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Introduction
The concept of artificial intelligence  (AI) 
was proposed in the 1920s, and it has 
been growing exponentially throughout 
the last century.[1] AI combines its 
computing powers with the input provided 
by experts and results in machines 
that are capable of self‑learning and 
adapting to changes. AI has been used in 
medicine for the last three decades for 
diagnostic assistance and planning patient 
management.[2,3] For example, DXplain 
developed by the laboratory of computer 
science at Massachusetts General Hospital 
during the 1980s continues to assist in 
clinical decision‑making and establishing 
diagnoses.[4]

Machine learning is a subfield of AI that 
makes it possible for computers to learn 
from experience through artificial neural 
networks. Using this technology, it is 
possible to “train” a machine by process of 
presentation of repetitive data and develop 
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Abstract
Background: Echocardiographic analysis of mitral valve  (MV) has become essential for diagnosis 
and management of patients with MV disease. Currently, the various software used for MV 
analysis require manual input and are prone to interobserver variability in the measurements. 
Aim: The aim of this study is to determine the interobserver variability in an automated 
software that uses artificial intelligence for MV analysis. Settings and Design: Retrospective 
analysis of intraoperative three‑dimensional transesophageal echocardiography data acquired 
from four patients with normal MV undergoing coronary artery bypass graft surgery in a tertiary 
hospital. Materials and Methods: Echocardiographic data were analyzed using the eSie Valve 
Software  (Siemens Healthcare, Mountain View, CA, USA). Three examiners analyzed three 
end‑systolic  (ES) frames from each of the four patients. A  total of 36 ES frames were analyzed and 
included in the study. Statistical Analysis: A multiple mixed‑effects ANOVA model was constructed 
to determine if the examiner, the patient, and the loop had a significant effect on the average value 
of each parameter. A  Bonferroni correction was used to correct for multiple comparisons, and 
P = 0.0083 was considered to be significant. Results: Examiners did not have an effect on any of the 
six parameters tested. Patient and loop had an effect on the average parameter value for each of the 
six parameters as expected (P < 0.0083 for both). Conclusion: We were able to conclude that using 
automated analysis, it is possible to obtain results with good reproducibility, which only requires 
minimal user intervention.
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the ability to recognize patterns. During 
the process, the machine system continues 
to learn, adjust, and adapt from corrections 
made by a human observer.[5,6] This is 
a form of supervised machine learning 
technique. The ability of AI to learn from 
image recognition and interpretation has 
resulted in the development of automated 
electroencephalogram, electrocardiography 
analyses, and facial recognition technology. 
There are multiple possibilities in medicine 
where AI and machine learning can be of 
practical use. Tracing cardiac structures and 
analyses of the same is an entity where AI 
has been used recently.

Objective and quantitative 
echocardiographic analyses are critical 
in diagnosis, therapeutic planning, and 
perioperative management of patients 
with mitral valve  (MV) disease. Currently, 
there are multiple algorithmic software 
available for such analyses. While some 
are semi‑automated, most software requires 
considerable user input with potential for 
error magnification and variability.[7] Since 
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the geometric valvular assessment is also based on pattern 
recognition and appreciation of subtle variations from 
normal, AI has been integrated into such programs. Recent 
advances in AI and machine learning have led to the 
development of fully automated valvular analyses packages 
with minimal to no user input. Whereas these are automated 
and self‑learning, there is considerable skepticism 
regarding their clinical feasibility and reproducibility of 
their analyses. With the popularity of minimally invasive or 
percutaneous interventions, direct visual valve assessment 
has become limited or impossible. Echocardiographic 
MV quantification has assumed importance and clinical 
relevance. Therefore, we decided to assess the feasibility 
and reproducibility of one such automated MV analytical 
software.

Materials and Methods
This study was conducted as part of an ongoing Institutional 
Review Board approved protocol of retrospective analysis 
of intraoperative echocardiographic data with a waiver of 
informed consent from August 2015 to September 2015. 
Intraoperative three‑dimensional  (3D) transesophageal 
echocardiography  (TEE) data were collected from four 
patients with normal MV undergoing routine coronary 
artery bypass graft  (CABG) surgery. A  Siemens SC‑2000 
TEE system with a Z6M TEE machine  (Siemens Medical, 
Mountain View, CA, USA) capable of real‑time 3D 
imaging probe was used for this study.

Data acquisition

Data were acquired immediately after induction of general 
anesthesia. Patients who had normal biventricular function 
and scheduled for elective CABG surgery were included in 
this study. After esophageal intubation with the TEE probe, 
it was positioned in the mid‑esophageal location, and scan 
plane rotation was set at zero degrees. The two‑dimensional 
image was optimized with gain and compression settings, 
and the region of interest was identified. Using the 3D 
control button, a full volume of MV was acquired over 2–3 
beats at an average volume rate of 10–14 volumes/s without 
R‑wave gating. The quality of the data was ensured with 
the absence of any dropout, inclusion of the entire mitral 
annulus, coaptation zone, and the leaflets. Three different 
data were acquired for each patient by an experienced 
echocardiographer (FM).

Data analysis

The data were then exported through USB drive in DICOM 
format to offline windows workstation equipped with 
the eSie Valve Software  (Siemens Healthcare, Mountain 
View, CA, USA). Within the environment of the DICOM 
viewer software, eSie valve function was accessed and 
the volumetric data were analyzed. As a first step using 
the cine control function, the end‑systolic  (ES) frame was 
identified visually as the last frame before the MV begins 
to open. Further analyses were based on this ES frame as 

the starting point. In total, three examiners performed the 
static MV analysis in three ES frames for each of the four 
patients. A total of 12 ES frames analyzed by three different 
examiners have been included in the study. After selection 
of the frame of interest, the subsequent tracking of the valve 
is automated and minimal user input is required. After the 
software performs an automated tracing of the valve, there 
is an option to review and make manual correction of the 
software identified anatomical landmarks and surfaces in 
multiple planes  [Figure  1]. Six geometric parameters of 
interest were selected for this study:  (1) mitral annulus 
anterolateral posteromedial  (ALPM) diameter,  (2) mitral 
annulus anteroposterior  (AP) diameter,  (3) mitral annular 
area,  (4) mitral annulus nonplanarity angle,  (5) mitral 
annulus total perimeter, and  (6) anterior and posterior 
leaflet areas. The measurements for each frame were then 
individually exported into.csv files.

Statistical methods

The.csv output from each MV analysis was imported to 
R Software  (R Core Team, Vienna, Austria) for further 
analysis. For each of the selected six parameters computed 
by the eSie Valve Software, a multiple mixed‑effects 
ANOVA model was constructed to identify whether the 
examiner, the patient, and the loop had a significant effect 
on the parameter average value. Therefore, the ANOVA 
was constructed such that the response was parameter 
average value, and the effects were: examiner, patient, 
and loop. More specifically, parameter average value was 
modeled against examiner, patient, and a patient‑loop 
interaction term (patient‑loop was defined as an interaction 
term because the loops were specific to each patient.).

The P  value computed for each of the effects, therefore, 
tested the null hypothesis that the examiner, the patient, 
or the loop had no effect on the parameter. A  Bonferroni 
correction was used to correct for multiple comparisons; 
since six parameters were studied, P  =  0.0083 was 
considered to be significant.

Results
Three examiners successfully obtained outputs for the 
MVs of four different patients, visualized at three different 
loops during their examinations. No data were missing. On 
qualitative examination of the.csv outputs, the values of 
mitral annulus ALPM diameter, mitral annulus AP diameter, 
mitral annulus area, mitral annulus nonplanarity angle, 
mitral annulus total perimeter, and total leaflet area were all 
plausible. A  mixed‑effects ANOVA was successfully fit to 
the data for each of the six parameters.

Examiner did not have an effect on any of the six parameters 
tested; APLM diameter (P = 0.72), AP diameter (P = 0.25), 
annulus area  (P  =  0.07), nonplanarity angle (P  =  0.03), 
annulus perimeter  (P  =  0.13), and leaflet area (P  =  0.15). 
These parameters are therefore robust to different examiners 
obtaining such values [Figures 2‑4 and Table 1].
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Discussion
The results from our study demonstrate that it is feasible 
to perform automated analyses of MV with good 
reproducibility. Commonly used geometric parameters of 
MV analysis can be readily acquired without significant 
user input. Ability to readily perform such clinically 
relevant measurements is likely to introduce more 
uniformity and accuracy into quantitative analyses. 
Furthermore, there is less likelihood of individual bias 
impacting these measurements. Furthermore, with MV 
interventions becoming minimally invasive or percutaneous 
in nature, the interventionists have limited access to 
MV, and the 3D measurements are the starting and end 
points of interventions. Such interventions are entirely 
based on geometric measurements that are provided 
by echocardiographers; it is crucial to ensure accuracy 
and reproducibility of such analyses.[8,9] Therefore, MV 
quantification is evolving into an objective and precise 
process. Further, the software is capable of analyzing the 
valve throughout systole and diastole and tracks the entire 
surface of leaflets automatically.

Intraoperative geometric analyses of mitral, aortic, 
and tricuspid valves have assumed significant clinical 
importance. The currently available systems are either 
entirely manual or require significant user input and 
interaction during the process. Conventionally, the static 
analyses are based on the ES frame or the systolic phase 
of the cardiac cycle only. Dynamic analyses throughout 
the cardiac cycle have been reported with customized 
software or with user identification of multiple individual 
frames.[10,11] These are not only cumbersome and time 
consuming but also not clinically feasible. Commercial 
availability of such a system addresses a clinical need 
and will fulfill a knowledge gap. Whereas our study did 
not include the reproducibility of the dynamic analysis, 
we analyzed the most commonly utilized parameters in 
the clinical arena. They are useful for diagnosing mitral 
annular dilation, flattening, and establishing thresholds for 
intervention.

Patient selection had an effect on average parameter value 
for each of the six parameters investigated as was expected 
[P  <  0.0083, Table  1]. Loop had an effect on the average 
parameter for each of the six parameters investigated 
[P < 0.0083, Table 1].

Table 1: Effect of examiner, patient, and loop on average 
parameter value in mixed‑effects ANOVA modeling of 
each parameter as a response to the three effects terms
Effect of examiner, patient, and loop on average parameter 

value in mixed‑effects ANOVA
Parameter P

Examiner Patient Loop
ALPM diameter 0.13 7.2E‑08* 2.7E‑11*
AP diameter 0.32 1.1E‑15* 1.9E‑05*
Annulus area 0.07 6.6E‑24* 3.1E‑16*
Nonplanarity angle 0.03 6.0E‑26* 5.0E‑05*
Annulus perimeter 0.13 1.6E‑21* 4.1E‑13*
Leaflet area 0.15 6.0E‑20* 2.3E‑12*
*A Bonferroni‑corrected P=0.0083 was considered significant. 
ALPM: Anterolateral posteromedial, AP: Anteroposterior

Figure 1: Steps performed for every frame that was selected and analyzed 
in the study. Manual correction of the automatically traced contours, if 
needed, can be performed in an overview of mitral valve, a rotational view, 
or in a parallel view of the mitral valve. Once the tracing is complete, the 
software analyzes various parameters and displays the result
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Figure 3: Plot of annulus area (panel A) and leaflet area (panel B) against examiner/patient combination. Overlaid text letters (a and b) denote different 
loop selections for each particular patient

b

a

Figure 2: Plot of anterolateral posteromedial (panel A) and anteroposterior (panel B) diameter against examiner/patient combination. Overlaid text letters 
(a and b) denote different loop selections for each particular patient

b

a
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The maximum input that is required from the user is 
obtaining optimal image quality, adequate data sets, and 
verifying the automatic valve tracing after it is completed. 
Moreover, the automated analysis is independent of R‑wave 
gating and requirement of sinus rhythm that explains the 
high reproducibility of the results. Apart from the regularly 
monitored parameters, the software generates many other 
MV analytical data majority of which pertain only to 
research interest and are not routinely used in the clinical 
scenario currently. For this study, we chose the most 
important clinical parameters that are used frequently on a 
day‑to‑day basis.

Conclusion
We were able to conclude that though automated analysis 
is prone to slight inconsistencies, it is possible to obtain 
results with good reproducibility that requires minimal 
user intervention. It thereby decreases the time taken to 
analyze cardiac structures and possibly expedites clinical 
decision‑making. With introduction of machine learning 
algorithms into such software, any minor inconsistency 
can be further reduced as the software learns to adapt and 
adjust according to the user inputs.
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