points from both classes with 

active constraints. Notice that setting  and  satisfies the previous 

equations. Since u, v are parallel, the orthogonal distance between the hyperplanes is simply 

, which is the margin for SVM (Vapnik, 2000).

The optimal classifier is estimated by solving an optimization problem. However, instead of 

maximizing the margin, its inverse  is typically minimized subject to the separability 

constraints. This results in the well known SVM objective:

where ξ = (ξ1, …, ξn). The second term of the objective  accounts for slack 

when classes are non-separable.

2.2. Convex Polytope Classification

Standard SVMs assume that there is a single pattern (encoded by the estimated hyperplane) 

that distinguishes the two classes. However, this assumption is violated in the case of 

heterogeneity. We aim to model heterogeneity by utilising multiple linear hyperplanes, each 

one corresponding to a different pathological pattern. By combining multiple linear 

classifiers in a piecewise fashion, we extend linear max-margin classifiers to the non-linear 

case. Thus, we consider the extended hypothesis class that consists of the set of sets of K 
hyperplanes, generalizing the geometry of the classifier to that of a convex polytope (Takács, 

2009). Due to the interior/exterior asymmetry of the polytope, it is necessary to confine one 

class to its interior while restricting the other class to its exterior. Without loss of generality, 

we confine the positive class to the interior of the polytope. Thus, the search space  is 

defined as:

In other words,  comprises all sets of K classifiers such that all classifiers correctly 

classify all members of the positive class, while for every negative sample, there is at least 

one classifier that correctly classifies it.

The latter gives rise to an assignment problem, where samples that have been affected by the 

same pathological process are assigned to the same hyperplane. This can also be seen as a 

clustering task since samples that have been assigned to the same hyperplane can be 
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equivalently considered as clustered together. Thus, if  denotes the 

binary matrix that describes the assignment of the i-th negative class sample (n− in number) 

to the j-th face of the polytope, then the search space becomes:

Given the assignment S−, there are K margins; each one corresponding to one face of the 

polytope. Analogous to the SVM formulation, the margin for the j-th face of the polytope is 

. However, due to the piecewise nature of the convex polytope, there are multiple 

notions of margin for the surface of the polytope. In this work, aiming to keep the problem 

tractable, we maximize the average margin across all the faces of the polytope: 

. Thus, for a given dataset D and assignment S− for the negative class, 

the objective becomes:

Note that, given the assignments, the objective, and the constraints are separable into K 
independent subproblems. Each subproblem is analogous to the SVM formulation after 

adding the slack terms ξi,j, or:

where C is a penalty parameter on the training error. If we now use the definition of the slack 

terms as , and consider all hyperplanes 

 at the same time, we get:

Varol et al. Page 7

Neuroimage. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1)

So far, we have assumed that the assignment matrix S− is known. However, this is not the 

case in practice and S− has to be estimated too.

Attempting to solve for both {W, b} and S− results in a non-convex objective function 

which is combinatorially difficult to optimize. Furthermore, optimization for the binary 

assignment S− is itself non-convex since it constitutes an integer programming task. To make 

the problem tractable, we take two steps. First, we relax the binary assignment (si,j ∈ {0, 1}) 

to a soft assignment (si,j ∈ [0, 1], , ∀i). Given this relaxation, the objective 

becomes block-wise convex with respect to the groups of variables {W, b} and {S−}. We 

then use this relaxed objective function to obtain locally optimal solutions by iteratively 

solving for {W, b} and {S−}. The details of the iterative optimization are given in Appendix 

A.

Prediction

Once the polytope classifier {W, b} is trained, predicting the class y* of a new instance x* 

is straightforward:

In other words, if x* is in the interior of the polytope defined by the estimated hyperplanes 

({W, b}), then it is classified as positive by all classifiers corresponding to the faces of the 

polytope , resulting in an overall positive class prediction (y* = +1). 

Otherwise, if x* is in the exterior of the polytope, then it is classified as negative by at least 

one classifier corresponding to a face of the polytope , resulting in an overall 

negative class prediction (y* = −1). Analogously, the prediction score is simply the 

minimum of the prediction scores of all classifiers corresponding to the faces of the 

polytope: . Moreover, a new sample may be assigned to the existing clusters 

by computing the assignment index s*,j using Eq. A.1.

2.3. HYDRA Algorithm

Given the solutions of {W, b} and S− outlined in Sec. Appendix A.2 and Sec. Appendix A.

3, we solve for the maximum margin convex polytope in an iterative fashion. This is the 

main workhorse behind the proposed framework that aims to elucidate HeterogeneitY 
through DiscRiminative Analysis (HYDRA) and is outlined in Algorithm 1. However, due 
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to the non-convex nature of the problem, it is necessary to take additional steps to ensure the 

high quality of the solution.

Our approach towards enhancing the quality of the solution is twofold. First, particular care 

is taken to initialize the iterative algorithm in such a way that clustering solutions that 

exhibit disease-related diversity are promoted. This is made possible by employing 

Determinental Point Processes (DPP) (Kulesza and Taskar, 2012) to sample diverse 

directions of pathology, which can subsequently be used to estimate the initial clustering 

assignments (see Appendix A.1 for details).

Second, acknowledging the fact that, in non-convex settings, the estimated solution may 

vary greatly depending on the initialization, we employ a multi-initialization strategy that is 

coupled with a fusion step. Multiple runs of the Algorithm 1 are performed using different 

initializations generated by the previously described DPP sampling process, as well as 

different subsets of the population. The estimated clusters constitute hypotheses that capture 

perturbations of the underlying group topography. These clustering hypotheses are 

aggregated by taking into account the consensus of the respective solutions, producing the 

final clustering result that is free of noisy perturbations and emphasizes the underlying group 

structure (see Appendix A.4 for details).

2.4. Symmetric HYDRA algorithm

The algorithm that we have so far outlined is asymmetric. The patients lie on the exterior of 

the polytope while the controls are constrained on the interior of the polytope. This property 

may result in over-fitting when classifying. This can be remedied by symmetrizing the 

algorithm. One can run the Algorithm 1 twice, once using the actual labels Y and once using 

the negated labels: −Y. In that case, one can use the estimated output polytopes [W+, b+] 

and [W−, b−] to make predictions using the following formula:

Algorithm 1 — HYDRA

Input: X ∈ Rn×d, y ∈ {−1, +1}n (training signals), C (loss penalty), K (number of clusters/hyperplanes)

Output: W ∈ ℝd×K, b ∈ ℝ1×K (Classifier);  (Clustering Assignment)

Initialization: Initialize S− by Algorithm 2

Loop: Repeat until convergence (or a fixed number of iterations)

• Fix S− — Solve for W, b by weighted LIBSVM (sample weights set by Eq. A.2)

• Fix W, b — Solve for S− using Eq. A.1

(2)

where both classifiers are taken into account.
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Note that the symmetric model does not affect the clustering of the patients since the two 

runs of Algorithm 1 are independent of each other. The difference is that the symmetric 

model provides two clusterings, one for the patients, and one for the controls.

3. Experiments using Simulated Data

We first validated the proposed method using synthetic data. We used a two-dimensional toy 

dataset to provide insight into the workings of the proposed approach. Then, we 

quantitatively validated the proposed approach against common clustering and classification 

approaches in a simulated dataset where heterogeneity has been introduced. We evaluated 

the ability of HYDRA to distinguish between two classes and demonstrated its potential to 

reveal relevant subgroups.

Let us note that for all experiments, the classification was performed using the symmetric 

version of HYDRA, while the clustering of the negative class was used to reveal disease 

heterogeneity. The final clustering was the consensus result of twenty repetitions. The primal 

formulation was employed when tackling low-dimensional data, while the dual formulation 

was preferred in the case of high-dimensional data (see Appendix B.1 for the dual 

formulation).

3.1. Toy Example

To illustrate the behavior of our method, we generated a synthetic two-dimensional dataset 

with thousand instances (see Fig. 2). The first half of the samples were drawn from a 

unimodal distribution, simulating the healthy control population (denoted by magenta 

squares). The other half consisted of a crescent-shaped cluster of points, corresponding to 

the heterogeneous disease group (denoted by rhombuses colored using different variants of 

blue). To provide a more comprehensive setting, we additionally considered two different 

separability cases between the two populations. In the first case (see Fig. 2a), the two classes 

overlapped highly, resulting in low separability. In the second case (see Fig. 2d), the two 

groups did not overlap and were separated by a significant margin, thus increasing 

separability.

To further clarify the advantages of the proposed framework, we compared the performance 

of HYDRA (using two hyperplanes, K = 2) against the performance of standard linear SVM. 

The results of the experiments are shown in Fig. 2. There are two important observations to 

make. First, the introduced non-linearity in HYDRA allows for improved separability 

between the two groups in both scenarios (see Fig. 2b, 2c, 2e and 2f). This increase is more 

important in the case of low-separability between classes (see Fig. 2b and 2c), where the 

linear SVM was not able to fully separate them. In the case of high-separability, the 

hyperplane that was estimated by the linear SVM effectively separated positive from 

negative samples. However, it did so by a relatively small margin (see Fig. 2b). On the other 

hand, HYDRA harnessed the non-linear structure of the data and separated them with a high 

margin that led to improved generalization performance (see Fig. 2f).

Second, and most importantly, HYDRA separated the negative class into two subgroups that 

differ from the positive class in two distinct directions. This clustering is directly related to 
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the hyperplanes that separate the two classes. As a consequence, the obtained clustering is 

obtained in a supervised fashion and thus, it is driven by discriminating patterns that capture 

disease heterogeneity. This is in contrast to standard clustering techniques that group 

together samples based on appearance, which is not necessarily related to disease variability.

3.2. Simulated High-Dimensional Heterogeneous Data

Despite ample evidence of disease heterogeneity, the lack of labeled ground-truth poses a 

fundamental obstacle in validating the proposed approach. Thus, to overcome these 

limitations, we construct a simulated validation setting that allows for quantitative 

comparisons with other algorithms.

Aiming to replicate the common high-dimensional low sample size regime that is prevalent 

in neuroimaging studies, we generated a synthetic dataset with three hundred instances (or 

subjects) that are sampled as images with features on a 64 × 64 grid. The positive class 

(healthy group) was generated by randomly sampling 150 samples from a multivariate 

unimodal Gaussian distribution with zero mean and unit variance . The negative 

class (disease group) was generated by drawing 150 samples from a tri-modal distribution, 

where each mode simulates a different focus of disease progression (see Fig. 3a). Each focal 

effect had a radius of 10 pixels, with a variance of 0.5 units. To simulate the effect of disease 

progression, an age effect was simulated. This was generated by adding unit variance 

random noise to simulate progression. Therefore, there were three distinct focal effects in 

each subgroup, the subgroup specific effect with variance 1.5 units and the non-specific 

effects with unit variance. Additionally, 10% of the labels were mislabeled to simulate 

misdiagnosis and label noise.

3.2.1. Validation Measures—HYDRA is in principle an exploratory analysis tool, 

aiming to reveal disease heterogeneity. However, it operates by simultaneously performing 

classification and clustering. Thus, it is of interest to understand how well the proposed 

method accomplishes each step.

To validate the classification performance, we computed the Area Under the receiver 

operating characteristic Curve (AUC) (Bradley, 1997). The AUC statistic summarizes the 

quality of the performance of a binary classifier. It is equal to the probability that a classifier 

will rank a randomly chosen positive instance higher than a randomly chosen negative one. 

Thus, an AUC equal to one indicates a perfect classifier. We calculated a distribution of 

AUC values by performing 100 realizations of 10-fold cross-validation. During each 

iteration, the data were partitioned into ten folds. Each fold was successively used as a test 

set while the remaining folds were used to train the method. The optimal parameter C of the 

method was estimated by performing a grid search over C ∈ {2−5, …, 23} using an internal 

round of 10-fold cross-validation.

The clustering performance of our approach was assessed by taking into account the stability 

of the obtained results. The adjusted Rand Index (ARI) (Hubert and Arabie, 1985) was used 

to quantify the similarity between different clustering results. This index is corrected for 

grouping by chance, resulting in a more conservative estimation of the overlap. A value 

equal to one indicates a perfect clustering. We calculated the ARI in a cross-validated 
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fashion, following the previously described cross-validation scheme. However, in our 

calculations we took into account only the clustering stability between training folds. Any 

pair of training folds shared 80% of the subjects, allowing us to compute how consistently 

the common subjects were placed in the same clusters despite the variations due to the ~ 

10% difference in the sample composition across folds. In detail, given the optimal C value 

that was estimated during the inner-fold cross-validation, we trained the model, yielding a 

clustering of the negative subjects in the training set. This procedure was repeated for all 

realizations of the 10-fold cross-validation, yielding a set of clusterings of the negative 

subjects of the respective training sets. Finally, we computed the average pairwise ARI 

between the estimated clusterings.

Let us note that the classification accuracy and the clustering stability are only surrogate 

measures that allow us to elucidate the underpinnings of the proposed method. HYDRA 

does not directly target increased classification accuracy, but instead it focuses on detecting 

disease subgroups. Moreover, while clustering stability is desirable, it does not necessarily 

imply that the estimated clusters correspond to the underlying heterogeneity. Quantitatively 

evaluating the relevance of the clustering to the intrinsic heterogeneity is in general not 

feasible. However, in this simulated scenario, the ground truth was available by default. 

Thus, we calculated the ARI between the estimated clusters and the simulated ones. 

Moreover, to further assess the performance, we conducted group analysis between the 

estimated subgroups and the positive class. The derived p-value maps allow for the 

visualization of the estimated clusters and their comparison to the generated ones.

3.2.2. Comparison with existing methods—To further validate HYDRA, we 

compared it to common classification and clustering approaches.

As far as classification is concerned, we first compared our method against linear SVMs. In 

fact, our method is a generalization of the linear SVM framework. By setting the parameter 

K equal to one, our method reduces to a linear SVM classifier. Parameter selection (i.e., 
fixing C value) was performed using the same strategy as the one for the proposed 

framework.

Moreover, because HYDRA establishes a non-linear separation boundary between the two 

classes, we contrasted its performance against the GRBF kernel SVM. The free parameters 

were determined through a nested cross-validation strategy. A grid search was performed 

over the parameter space defined by the regularization parameter C (C ∈ {2−5, …, 23}) and 

the parameter σ that controls the bandwidth of the RBF kernel (σ ∈ {2−5, …, 23}).

Verifying that HYDRA achieves comparable accuracy with commonly used classifiers, thus 

retaining discriminative power, is important because discrimination is inextricably tied to the 

cluster definition. However, the main focus of the method is on discovering clusters in the 

abnormal cohort. To validate the clustering potential of our framework, we included the 

performance of the K-means clustering (Lloyd, 1982) (20 replicates were used). We also 

examined the potential of the approach that performs classification on top of the clustering 

results. In particular, we first used K-means to cluster samples from one class and then 

trained a linear SVM for each cluster. This procedure was performed for both the negative 

Varol et al. Page 12

Neuroimage. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and positive classes. The out of sample prediction was obtained using Eq. 2. This approach 

(Gu and Han, 2013) is termed here K-means/SVM. Similar to the previous cases, nested 

cross-validation was performed for selecting the C parameter. Note also that we run K-

means and HYDRA for the same value of the parameter K that varied from one to nine (K ∈ 
{1, …, 9}).

3.2.3. Results—The results of the cross-validated classification accuracy are reported in 

Fig. 4a. We note that the classification results depend on the value of the parameter K. The 

high dimension and low sample size setting allowed linear SVM to separate the two classes 

with high accuracy. However, the non-linearity that is introduced by Gaussian SVM, as well 

as by HYDRA and K-means/SVM, resulted in a slight improvement in the classification 

performance (see also Table 1). We should underline that a statistically significant 

improvement of the performance was observed only for HYDRA results (p-value for t-test 

comparison between K = 3 HYDRA results and linear SVM equals to 0.016). Lastly, we 

observe that the classification accuracy that was obtained by HYDRA peaks at K = 3 and 

relatively decreases for higher values of K. This indicates that HYDRA was able to correctly 

estimate the intrinsic dimensionality of the pathological class.

As far as the clustering reproducibility is concerned, we note a significant difference 

between HYDRA and K-means (see Fig. 4b). Note that K-means obtained the highest 

reproducibility, yet the estimated clusters did not reflect the simulated focal effects. K-means 

consistently grouped the data into two clusters, while HYDRA segregated the data with 

higher stability into three subgroups (see also Table 1). The importance of this difference 

was further emphasized by the fact that K-means results were significantly different from the 

HYDRA clustering. HYDRA clusters overlapped highly with the simulated ones while K-

means results did not match the generated subgroups (see Table 1). This is because K-

means, being blind to class information, was driven by global patterns that were confounded 

by the variations stemming from covariate effects rather than relevant heterogeneity. On the 

contrary, HYDRA was able to identify the heterogeneous groups by exploiting patterns that 

encode directions along which the two groups differ.

To further appraise the differences between the two methods, we report in Fig. 3b and Fig. 

3c the group differences between the positive class and the three subgroups K-means and 

HYDRA estimated, respectively. By visually comparing them to the group differences for 

the simulated groups (see Fig. 3a), we observe that HYDRA recovered the three modes of 

differences with high certainty. Contrarily, K-means captured global effects that reflect the 

overall progression of the simulated pathology (note the relevant increase of the group 

differences in Fig. 3c), instead of teasing out distinct pathological directions.

Our synthetic validation setting provides two key insights. First, while all methods were able 

to successfully separate the two groups, only HYDRA was able to distinguish between 

pathological subgroups. Thus, to effectively disentangle disease heterogeneity, one should 

focus on discriminating patterns rather than global image appearance. Second, and most 

importantly, analyzing the clustering stability allows for the estimation of the intrinsic 

dimensionality of the pathological group. Therefore, we adopt hereafter this popular 

approach (Ben-Hur et al., 2002; Lange et al., 2004) to perform model selection.

Varol et al. Page 13

Neuroimage. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Experiments using Clinical Data

Having shown the interest of the proposed approach in synthetic data, we next applied our 

method to data from the Alzheimer’s Disease Neuroimaging Initiative3 (ADNI). The ADNI 

was launched in 2003 as a public-private partnership, led by Principal Investigator Michael 

W. Weiner, MD. The primary goal of ADNI has been to test whether serial Magnetic 

Resonance Imaging (MRI), Positron Emission Tomography (PET), other biological markers, 

clinical and neuropsychological assessment can be combined to measure the progression of 

mild cognitive impairment and early Alzheimer’s disease4. Here, our goal was to investigate 

both the anatomical and the genetic heterogeneity in Alzheimer’s Disease.

4.1. Visualization of Heterogeneity

Anatomical heterogeneity—To visualize the neuroanatomical heterogeneity of both the 

anatomically and genetically-defined disease clusters, voxel-based analyses (VBA) were 

performed between the controls and patient groups.

To perform VBA, MRI scans were first pre-processed using previously validated and 

published techniques (Goldszal et al., 1998). The preprocessing pipeline includes: (1) 

alignment to the Anterior and Posterior Commissures plane; (2) skull-stripping (Doshi et al., 

2013); (3) N3 bias correction (Sled et al., 1998); (4) tissue segmentation into gray matter 

(GM), white matter, cerebrospinal fluid, and ventricles using MICO (Li et al., 2014); (5) 

deformable mapping (Ou et al., 2011) to a standardized template space (Kabani et al., 1998); 

(6) formation of regional volumetric maps called RAVENS maps (Davatzikos et al., 2001), 

generated to enable analyses of volume data rather than raw structural data; (7) the RAVENS 

were normalized by individual intracranial volume to adjust for global differences in 

intracranial size, and smoothed for incorporation of neighborhood information using an 8-

mm Full Width at Half Maximum Gaussian filter.

The GM RAVENS were used for all VBA experiments, where a general linear model (GLM) 

was applied voxel-wise to estimate the disease effect on the voxel value using age and sex as 

covariates. False Discovery Rate (FDR) correction for multiple comparisons was used for all 

voxel-based analyses. Only results surviving the statistical threshold at q < 0.05 are shown.

Genetic heterogeneity—In addition to anatomical heterogeneity, the genetic differences 

between the subgroups of AD were assessed by performing ANOVA on genetic markers, 

followed by a Bonferroni test for multiple comparisons. Only results surviving the statistical 

threshold at q < 0.05 are reported.

4.2. Anatomical Heterogeneity of Alzheimer’s Disease

4.2.1. Participants and MRI data preprocessing—The first dataset comprises MRI 

scans that were made available by the ADNI study5. T1-weighted MRI volumetric scans 

3adni.loni.usc.edu
4www.adni-info.org
5http://adni.loni.usc.edu/data-samples/mri/
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were obtained at 1.5 Tesla for 123 AD patients and 177 normal controls (CN) (see 

demographic information given in Table 2).

A low-level representation was extracted by automatically partitioning the MRI scans of all 

participants into 153 ROIs spanning the entire brain. The ROI segmentation was performed 

by applying a new multi-atlas label fusion method (Doshi et al., 2015). The derived ROIs 

were used as features for all clustering and classification methods.

Correction for age and sex effects: To remove age and sex related differences between 

patient groups while retaining disease-associated neuroanatomical variation, the strategy 

outlined in (Dukart et al., 2011) was used. Within each cross-validation training fold, we 

calculated voxel-level β-coefficients for age and sex in control subjects’ ROIs using partial 

correlation analysis. Then, all subjects were residualized using these coefficients to correct 

for age and sex effects not attributable to disease related factors.

4.2.2. Evaluation of results for structural MRI AD data

Classification results are reported in Fig. 5a. The standard linear SVM achieved a highly 

accurate classification performance (AUC for K = 1 is greater than 0.9), which emphasizes 

the high separability between AD patients and healthy controls. Similar to linear SVM, 

HYDRA was able to separate the two groups with high accuracy but, contrary to the 

simulated case, it did not improve on the results of linear SVM. This is most likely because 

the data were already linearly separable. However, the classification performance of the 

proposed method remained relatively stable for different values of K (no statistically 

significant differences between the results were found), demonstrating that HYDRA was 

able to retain the important discriminative information that is necessary for disease subtype 

clustering. Furthermore, the stable AUC at K ≥ 2 may indicate a possible plateau in the AD 

vs. control classification rate (Cuingnet et al., 2011). Lastly, we should emphasize that 

HYDRA aims to increase the margin with K, which is indeed achieved (see Supplementary 

Material). This has two important implications: i) that there is heterogeneity in the data; and 

ii) that HYDRA successfully harnesses this heterogeneity to improve the margin.

The clustering stability results are presented in Fig. 5b, while the AUC and ARI values for 

the HYDRA model at K = 1, 2, 3 are given in Table 3. The stability analysis suggests that 

three clusters are appropriate for capturing the intrinsic dimensionality for representing the 

disease heterogeneity. At finer levels (higher values of K), these three clusters are partitioned 

into smaller clusters, giving rise to a hierarchical structure (see Supplementary Material). 

This observed hierarchy provides further evidence that the data has an inherent structure that 

HYDRA effectively reveals.

The optimal clustering is visualized through the use of VBA (see Fig. 6B, 6C and 6D). The 

commonly performed voxel-wise group difference analysis between all healthy subjects and 

all patients (see Fig. 6A) provides the necessary baseline for comparison. It should be noted 

that the statistical significance of the group comparisons between the controls and the 

subgroups of AD may be biased due to sample splitting. Thus, these comparisons should 

serve a qualitative visualization function, rather than a quantitative one. For this reason, we 

do not state the statistical significance levels for these differences.
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We observe that at the K = 3 cluster level (see Fig. 6) the estimated subgroups are associated 

with distinct patterns of structural brain alterations: i) diffuse atrophy subtype (see Fig. 6B) 

exhibiting a typical AD pattern, similar to the one that is found by commonly applied 

monistic VBA (see Fig. 6A). This subtype was characterized by atrophy in nearly all cortical 

regions and increased lesion load in the periventricular white matter; ii) lateral parietal/

temporal subtype (see Fig. 6C) in which bilateral parietal lobe, bilateral temporal cortex, 

bilateral dorsolateral frontal lobe, precuneus were mainly involved, and few periventricular 

white matter lesions were present; iii) medial temporal dominant subtype (see Fig. 6D) 

involving predominantly bilateral medial temporal cortex.

The estimated subgroups were associated with distinct demographic, cognitive and 

cerebrospinal fluid (CSF) biomarker characteristics. The first subgroup comprised 24% of 

AD subjects. It included relatively more male participants (21 males, 8 females) of relatively 

increased age (78.9 ± 5.75). Members of this group achieved a Mini Mental State 

Examination (MMSE6) score of 23.97 ± 1.97, while the frequency of APOE ε4 allele 

carriers was 72.4%. In addition, this group had the highest CSF Amyloid-beta 1 to 42 

peptide (Aβ) concentration, 157.3 pg/mL, and the lowest CSF total tau (t-tau) and CSF tau 

phosphorylated at threonine 181 (p-tau) concentrations, 97.3 pg/mL and 31.2 pg/mL, 

respectively, on average compared to the other subgroups.

The second subgroup was the largest one, consisting of 51% of AD subjects, 60.32% of 

whom are APOE ε4 carriers. Both sexes were nearly equally represented (31 males and 32 

females), having a mean age of 73.7 years (±7.63 standard deviation). Its members 

performed relatively worse in terms of MMSE (23.16 ± 1.99). The average CSF p-tau 

concentration for this group was the highest compared to the other subgroups at 44.9 pg/mL.

The last subgroup included the 25% of AD patients. Contrary to the previous subgroup, it 

was dominated by females (9 males and 22 females) of relatively younger age (72.62±6.85) 

with a rather higher frequency of APOE ε4 allele carriers (74.19%). MMSE performance of 

this subgroup was 24.06 ± 1.34. The CSF Aβ concentration was the lowest for this group at 

127.9 pg/mL while the CSF t-tau concentration was the highest at 139.4 pg/mL, on average, 

compared to the other subgroups.

Comparing the genetic profiles of these three subgroups of AD yielded further insight on the 

differences between the pathologies exhibited by each subgroup. One-way ANOVA was 

performed for each of the single nucleotide polymorphisms (SNPs) identified in two recent 

genome wide association studies that reported loci associated with AD (Lambert et al., 

2013) and cognitive decline (Sherva et al., 2014) (see Appendix C). Three SNPs were 

statistically significant different: rs10948363, which is related to gene CD2AP, rs11023139, 

which is related to gene SPON1, and rs7245858, which is related to gene LOC390956.

For SNP rs10948363, which is related to gene CD2AP, 58% of the first subgroup and 74% 

of the third subgroup were carriers of the minor G allele, while 39% of the second subgroup 

were carriers of this risky allele.

6MMSE is a quantified clinical assessment for dementia (Folstein et al., 1975)
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For SNP rs11023139, which is related to gene SPON1, 29% of the first subgroup were 

carriers of the minor A allele, while 2% of the second subgroup and 11% of the third 

subgroup were carriers of this allele.

Lastly, for SNP rs7245858, which is related to gene LOC39095, 23% of the first subgroup 

were carriers of the minor A allele, while 2% of the second subgroup and 4% of the third 

subgroups were carriers of this allele.

4.3. Genetic Heterogeneity of Alzheimer’s Disease

4.3.1. Genotype data—The second dataset comprises genotypes for 103 AD patients and 

139 normal controls (see demographic information in Table 4), obtained from the ADNI 

study7. ADNI genotyping is performed using the Human610-Quad Bead-Chip (Illumina, 

Inc., San Diego, CA) which results in a set of 620,901 single nucleotide polymorphisms 

(SNPs) and copy number variation markers (for details see (Saykin et al., 2010)).

Due to the weak or spurious signal in most of the genome, we opted to only use SNP loci 

that were associated with Alzheimer’s disease or cognitive decline in recent large scale 

genome wide association studies (Lambert et al., 2013; Sherva et al., 2014). This resulted in 

a reduced set of 66 SNPs (see table in Appendix C)that were represented through the use of 

two binary variables encoding the presence of major-major or major-minor alleles, thus 

raising the total number of features to 132.

4.3.2. Evaluation of results for genotype AD data—Classification results are 

reported in Fig. 7a. The standard linear SVM discriminated fairly between healthy controls 

and AD patients (AUC for K = 1 equals to 0.72). Compared to the result that was obtained 

using imaging features, this highlights the difficulties associated with disease classification 

in the genotype domain. HYDRA was able to separate the two groups with a similar 

accuracy for K = 2 (AUC equals to 0.70). The classification accuracy dropped for higher 

values of K. However, the difference between the results for K = 1 and K = 2 was 

statistically insignificant (p = 0.10).

The clustering stability results are presented in Fig. 7b, while the AUC and ARI values for 

the HYDRA model at K = 1, 2, 3 are given in Table 3. The stability analysis suggested that 

two clusters are appropriate for capturing the intrinsic dimensionality for representing the 

genetic heterogeneity associated with AD. Similar to the anatomically-driven clustering 

results, these two clusters are successively partitioned to smaller clusters for higher values of 

K (see Supplementary Material), showing a hierarchical organization. This suggests that the 

data has structure that HYDRA reveals.

The optimal genotype clustering is visualized by contrasting the imaging phenotypes of the 

estimated subgroups against the healthy control population through VBA (see Fig. 8A and 

Fig. 8B).

7http://adni.loni.usc.edu/data-samples/genetic-data/
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We observe that at the K = 2 cluster level, the estimated subgroups were associated with 

distinct patterns of structural brain alterations: i) increased temporal lobe atrophy subtype 

(see Fig. 8A) including posterior medial cortex atrophy and increased white matter lesion 

load; ii) increased superior frontal lobe atrophy subtype (see Fig. 8B) including temporal 

lobe atrophy and periventricular white matter lesions.

The first subgroup exhibited reduced GM volumes in the hippocampus and entorhinal cortex 

(Fig. 8A), while the second subgroup exhibited reduced GM volumes in the superior frontal 

lobe (Fig. 8B). The difference between the brain images in the two subgroups are visualized 

in Fig. 8C.

The sex and age composition of the two estimated subgroups was similar for both cases. The 

proportion of the females in the first subgroup was 48.52%, while for the second one was 

45.71% (see also Table 4). The average age of the first subgroup was 74.5, while for the 

second one was 76.2 years old.

In addition to anatomical differences, the two subgroups exhibited significantly different 

levels of APOE ε4 allele and CSF biomarkers. While the first subgroup was composed of 

98% APOE ε4 carriers, only 14% of the second subgroup were APOE ε4 carriers. Also, the 

first group had lower Aβ concentration, 133.6 pg/mL, and higher t-tau and p-tau 

concentrations, 129.5 pg/mL and 42.5 pg/mL, respectively, on average compared to the 

second subgroup.

Further analysis of the genetic differences between the two subgroups yielded two additional 

loci of interest. While 32% of the first subgroup were carriers of the risk related A allele of 

the SNP rs6656401 (related to gene CR1) 49% of the second subgroup was composed of 

carriers of this allele.

The second locus that differed between the two subgroups was the SNP rs6733839, which is 

related to gene BIN1. While 72.06% of the first subgroup consisted of risk related C allele 

carriers of rs6733839, 85.71% of the second group comprised carriers of this allele.

However, similar to voxel-based analysis of the differences between the subgroups of AD 

patients, these statistical findings should be approached with care as there might be bias due 

to sample splitting. The statistical power needed to make a definite statement about the 

genetic differences between the subtypes of AD may require a much higher sample size.

5. Discussion & Conclusion

Synopsis

In this paper, we presented HYDRA, a method for disentangling heterogeneity in a 

principled semi-supervised machine learning framework. HYDRA aims to generalize the 

basic assumption of computational neuroimaging studies from a single separating pattern to 

many patterns, thus addressing one of the major challenges that characterizes many studies, 

namely the presence of heterogeneity. HYDRA attempts to find patterns associated with the 

underlying disease process, or more generally with the difference between two groups. 
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These different patterns could potentially identify different dimensions of the underlying 

disease process and hence lead to diagnostic subcategories.

The proposed approach seamlessly integrates clustering and discrimination in a coherent 

framework by solving for a non-linear classifier that bears common geometric properties 

with convex polytopes. Discrimination is achieved by constraining one class in the interior 

of the polytope, while at the same time maximizing the margin between examples and class 

boundary. On the other hand, clustering is performed by associating disease samples to 

different faces of the polytope, and hence to different disease processes. Thus, each face of 

the polytope informs us about the distinct foci of disease effects that distinguish the patients 

from the healthy control subjects. This coupling between clustering and classification allows 

for segregating patients based on disease patterns rather than global anatomy.

In our experiments, we demonstrated the ability of the proposed approach to discern disease 

foci in both synthetic and clinical datasets without undermining its predictive power. 

Moreover, our method is endowed with improved generalization performance due to its 

maximum margin property of the method and the low complexity of the model (compared to 

standard non-linear classifiers, e.g., Gaussian kernel SVM). The latter allows it to efficiently 

handle small sample size high dimensionality data that are commonly encountered in 

neuroimaging studies by exploiting the dual model representation and operating in the inner 

product space.

Model selection

Choosing an appropriate number of hyperplanes, or corresponding disease subtypes, is a 

important and difficult model selection question. The difficulty is underlined by the fact that 

there is no ground truth available against which one may test a clustering result. However, 

we presented a strategy based on examining the clustering stability (Ben-Hur et al., 2002; 

Lange et al., 2004). The basic premise behind this strategy is that as one gets closer to the 

intrinsic dimensionality of the pathological group, the clustering algorithm should obtain 

similar results for different datasets generated by sampling the initial population. The group 

structure should remain relatively stable accounting for the fact that the datasets have been 

generated by the same factors.

Anatomical heterogeneity of AD

Applying the proposed framework to structural imaging data from ADNI, resulted in the 

definition of three AD subgroups. Our results largely agree with a recent study employing 

surface-based morphometry to study AD heterogeneity based on cortical thickness (Noh et 

al., 2014) and bear similarity to the subtypes that were recently identified in a pathologic 

study based on the distribution and density of neurofibrilllary tangles (Murray et al., 2011). 

The first subgroup is similar to the diffuse atrophy subtype reported in (Noh et al., 2014) and 

the typical AD group in (Murray et al., 2011). The second subgroup is comparable to the 

parietal dominant in (Noh et al., 2014) and the first subtype in (Murray et al., 2011). The 

third subgroup maps to the medial temporal subtype of (Noh et al., 2014) and the third group 

of (Murray et al., 2011).
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The agreement of the results, despite the differences in the design of the studies, emphasizes 

the fact that AD should be considered as a neuroanatomically heterogeneous disease, 

characterized by multiple pathological dimensions. Among the pathological dimensions 

revealed in this study, only the first one (Fig. 6B) bore important resemblance with a typical 

AD pattern involving signature AD regions, while the other two (Fig. 6B and Fig. 6C) 

exhibited distinct pathological patterns. These dimensions may reflect distinct pathways 

leading to AD, associated with distinct disease processes that may constitute potential 

therapeutic targets.

Aiming to further elucidate the recovered pathological dimension of AD, we found that the 

anatomically defined clusters exhibit significant differences in their genotypes, demographic 

characteristics and CSF biomarker distributions.

The first subgroup comprised more male participants of relatively older age. 72.4% of its 

members were APOE ε4 allele carriers, while SNPs rs11023139 and rs7245858 were carried 

relatively more by members of this subgroup than members of the other two; 29% of the 

first subgroup were carriers of the minor A allele for rs11023139 and 23% of the first 

subgroup were carriers of the minor A allele for rs7245858, respectively (see Sec. 4.2.2). 

This subgroup was characterized by the most widespread pattern of atrophy, yet the most 

normal CSF biomarker levels. Moreover, the cognitive performance of its members was 

comparable to the one of the rest of the subgroups. The older age of the group, the relatively 

more normal levels of CSF biomarkers as well as the protective nature of rs11023139, which 

has been associated with a slower rate of cognitive decline (Sherva et al., 2014), suggest a 

protracted disease progression. The possible long disease progression may have allowed for 

compensatory mechanisms to develop resulting in a cognitive performance that is 

comparable to the other groups despite the extended atrophy.

The second subgroup was the largest one (comprising 51% of AD subjects), with a nearly 

equal sex proportions. However, it comprised proportionally fewer APOE ε4 carriers 

(60.32%), fewer carriers of the risky allele of SNP rs10948363 (39%), and almost no 

carriers of the minor A allele of SNP rs10948363 (2%) and SNP rs7245858 (2%). This was 

the group whose members performed worse in terms of MMSE.

The third subgroup included predominantly females of relatively younger age. Most of the 

patients (74.19%) were APOE ε4 allele carriers, while also 74% of them were carriers of the 

minor G allele of the SNP rs10948363, whose corresponding gene is CD2AP. CD2AP is a 

scaffolding protein that is involved in cytoskeletal reorganization and intracellular trafficking 

(Dustin et al., 1998) and has been previously associated with late onset AD (Naj et al., 

2011). Moreover, a direct link between CD2AP and amyloid β toxic effects has been noted 

in yeast, nematodes, and rat cortical neurons after study of the role of several genes in 

amyloid β and tau pathways (Treusch et al., 2011). This along with the fact that this group 

exhibits the most abnormal levels of CSF t-tau and Aβ concentration may explain why 

members of this group are diagnosed as AD, despite being of younger age and exhibiting 

more focal atrophy. The sex difference in the population of this subgroup may result from 

the gender difference in the AD-promoting effect of the APOE genotype (Payami et al., 
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1996). Given that APOE ε4 preferably affects medial temporal lobe structures, women may 

have a more vulnerable medial temporal cortex than men, giving rise to this specific subtype.

Genetic heterogeneity of AD

Applying the proposed framework to genetic data from ADNI, resulted in the identification 

of two AD subgroups. These groups were essentially dichotomized based on the presence of 

APOE ε4 allele (98% of the members of the first subgroup carry it, while only 14% of the 

second subgroup do). However, the two groups exhibit additional genetic differences, as well 

as anatomical differences and distinct distributions of CSF biomarkers.

Genetic differences were found for the SNP rs6656401 (related to gene CR1) and the SNP 

rs6733839 (related to gene BIN1). Genetic variations at CR1 have been associated with the 

risk of cerebral amyloid angiopathy and decreased entorhinal cortex volume (Biffi et al., 

2012; Bralten et al., 2011). Increased expression of the BIN1 gene has been recently 

implicated with modulating tau pathology (Chapuis et al., 2013), while BIN1 has also been 

associated with entorhinal and temporal pole cortex thickness (Biffi et al., 2012).

Anatomical differences were mainly found in hippocampal and entorhinal cortex, where the 

first group was characterized by significantly more atrophy. The anatomical differences 

between the subgroups may be explained by the genetic variations. APOE ε4 has been 

related to increased atrophy in hippocampus (Hashimoto et al., 2001; Honea et al., 2009), 

entorhinal (Juottonen et al., 1998) and medial frontal cortex (Fennema-Notestine et al., 

2011). Given that, the first subgroup is expected to exhibit more atrophy in these areas.

The two groups were characterized by differences in the distribution of the CSF biomarkers. 

This difference was more significant for the CSF Aβ, which was significantly reduced in the 

first group. This difference may also be attributed to the effect of APOE ε4, which has been 

previously associated with reduced levels of CSF Aβ and t-tau(Prince et al., 2004; 

Sunderland et al., 2004).

While the dominant presence of APOE ε4 in the first subgroup provides the means to 

interpret the anatomical and CSF biomarker differences between the two subgroups, the 

relatively higher expression of the SNPs related to CR1 and BIN1 genes in the second 

subgroup (where APOE ε4 allele is less expressed) may be an indication that these genes 

may be part of an alternative pathway for AD pathogenesis in the absence of APOE ε4 

expression. The atrophy exhibited by the second subgroup in the entorhinal cortex seen in 

Fig. 8B) may be a product of CR1 expression since APOE ε4 is largely absent in this 

subgroup. While this hypothesis remains to be validated, this underlines the value of data-

driven, multivariate, exploratory techniques in forming new hypotheses.

Limitations and future work

There are some limitations to this work. First, the lack of ground truth for the clinical 

datasets does not allow us to quantitatively validate the proposed method. However, on the 

one hand, when AD patients were clustered based on imaging information, the identified 

patterns of abnormality aligned well with findings based on neuropathology reported in 

(Murray et al., 2011) and the subtypes defined based on cortical thickness in (Noh et al., 
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2014). Moreover, the anatomically defined subgroups also exhibited genetic differences, 

which provides additional evidence for the validity of the obtained clustering. On the other 

hand, when clustering based on genetic information, we identified subpopulations that 

exhibited meaningful anatomical differences. In summary, our results were consistent with 

the existing picture of pathological neurodegeneration and the function of the related SNPs.

Nevertheless, the sample size that is necessary for drawing reliable conclusions about the 

full extent of heterogeneity of AD may be higher than what was analyzed. In general, we 

were able to demonstrate the presence of heterogeneity in AD given the ADNI dataset. 

However, to be able to elucidate disease heterogeneity and map the distinct pathological 

processes that drive it, a wider sampling of the patient population probed in a multi-

parametric fashion may be required.

Another limitation of this work is that the diseased population was studied by using either 

structural imaging data or genetic information. While this demonstrates the ability of the 

proposed framework to handle both imaging and non-imaging data, including additional 

information (e.g., amyloid PET imaging, tau imaging, cerebrospinal fluid biomarkers, etc) 

would beneficial in better characterizing the dimensions and extent of heterogeneity. 

Nonetheless, HYDRA can not currently handle multiple sources of information. This could 

be made possible by extending HYDRA through the adoption of multiple kernel techniques 

(Bach et al., 2004). Different kernels could be employed to encode different sources of 

information, allowing for their seamless integration. This extension could make HYDRA 

even more general, allowing its application to other exploratory problems, such as 

characterization of the breast cancer heterogeneity and the analysis of abnormal tissue 

subtypes, without being limited to the clustering of brain images.

We should note that the estimation of the subpopulations may be influenced by confounding 

variations due to age and sex differences. In its current form, our method does not explicitly 

take into account this case. Instead, we circumvent this by performing univariate covariate 

correction prior to feeding the data to our method. In order to tackle this shortcoming, we 

are currently working on extending the proposed method by explicitly modelling the effect 

of covariates within a unified clustering framework. However, the effect of the covariates 

also renders prohibitive the usage of the classification model to interpret the weight vectors 

of the hyperplanes (as explained in (Haufe et al., 2014)). We circumvent this by performing 

voxel-wise group analysis between the inferred patient clusters. However, the interpretation 

of the group comparison results should be made with care since the significance of the 

comparison may be biased due to the sample splitting. The voxel-based comparisons should 

serve only as a qualitative tool and not as a quantitative one. Furthermore, to avoid the 

circularity of assessing group differences using the same features that the groups are 

clustered by, we have assessed group differences using features that have not been used in 

the clustering. Namely, we have assessed the genetic and demographic differences between 

the anatomic subtypes of AD and the anatomic and demographic differences between the 

genetic subtypes of AD.

A possible extension of our method is towards handling regression and longitudinal studies. 

This could allow us to elucidate the complex nature of spatiotemporal disease dynamics as 
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well as to reveal varying paths of normal progression. Lastly, it is straightforward to derive a 

one-class version of HYDRA, analogous to the work of (Sato et al., 2009), to detect and 

subtype outliers among controls. This could potentially shed light on the heterogenous 

nature of healthy phenotypes.

6. Conclusion

HYDRA aims to separate two groups by deriving a non-linear classification boundary that is 

constructed by using multiple linear hyperplanes. The constructed polytope allows for the 

revealing heterogeneity by assigning subgroups of patients to different hyperplanes. 

HYDRA is general; it can handle imaging and non-imaging data and can find applications in 

exploratory analyses other than clustering of brain images. We evaluated the performance of 

the method in simulated data, providing insight into its workings. Furthermore, we applied 

HYDRA to structural imaging and genetic dataset from ADNI, revealing disease subtypes 

that are consistent with the existing picture of pathological neurodegeneration and the 

function of the related SNPs. These results demonstrates the potential of our approach in 

teasing out heterogeneity.
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Appendix A. Optimization

Similar to other clustering methods, HYDRA algorithm requires an initialization step 

followed by iterations of assignment and convex polytope solutions. To make the clustering 

robust, we further find the consensus of the clustering results obtained in multiple runs of 

HYDRA. Here we detail the techniques used for each of these steps. Initialization is found 

in Appendix A.1, assignment step is found in Appendix A.2, convex polytope solution is in 

Appendix A.3 and consensus is found in Appendix A.4.

As mentioned in the main text, HYDRA is geometrically asymmetric, requiring one of the 

groups to lie inside the polytope. We provide the solution for the symmetric version of 

HYDRA in 2.4.

Lastly, HYDRA can be solved in the dual domain if sample size is relatively lower than the 

dimensionality. The dual solution is in Appendix B.1.

Appendix A.1. Initialization

Due to the non-convex nature of the maximum margin polytope problem, the initialization is 

crucial in directing the iterative algorithm towards favorable solutions. Since we are 

interested in elucidating discriminative patterns between controls and patients, simply 

Varol et al. Page 23

Neuroimage. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



initializing by clustering the patients may not be sufficient. This is because standard 

clustering may group patients by following global patterns, such as the brain volume, or 

even more subtle patterns that nonetheless reflect normal inter-individual variability and not 

variability in the disease process. On the contrary, patients should be assigned to initial 

clusters by considering their difference map with respect to controls. In other words, since 

we aim to explore different directions of deviation from normal anatomy without concern for 

magnitude of that deviation, we initially group patients into clusters based on the regions in 

which they differ from the controls and not the magnitude of their difference. To achieve 

this, we initialize the assignments of patients into clusters by sampling K unit length 

hyperplanes obtained by considering the space of all pairwise differences between patients 

and controls. We choose K unique hyperplanes by applying Determinental Point Processes 

(DPP) (Kulesza and Taskar, 2012). DPP is a sampling technique that aims to obtain samples 

that are as diverse as possible. This type of sampling ensures that the differences we sample 

reflect unique biomarkers instead of repeated biomarkers with varying magnitudes. This is 

crucial in preventing clustering patients into groups that are not related to variability in the 

disease process. The steps of the initialization algorithm are given in Algorithm 2.

Algorithm 2 — Initialization — Determinental Point Processes

Input: X ∈ ℝn×d, y ∈ {−1, +1}n (training signals), K (number of clusters), m (number of hyperplanes samples to draw)

Output:  (Initial Clustering Assignment)

• Randomly draw m pairs of negative (x−) and positive (x+) samples (with replacement): 

• Obtain m hyperplanes by taking the difference between members of the same pair: 

• Sample K hyperplanes  from  by Determinental Point Processes (Kulesza and Taskar, 2012)

• Set rows of S− such that , otherwise set si,j = 0

Appendix A.2. Assignment Step Solution

For {W, b} fixed, the problem of estimating S− is an assignment problem that can be cast as 

a linear program (LP). The LP problem has infinite solutions when the loss function 

 is equal to 0 for multiple classifiers j and for the same sample i. In 

this case, we choose the solution that is proportional to the margin:

(A.1)
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where 1(·) is the indicator function. Let us note here that the obtained clustering is inherently 

different from the result that is obtained by standard clustering techniques. Instead of 

grouping together samples based on the similarity of their appearance, we aggregate here 

samples that are best separated by the same classifier. Thus, the inferred clustering is driven 

by discrimination. The more pronounced the pathology is, the easier it is to disentangle the 

underlying heterogeneity in the imaging profiles.

Appendix A.3. Convex Polytope Solution

For S− fixed, the solution to {W, b} can be obtained using K calls to a modified version of 

LIBSVM (Chang and Lin, 2011)8 that allows for adaptive sample weightings. The adaptive 

weight ci,j of sample i for the classifier j is calculated as:

(A.2)

In case the dataset is highly unbalanced (i.e., one of the classes is over represented) samples 

in each class can be further weighted by their inverse relative proportion within the training 

set.

Appendix A.4. Consensus Solution

While DPP initialization serves as the first step in avoiding poor locally optimal solutions, 

consensus clustering serves as the second layer to eliminate unstable clusterings that may 

arise due to the non-convexity of the objective function. In noisy, or high dimensional data, 

the clustering obtained via Algorithm 1 may depend greatly on the initialization. To decrease 

this dependency and obtain stable clustering results that characterize the disease 

heterogeneity, we opt for a multi-initialization strategy, endowed by a fusion step. First, 

multiple runs of Algorithm 1 result in a number of clustering hypotheses. Then, we aim to 

fuse the respective hypotheses by harnessing the wisdom of the crowd to obtain an aggregate 

clustering. Consensus is achieved by grouping together samples that co-occur (i.e., they are 

assigned to the same clustering) across different clustering hypotheses. In practice, we first 

compute a co-occurrence matrix of the subjects based on each clustering result and then 

perform spectral clustering using it.

Appendix A.4.1. Co-occurrence Matrix

Given P clusterings  obtained by running Algorithm 1 P times, the co-occurence 

matrix A is given by:

8http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/weights/
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(A.3)

In other words, each il-th entry of the matrix enumerates the number of cases that the i-th 

and l-th sample were assigned to the same cluster.

Appendix A.4.2. Spectral Clustering

The consensus clustering involves the calculation of the Laplacian matrix from the co-

occurrence matrix A and the computation of the K eigenvectors ([v1 … vk]) that correspond 

to the K smallest eigenvalues (λ1 ≤ … ≤ λK). Then, the aggregate clustering of subjects is 

obtained by running K-means in the obtained subspace. The implementation of consensus 

clustering is outlined in Algorithm 3. It should be noted that the consensus clustering 

presented herein is analogous to spectral clustering (Ng et al., 2002).

Algorithm 3 — Consensus Clustering

Input:  (P clusterings from Algorithm 1), K (number of clusters)

Output:  (Final Clustering Assignment)

• Compute co-occurrence matrix A using Eq. A.3

• Spectral clustering on A:

 • Compute Laplacian matrix 

 • Compute the K eigenvectors (v1, …, vK) that correspond to K smallest eigenvalues of L (λ1 ≤ … ≤ λK)

 • S− ← K-means([v1 … vK])

Appendix B. Dual Optimization

Due to the high dimensional, low sample size nature of neuroimaging data, it would be 

useful to operate in the dual domain to ease the computational burden. The dual formulation 

of HYDRA can be obtained by converting Eq. 1 to:

subject to
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The advantages of this formulation are two-fold. First, it allows us to solve for only n × K 

variables  instead of K × d variables, which may be prohibitively large. Second, 

via the kernel trick, we may substitute  with any kernel satisfying the Mercer condition. 

In terms of implementation, this formulation is readily adaptable to the weighted LIBSVM 

(Chang and Lin, 2011) implementation. Similar to the case of the primal problem, the 

weights are given by Eq. A.2.

This formulation does not affect the assignment step solution since the assignment step 

requires only the prediction score for each subject corresponding to the K hyperplanes. 

Since the hyperplanes are defined as , the prediction score for each 

hyperplane wj can be simply calculated as:

which can be readily obtained from the Gram matrix that stores the inner products between 

data points. Furthermore, the bias terms bj can be solved in the dual by:

using any labeled sample (xl, yl) such that C > αi,l > 0. The solutions for {αi,j, bj} can be 

directly used in Equation A.1 to solve for the assignments S−. In addition, the prediction for 

the dual version of HYDRA is:

Appendix B.1. Dual Symmetric Prediction

In the case of the symmetric version of the algorithm, the final prediction can be obtained as:
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Appendix C. List of Genetics Features Used

The SNPs used as features is given in table C.5. Two features were extracted from each 

subject for each SNP: the presence of the major-major and the major-minor alleles. Minor 

allele frequency (MAF) column in table C.5 denotes the likelihood of observing the rare 

minor allele in the population.
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Highlights

• We present a novel machine learning framework for the analysis of 

heterogeneity in neuroimaging studies

• We propose a semi-supervised learning framework that integrates 

classification and clustering

• The anatomical and genetic heterogeneity of Alzheimer’s disease is explored 

using the proposed framework

• The anatomical and genetic subtypes that are revealed are clinically 

meaningful and match well with previous studies
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Figure 1. 
Illustrating the effect of heterogeneity when separating a positive class (denoted by gray 

squares) from a heterogeneous negative class (denoted by red rhombuses). (a) Linear SVM 

separates the positive class from a heterogeneous negative class (presence of two clusters) by 

a small margin. (b) Our method classifies each cluster separately, resulting in a larger 

margin. (c) Heterogeneity introduced by the presence of three clusters modeling distinct 

deviations from normality. Each deviation is captured by a different face of the convex 

polytope. Solid lines correspond to the classifier, dashed lines indicate margin while 

highlighted linear segments define the separating convex polytope.
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Figure 2. 
Positive (squares) and negative (rhombuses) instances in a continuous two-dimensional 

feature space. Instances of the two classes either (a) overlap and are not linearly separable, 

or (b) are highly separable. Linear SVM is used to classify the low (b) and high (e) 

separability toy dataset. Similarly, HYDRA (K=2) is applied to the low (c) and high (f) 

separability toy dataset. Dark gray lines correspond to the estimated separating hyperplanes, 

while light gray lines denote the estimated margins. Note the increase of the margin that is 

made possible through the use of multiple linear classifiers that form a convex polytope 

denoted by the highlighted line segments. The classes, as well as the estimated subgroups, 

are encoded using different colors.
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Figure 3. 
(a) Patterns of simulated heterogeneity. Mean difference images between the positive class 

and the three negative class subgroups, respectively. (b) The results that were obtained using 

HYDRA (K = 3) are visualized by performing group comparison between each estimated 

subgroup and the positive class. The negative logarithm of the estimated p-values is shown. 

(c) Similarly, the groups that were obtained using K-means (K = 3) are reported. Note that 

the groups estimated by HYDRA capture distinct focal effects that align well with the 

simulated ones, while the ones estimated by K-means mix the focal effects and recapitulate 

different stages of disease progression.
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Figure 4. 
Simulated data results: (a) Cross-validated AUC for HYDRA (left) and K-means/SVM 

(right) binary classification. (b) Cross-validated ARI for the clustering result of HYDRA 

(left) and K-means (right). The results are reported for different values of the parameter K. 

Error bars are centered around the mean and indicate variance. Both the classification 

accuracy and the cluster stability were maximized at K = 3 for HYDRA, agreeing with the 

intrinsic dimensionality of the heterogeneous group. The classification accuracy obtained by 

K-means/SVM remained relatively stable for different values of K. However, the clustering 

stability was maximized for K = 2, demonstrating that higher reproducibility does not 

necessarily imply successful heterogeneity detection.
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Figure 5. 
Anatomical Data: (a) Cross-validated classification accuracy. (b) Cross-validated cluster 

stability. Results are reported for different values of the parameter K. Error bars are centered 

around the mean and indicate variance. Classification accuracy remains relatively stable for 

different values of K (no statistically significant differences between the reported AUC 

values were observed). Cluster stability exhibits a distinct peak at K = 3, suggesting the 

existence of three distinct disease subgroups.
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Figure 6. 
Comparison between group differences obtained using commonly applied monistic analysis 

and the results that were obtained using our method for heterogeneity detection in structural 

MRI data. The voxel-based analysis was performed using GM RAVENS. Color-maps 

indicate the scale for the t-statistic. Colder colors indicate relative GM volume increases 

(CN < pathological population), while warmer colors correspond to relative GM volume 

decreases (CN > pathological population). Images are displayed in radiological convention. 

Axial views of the VBA results obtained from GM group comparisons of (A) CN vs. AD; 

(B) CN vs. first AD subgroup; (C) CN vs. second AD subgroup; and (D) CN vs. third AD 

subgroup are shown. The first subgroup exhibited diffuse atrophy; the second subgroup was 

characterized by bilateral parietal lobe, precuneus, and bilateral dorsolateral frontal lobe 

atrophy, while the third subgroup exhibited bilateral medial temporal dominant atrophy.
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Figure 7. 
Genetic Data: (a) Cross-validated classification accuracy. (b) Cross-validated cluster 

stability. Results are reported for different values of the parameter K. Error bars are centered 

around the mean and indicate variance. Classification accuracy slightly decreases. However, 

the results for K = 1 and K = 2 were not statistically significant different. Cluster stability 

exhibited a distinct, high peak at K = 2, suggesting the existence of two distinct disease 

subgroups.
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Figure 8. 
Comparison between group differences obtained using commonly applied monistic analysis 

and the results that were obtained using our method for heterogeneity detection in genetic 

data. The voxel-based analysis was performed using GM RAVENS. Color-maps indicate the 

scale for the t-statistic. Images are displayed in radiological convention. Axial views of the 

VBA results obtained from GM group comparisons of (A) CN vs. first AD subgroup; (B) 

CN vs. second AD subgroup; and (C) first AD subgroup vs. second AD subgroup are shown. 

For (A) and (B), colder colors indicate relative GM volume increases (CN < AD subgroups), 

while warmer colors correspond to relative GM volume decreases (CN > AD subgroups). 

Similarly for (C), warmer colors indicate relative GM volume increases (first AD subgroup 

< second AD subgroup), while colder colors correspond to relative GM volume decreases 

(first AD subgroup > second AD subgroup). Both groups exhibit atrophy in the temporal 

lobe and posterior medial cortex while white matter lesions are present in the periventricular 

area. However, the first AD subgroup, which mainly comprises APOE ε4 carriers, is 

characterized by significantly more hippocampus and entorhinal cortex atrophy and less 

superior frontal lobe atrophy.
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Table 3

Table summarizing the classification and clustering performance of HYDRA for the experiments using 

structural MRI and genetic data, respectively. Results are reported for three values of the parameter K. The 

optimal value of the parameter K that was estimated by performing model selection based on clustering 

stability is denoted by *. The differences in AUC were statistically insignificant between K = 1 and K = 3 for 

MRI data (two-tailed t-test p-value equals to 0.115) and between K = 1 and K = 2 for genetic data (two-tailed 

t-test p-value equals to 0.102). This suggests that discriminative signal was preserved, allowing for clinically 

relevant clusters to be found.

Experiment Classification/Clustering Performance

Data K AUC ARI

MRI

1 0.9149 ± 0.0563 —

2 0.9123 ± 0.0517 0.2054 ± 0.2477

3* 0.9021 ± 0.0572 0.2724 ± 0.1430

Genotype

1 0.7296 ± 0.1033 —

2* 0.7047 ± 0.1105 0.7986 ± 0.2266

3 0.6990 ± 0.1121 0.6412 ± 0.3124
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