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Summary

The European Chemicals Agency (ECHA) warehouses the largest public dataset of in vivo and in 
vitro toxicity tests. In December 2014 this data was converted into a structured, machine readable 

and searchable database using natural language processing. It contains data for 9,801 unique 

substances, 3,609 unique study descriptions and 816,048 study documents. This allows exploring 

toxicological data on a scale far larger than previously possible.

Substance similarity analysis was used to determine clustering of substances for hazards by 

mapping to PubChem. Similarity was measured using PubChem 2D conformational substructure 

fingerprints, which were compared via the Tanimoto metric. Following K-Core filtration, the 

Blondel et al. (2008) module recognition algorithm was used to identify chemical modules 

showing clusters of substances in use within the chemical universe.

The Global Harmonized System of Classification and Labelling provides a valuable information 

source for hazard analysis. The most prevalent hazards are H317 “May cause an allergic skin 

reaction” with 20% and H318 “Causes serious eye damage” with 17% positive substances. Such 

prevalences obtained for all hazards here are key for the design of integrated testing strategies. The 

data allowed estimation of animal use.

The database covers about 20% of substances in the high-throughput biological assay database 

Tox21 (1,737 substances) and has a 917 substance overlap with the Comparative Toxicogenomics 

Database (~7% of CTD). The biological data available in these datasets combined with ECHA in 
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vivo endpoints have enormous modeling potential. A case is made that REACH should 

systematically open regulatory data for research purposes.
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1 Introduction

The European REACH legislation (Regulation (EC) 1907/2006)1 prescribed the largest 

collection of chemical toxicity data in history. REACH aims to collect comprehensive safety 

information for all substances on the European market in volumes of more than 1 ton per 

year of production or import volume. Basically, it includes three groups of substances, i.e., 

substances for which so far no registration was necessary on the European level, substances 

introduced under the Dangerous Substances Directive, since then with somewhat different 

registration requirements, and all new substances above 1 ton per year since entering into 

force of the REACH legislation. The legislation is organized by different deadlines, two of 

which had passed at the time of data analysis. The first required the registration of 

substances at tonnage levels above 1,000 tons and those with concerns as to carcinogenicity, 

mutagenicity and reproductive toxicity (CMR) before December 2010 and the second 

required the registration of substances above 100 tons per year before June 2013; new 

substances were added to this, but their number is relatively small (Hartung, 2010). For this 

reason the analysis is clearly biased toward high-production volume substances.

While computational toxicology has recently seen the collection of several large-scale 

datasets (e.g., US EPA’s ToxCast), the data generated and collected for REACH, owing to its 

legislative nature, is becoming the largest collection of (eco-)toxicology data relating to in 
vitro and in vivo endpoints. However, the REACH dossiers are currently proprietary and any 

workflows involving the public summary data in REACH depend on the slow and error-

prone process of manual extraction. Dossiers can be viewed on the ECHA website2; 

documents are generated by industry via the IUCLID3 application.

Here we seek to demonstrate the extent and diversity of the REACH dataset – a dataset that 

far surpasses most existing datasets used for computational toxicology – and show how an 

open-access REACH program could allow a profound change in computational toxicology. 

More detailed analyses were performed for ocular, oral and skin endpoints in other 

publications (Luechtefeld et al., 2016a–c, this issue).

1http://ec.europa.eu/enterprise/sectors/chemicals/reach/index_en.htm
2http://echa.europa.eu/
3http://iuclid.eu/
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2 Methods

2.1 REACH data extraction

Data was downloaded from ECHA using HtmlUnit in an iterative manner in order not to 

hinder data flow, using an open source Java “Gui-less browser” library (Bowler, 2002). 

Implementation of ECHA dossier download automation used the functional programming 

language SCALA (Odersky et al., 2004).

A MongoDB database4 was generated from REACH data (Chodorow, 2013). Extracted 

REACH data is stored as a query-able collection of documents in this Mongo database. The 

database was generated by automated data extraction from ECHA dossier URLs via the 

SCALA driver ReactiveMongo (Godbillon, 2015).

Every document is identified by a unique set of three fields:

• ECNumber: Substance identifier (“415-890-1”)

• type: Study description (e.g., “Exp Key Eye irritation”)

• num: disambiguates repeat studies (1, 2, 3,…)

The constructed database, downloaded December 17, 2014, contains 816,048 such 

documents with 9,801 unique substances (identified by ECNumber) and 3,609 unique study 

descriptions. Not every substance was associated with information for every study type.

While ECHA disseminated data is a highly structured dataset, much of REACH data 

contains natural language for quantitative and categorical fields such as: number of animals, 

Klimisch score, dates, GHS hazards, dose data, response data, etc. These fields were mapped 

to numeric or categorical values via regular expression recognizing number words and 

numbers.

To better enable categorization of studies used for animal endpoints, we enriched studies by 

categorizing into four groups (InVitro, InVivo, ReadAcross or QSAR / PCHEM) mainly 

through analysis of keywords (i.e., “read across” in the methods data likely represents a 

ReadAcross study). The QSAR / PCHEM category refers to quantitative structure activity 

relationship model studies and physicochemical property studies. Due to an overlap in the 

language used by ECHA to describe these studies, QSAR and PCHEM are grouped together.

When applicable, guideline identifiers were extracted from study data. Thus all the studies 

matching a given OECD guideline can be easily queried.

ECHA disseminated data is of a highly nested nature: administrative, reference, results, 

materials and methods data all have many subfields, and some subfields have their own 

subfields. The root fields for studies may, but do not necessarily, include:

• ADMIN_DATA: Klimisch score, data waiving flag, etc.

• Data source: References (authors, years, bibliographic sources)

4https://www.mongodb.org/
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• Materials & methods: Study method details

• Results & discussions: study result information (e.g., dose-response data)

• Applicant summary & conclusion: result interpretation

Administrative data is associated with most studies in ECHA disseminated data, with the 

exception typically being a chemical report for classification and labeling. The extracted 

data may include fields for:

• Purpose flag: Four categories for study purpose including: key study, supporting 
study, weight of evidence and disregarded study

• Data waiving: Four categories to justify data waiving including: study not 
technically feasible, scientifically unjustified, exposure conditions and other 
justification.

• Reliability: 1 (reliable without restrictions), 2 (reliable with restrictions), 3 (not 
reliable), 4 (not assignable) and other (Klimisch et al., 1997).

• Study result type: Study descriptions including: estimated by calculation, 
experimental results, (Q)SAR, read-across from supporting substance, read-
across based on grouping of substances, no data, experimental study planned and 

2,450 values prefixed by “other”.

Material and methods data associated with studies submitted to ECHA tended to be varied in 

key fields. Most materials and methods data include:

1. Materials: Table of substances used

2. Organism details: name, sex, number used, etc.

3. Guideline: Information such as OECD guideline

4. Exposure details: dose, duration, frequency

5. Misc: Many study specific fields

2.2 Computational methods

Multiple programming languages, packages and database tools were used in the 

development of this project. Below we review the use of PubChem and other public 

databases, the visualization package Gephi and the layout algorithm Force Atlas.

PubChem Power User Gateway—PubChem’s Power User Gateway provided data on 

chemical similarity (including chemical fingerprints), chemical properties including 

molecular weight, chemical identification information (common names, SMILES, etc.), and 

bioassay information (Cheng et al., 2014). Bioassay information includes 44,893 assays 

performed on at least one ECHA chemical and available on PubChem. The data provided by 

PubChem informed similarity analyses and computational models found in our related 

publications (Luechtefeld et al., 2016a–c, this issue).

PubChem’s 2D conformational Tanimoto similarity metric5 was accessed through the 

Chemistry Development Kit (Steinbeck et al., 2003). This similarity metric breaks 
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substances into 881 element binary vectors describing the presence or absence of 

substructures. Similarity between chemical vectors is calculated via Tanimoto distance. 

Tanimoto distance, the fraction of shared substructures divided by total number of 

substructures, is a number between 1 (perfectly similar) and 0 (no similarity):

The K-Core algorithm was used to filter out substances with less than 30 neighbors. K-Core, 

an iterative algorithm, removes substances with the fewest neighbors first until all remaining 

substances have at least k neighbors. Previous use in protein-protein networks and protein 

function analysis provide evidence of K-Core’s use in discovering useful network structures 

(Altaf-Ul-Amine et al., 2003; Alvarez-Hamelin et al., 2005; Wuchty and Almaas, 2005). The 

parameter 30 was chosen to reduce the network to a manageable number of well connected 

modules.

Module creation—Following K-Core filtration, we used the Blondel (Blondel et al., 2008) 

module recognition algorithm to identify chemical modules in the K-Core reduced similarity 

graph. Blondel’s algorithm optimizes Q, a measure of network modularity as evaluated by a 

function of vertex similarity and module assignment:

In the above formula:

• Aij is the similarity of chemical i and j,

• m = Σi,j Aij is the total sum of all similarities,

• ki = Σj Aij is the sum of similarities to chemical i,

• ci is the module containing chemical i,

• δ (ci, cj) is 1 if ci = cj and 0 otherwise.

Q takes on values between −1 and 1. Good modularity, defined by stronger similarity 

between substances in the same modules versus different modules, is observed for networks 

with Q ≥ 0.3 (Blondel et al., 2008).

Gephi—Gephi, a network visualization tool, was used to construct and analyze similarity 

networks (Bastian et al., 2009). The code for Gephi is openly available6 and free to extend 

or modify.

Force layout—The force layout algorithm (Jacomy et al., 2014) was used for generation of 

chemical similarity networks. The force layout algorithm works on graphs with nodes and 

5https://pubchem.ncbi.nlm.nih.gov/score_matrix/score_matrix-help.html
6https://github.com/gephi/gephi
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edges. Nodes in a graph are connected by edges. The force layout algorithm treats nodes as 

charged particles that repel each other and edges as physical connections between these 

particles. The algorithm then positions nodes via a physics simulation.

Term Frequency x Inverse Document Frequency (TFIDF)—TFIDF was performed 

on an 881-dimensional “substructure importance” vector by summing the occurrences of all 

881 substructures inside a module (module frequency) and dividing by their frequency in all 

substances (inverse chemical frequency). We denote this MF_ICF or “Module Frequency 

Inverse Chemical Frequency”.

Counts occurrence of structure si in all substances

Counts occurrence of structure sj in module Mi

Substructure importance vector for module i

Mi and Mj similarity is measured as the cosine of the angle between both substructure 

importance vectors given here as the vector dot product over vector magnitudes. Module 

similarity is measured here as the cosine of module substructure importance vectors.

Toxicity databases—We aggregated data from multiple toxicologically relevant 

databases for analysis of biological and chemical structure data and its relationship with 

studies found in ECHA data.

ToxRefDB was accessed using the web portal given on the Environmental Protection 

Agency’s (EPA) website7. Tox21 data was also accessed through the EPA’s website by 

downloading8. Substances from the Comparative Toxicogenomics Database (CTD) were 

7http://actor.epa.gov/toxrefdb/faces/Home.jsp
8http://epa.gov/ncct/toxcast/data.html
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available for download9. Access to the PubChem and ChEMBL libraries was available 

through web services10 (Bolton et al., 2008). Overlaps between databases were found by 

matching CAS Registry Numbers (CAS RN). The ChEMBL database stores compounds by 

a unique chemical identifier (ChEMBL ID) and does not contain CAS RN. For this overlay, 

CAS RN were converted to canonical SMILES and subsequently searched against the 

ChEMBL library. Because the PubChem and ChEMBL libraries are large and accessed via 

web services, the overlap between these databases was taken as reported by The European 

Bioinformatics Institute11.

The results of assays found in PubChem and ChEMBL for high production volume 

compounds were aggregated using the PubChem Power User Gateway and ChEMBL API. 

The response of a compound in a given assay was recorded independent of the experimental 

outcome (e.g., active, inactive, inconclusive, etc.). The assays within CTD were available 

using the batch query portal within the site12. Each chemical-gene interaction for a queried 

compound was recorded as a response.

3 Results

3.1 Extracted data overview

Efforts to determine chemical hazards such as eye irritation, skin sensitization and other 

health hazards have resulted in the accumulation of large amounts of privately held toxicity 

data. REACH legislation has resulted in the most extensive effort to systematically collect 

such data and outlined the necessary additional chemical testing that must be done. The 

constructed database, downloaded December 17, 2014, contains 816,048 such documents 

with 9,801 unique substances (identified by ECNumber) and 3,609 unique study 

descriptions.

Out of the 509,083 studies with a purpose flag in the extracted data, 13.5% (68,866) have the 

purpose flag “weight of evidence”, 2.5% (13,051) “disregarded study”, 44.7% (227,417) 

“key study”, and 39.2% (199,749) have the purpose flag “supporting study” (Fig. 1). 

Purpose flags can be useful for defining the breadth of database queries; some analyses may 

only have interest in study results directly used for classification and labeling and should 

refine their searches to studies with purpose flag “key study”.

Klimisch reliability scores (Klimisch et al., 1997), which are defined by dossier registrants, 

can also be used to refine searches or even to compare results across reliability levels. Out of 

539,675 studies with an assigned reliability score, 30.9% (153,792) have a reliability score 

of “1 (reliable without restriction)”, 60.5% (301,649) “2 (reliable with restrictions)”, 8.6% 

(42,757) “3 (not reliable)”, and 8.3% (41,477) have a reliability score of “4 (not assignable)” 

(Fig. 2).

9http://ctdbase.org/downloads/
10http://astro.temple.edu/~tua87106/list_fingerprints.pdf
11https://www.ebi.ac.uk/unichem/analysis/heatoverFullInchi
12http://ctdbase.org/tools/batchQuery.go
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3.2 PubChem chemical similarity

Mapping substances from REACH to PubChem enables the analysis of chemical similarity 

via PubChem 2D conformational substructure fingerprints (Jaworska and Nikolova-

Jeliazkova, 2007; Cheng et al., 2014; Steinbeck et al., 2003). Substructure fingerprints can 

be used in combination with the Tanimoto distance (number of shared substructures divided 

by total number of substructures) to build the chemical similarity map in Figure 3. We 

employed the 2D conformational fingerprint, which treats each fragment as 1 or 0 depending 

on its presence in a substance. Similarity is calculated as the number of shared fragments 

divided by the total number of fragments in both molecules. Although other similarity 

measures exist for binary vectors, we chose Tanimoto for its simplicity (Lourenço et al., 

2004). More advanced similarity measures can be expected to perform more strongly than 

the baseline-setting approach used here.

Large chemical similarity graphs allow both visualization of the global chemical diversity of 

a dataset and suggest different chemical classes within in the data. In construction of the 

chemical similarity network, filtering was performed for visualization and identification of 

network modules. Edges between substances with similarity less than 0.65 were discarded.

Edge filtration and K-Core chemical filtration reduce 3,122 original substances (mapped 

from REACH to PubChem) to 1,383 and number of edges from 84,993 to 69,041. 

Preservation of one third of the original population demonstrates the well-connectedness of 

the entire chemical similarity network. Figure 4 shows the resulting filtered chemical 

similarity map with substances colored by modularity.

The REACH extraction network modularity Q value of 0.688 demonstrates strong 

modularity. Supporting evidence of strong modularity comes from visual inspection of the 

resulting map (with 9 modules given unique colors). Three large disconnected modules can 

be seen divided into visually reasonable neighborhoods. Edge similarity is visualized via 

transparency, with opaque edges of higher similarity and translucent edges of low similarity; 

tightly connected modules are observed to display dark, strongly weighted edges.

3.2.1 Gephi force layout visualization—Layout and visualization relies on the force 

layout algorithm implemented within an open source Java network visualization software 

called Gephi (Bastian et al., 2009). While technical details are beyond the scope of this 

paper, ForceAtlas distributes edges and nodes by simulating a physical system where nodes 

repulse each other (like charged particles) and edges attract their attached nodes (like 

springs) (Jacomy et al., 2014).

Substances are colored by their module number in Figure 4, and several example substances 

from each module are shown in Figure 5. While the Blondel et al. modularity algorithm 

provides a strong determination of global modules, it is interesting to consider the intra-

module cohesiveness. Module cohesiveness, as measured by comparing similarity between 

substances in a module to substances outside a module, is the basis for Blondel algorithm 

module identification (Blondel et al., 2008). For example, visual inspection shows that 

module 8 is not a very cohesive module and could be broken up into several sub modules, 

and the chemical examples chosen from module 8 are selected from disparate submodules 
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and do not appear strongly related. Module 2 showed extremely high intra-connectivity and 

structurally very similar substances – this likely reflects a class for which using a SAR 

approach could be fruitful.

3.2.2 Module analysis—The super modules discovered via the Blondel algorithm have 

varying inter- and intra-connectedness. For instance, Module 2, Modules (1, 4, 6, 8) and 

Modules (0, 7, 5, 3) form 3 super modules with high degrees of interconnectivity.

To attempt to investigate and quantify this connectivity we borrowed the “Term Frequency x 

Inverse Document Frequency (TFIDF)” approach from document retrieval literature (Salton 

et al., 1975). TFIDF is often used in text-mining to assess the “importance” of a word by 

calculating its frequency in a given document in comparison to its typical appearance in the 

broader corpus, e.g., for a word to have a high value it must appear frequently in a 

document, but infrequently in other documents. We adapted this approach for chemical 

substructures to examine which substructures were the most informative for each module. 

Table 1 gives the highest ranking 10 substructures in each module.

Table 2 gives the similarity between each module measured in this way. The results help to 

confirm the validity of the TFIDF approach. Modules that appear visually related (Fig. 4) 

also have high quantitative similarity. Example substances were chosen from each module to 

help visualize the module constituency. The examples are given in Figure 5 and help to 

inform module characterization.

Three super modules, modules (1, 4, 6, 8), modules (0, 7, 5, 3), and module 2, can easily be 

visualized. The two bigger super modules, modules (1, 4, 6, 8) and modules (0, 7, 5, 3), 

differ mainly in the frequency of straight-chain and cyclic alkanes or aromatic rings, 

respectively. In the first super module, modules (1, 4, 6, 8), modules 1 and 6 are both long 

and short chain esters differing only in the degree of saturation of their alkyl chains, 

explaining the high amount of similarity between the modules. Module 8 showed highly-

cyclic structures of varying ring size and showed intermodular similarity with module 6 due 

to the O-C-R substructures contained in the cyclic alcohols and the esters. Another super 

module, module 2, is based on glycine derivatives that share little similarity with all other 

modules. The slight overlap with module 4, a module with ester and ether derivatives, comes 

from the shared O=C-O-R moiety in both groups. The other large super module, modules (0, 

7, 5, 3), also shows some obvious feature overlaps. Module 0 is characterized by a high 

frequency of alcohol derivatives and esters, and showed the highest intermodular similarity 

with module 7, a module showing a high frequency of thiols. The similarity is most likely 

owing to the frequency of aromatic cyclic structures with a lone substitution in both groups. 

Module 3 (quinone and glycine derivatives) and module 5 (dianilines) shared high 

intermodularity due to the shared aniline backbone.

3.3 OECD guideline usage

ECHA studies designate OECD guideline numbers when appropriate. These numbers 

improve analysis because studies sharing the same OECD guideline can be expected to have 

similar data formats (materials and methods, results, etc.). Table 3 shows the top 3 OECD 

guidelines for each enriched category (InVivo, InVitro, QSAR / PCHEM, Read Across). It 
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should be noted that since OECD guidelines are given by ECHA in natural language and 

were extracted via regular expression recognition, it is possible that some guidelines were 

extracted imperfectly.

REACH requirements for in vitro skin corrosion, skin irritation, eye irritation, and bacterial 

gene mutation are described in Annex VII., i.e., for all tonnage bands (Aulmann and 

Pechacek, 2014; European Commission, 2006). As these endpoints are required for large 

numbers of substances, they should have a high frequency in the extracted data. Given this 

constraint, it is surprising that none of the OECD skin sensitization guidelines appear near 

the top in Table 3. Automatic curation indicates that out of the 9,801 extracted substances 

5,551 were missing explicit in vivo key experimental skin sensitization studies, possibly due 

to data waiving or being substituted by read-across methods. Manual inspection of six online 

ECHA dossiers of substances missing key experimental in vivo sensitization testing agreed 

with the automatically extracted results and identified the following:

• 919-583-6: No key skin sensitization study given

• 206-768-5: Data waiving (other justification)

• 920-191-2: Read-Across GPMT (category approach)

• 923-592-0: Read-Across Mouse LLNA (substitute 269-646-0)

• 482-090-5: No key skin sensitization study given

• 273-748-0: Read-Across Mouse LLNA (substitute 273-733-9)

Analysis of the substances missing a key skin sensitization study indicated that out of 637 

skin sensitization studies with data waiving, 360 are labeled as “other justification”, 255 are 

classified as “study scientifically unjustified”, and 148 as “study technically not feasible”. 

Examination of study result types associated with substances without a skin sensitization 

study indicate 2,735 read-across from supporting substance, 2,156 read-across based on 

grouping of substances, 2,144 experimental result, 157 “estimated by calculation”, and 128 

(Q)SAR. This data indicates that read-across from a supporting substance is a more 

prevalent study type than read-across from categorization for substances lacking a key 

experimental skin sensitization study.

TG 401: Acute Oral Toxicity (OECD, 1987) is the third most prevalent in vivo OECD TG in 

the extracted database. It is also the second most prevalent guideline in the read-across 

category. REACH stipulates in Annex VII that acute toxicity must be evaluated for all 

tonnage bands, thus corroborating the extraction’s high prevalence (Aulmann and Pechacek, 

2014). Overlaps in in vitro and read-across OECD guidelines indicate potentially rich 

datasets for the evaluation of read-across approaches.

OECD guideline data is used extensively in other publications in this issue evaluating ocular, 

skin and oral toxicity in more depth (Luechtefeld et al., 2016a–c, this issue).

3.4 Hazard distribution

ECHA dossier submissions contain classification and labeling data that can be mapped to 

hazard definitions given by the Globally Harmonized System of Classification and 
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Labelling. Figure 6 identifies label frequency as reported in extracted ECHA dossiers. 

Extracted GHS values exist for 6,186 REACH substances; incomplete GHS extractions are 

due to the limitations in text analysis and occasional inconsistencies in data format.

The most abundant hazard is H317 “May cause an allergic skin reaction” with 1,255 (20%) 

labelled substances, 4,317 (70%) substances with “conclusive but not sufficient data for 

classification” (which designates that data are available indicating no need for 

classification), 428 (6%) substances recorded as “data lacking”, 26 (0.4%) substances 

recorded as “inconclusive” and 160 (2.5%) substances for which data extraction failed. The 

high frequency of this hazard, the relatively well-established Adverse Outcome Pathway 

(AOP), as well as the relative ease of using in vitro tests for various steps of the pathway 

make it an ideal test case for further research into Integrated Testing Strategies (Hartung et 

al., 2013). For a more detailed analysis of the skin sensitization data see Luechtefeld et al. 

(2016c, this issue).

H318 “Causes serious eye damage” is the second most frequent endpoint with 1,087 (17%) 

positive substances, 4,574 (74%) “conclusive but not sufficient”, 352 (5.7%) “data lacking”, 

14 (0.02%) “inconclusive” and 159 (2.5%), for which data extraction failed. We examine 

ocular toxicity in more detail in Luechtefeld et al. (2016b, this issue).

The information on hazard frequencies in Table 4 can be used as estimates for hazard 

prevalence to anchor testing strategies (Hoffmann and Hartung, 2005).

3.5 Animal use

The number of animals used in REACH data sources can be extracted simply from Materials 

and Methods data. In a given study the number of animals used is given in natural text, e.g., 

“5 males and females”. We wrote heuristics for extracting animal counts from these natural 

language descriptions. Additionally, due to lack of reference identifiers, the same reference 

may be counted multiple times when it is used for different ECHA studies, thus inflating the 

estimates.

We can evaluate use of animals in reference studies over time by first assessing the 

distribution of study start dates (Fig. 7) and then finding the distribution of number of 

animals used in each year (Fig. 8). We used simple heuristics to estimate animal counts from 

natural language. When comparing Figure 7 and 8 it appears that the number of animals 

used per reference was lower in the late 2000s relative to the 1990s.

3.6 Data overlap

To determine the relevance of ECHA extracted data in the context of current toxicological 

databases, the 9,801 extracted REACH compounds were searched against three well-known 

toxicity datasets: Toxicity Reference Database (ToxRefDB), Toxicity Testing in the 21st 

Century (Tox21) and Comparative Toxicogenomics Database (CTD).

ToxRefDB is a collection of 30 years of animal toxicity testing data in the US 

Environmental Protection Agency (US EPA) and contains 474 compounds (Martin et al., 

2009).
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Tox21 is a collaborative screening effort among EPA, the National Institute of 

Environmental Health Science (NIEHS), National Toxicology Program (NTP), the National 

Center for Advancing Translational Sciences (NCATS), and the Food and Drug 

Administration (FDA) (Tice et al., 2013): Phase I of Tox21 investigates approximately 2,800 

compounds in over 75 bioassays. Phase II expanded the chemical library to over 10,000 and 

seeks to test these compounds in approximately 40 assays over the coming years (Attene-

Ramos et al., 2013). This target chemical library mainly consists of compounds of 

environmental interest (e.g., high production volume compounds, pesticides, drugs, etc.).

The CTD consists of 13,446 compounds with toxicogenomics data (e.g., drug molecules). 

This public database aims to explore how environmental exposures impact human health via 

manually curated chemical-gene, chemical-protein, chemical-disease and gene-disease 

interactions.

REACH compounds have the largest overlap (1,737 compounds) with Tox21 compounds, 

possibly reflecting the similar goals of Tox21 and REACH (Tab. 5). The overlap between 

REACH and CTD is much lower. The extracted REACH substances cover 11% of Toxcast, 

20% of Tox21 and 7% of CTD. The biological data available in these datasets combined 

with in vivo endpoints extractable from REACH represent a strong modeling potential.

PubChem, a large chemical database hosted by the National Center for Biotechnology 

Information (NCBI) and the National Institutes of Health (NIH) (Cheng et al., 2014), 

currently contains 68 million compounds tested in over 1 million bioassays, including 

massive amounts of toxicity data. It is not surprising that 4,955 of the REACH substances 

are found here. ChEMBL, established by the European Bioinformatics Institute, is part of 

the European Molecular Biology Laboratory (EMBL). ChEMBL is a chemical-bioassay 

database manually curated from peer-reviewed publications consisting mostly of drug-like 

compounds (Gaulton et al., 2011), but 2,080 of the REACH chemicals are also represented 

here. Both repositories are thus very rich for further analysis.

4 Discussion

Massive amounts of toxicity data have been generated in the past decade and various data 

repositories have been developed to share data with research communities. REACH is the 

largest of these efforts with expected multi-billion Euros of testing costs (Hartung and 

Rovida, 2009; Rovida and Hartung, 2009), but so far its full potential has not been realized. 

A searchable repository of the publically available REACH data represents an enormous 

resource for toxicology, particularly computational approaches requiring large datasets.

REACH data can be used to inform risk assessments, develop computational models, 

develop and evaluate test strategies, and improve / store toxicological knowledge on a per 

study basis. The extracted data is far from perfect as the non-standardized presentation of 

data in many narrative fields is prone to errors when extracted automatically with search 

engines. While the primary objective of REACH submissions is not data extraction and 

mining, this publication and others in this issue (Luechtefeld et al., 2016a–c) demonstrate 
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the potential value of ECHA reports submitted for REACH. Further curation, as well with 

data from registrations occurring post December 2014, would be extremely helpful.

Ultimately, reduction of animal testing will depend in a large part on the development of in 
silico models such as QSAR (Zvinavashe et al., 2009; Patlewicz et al., 2013, 2015). 

Improvement of computational models relies on accessibility of training and testing data. 

The open data nature of Tox21, ToxRefDB, PubChem, CTD and ChEMBL promotes 

numerous publications and development of ever improving statistical and expert models. 

Overlaps of REACH with existing databases given in Table 5 further demonstrate the value 

of the extracted data: ToxRefDB (a commonly used animal testing database) covers only 474 

substances with multiple animal endpoints while the extraction in this publication covers 

over 9800.

5 Conclusion

The extracted ECHA dataset first of all allows us to better understand the landscape of 

substances for a given hazard: Which parts of the chemical universe are associated with a 

given hazard? How concordant and reproducible are different methods? With the limited 

information of the New Chemicals Database (NCD) of the EU (which is not publicly 

available), it has previously been shown how much useful information can be extracted from 

such databases using the example of skin irritation (Hoffmann et al., 2005). Our parallel 

articles in this ALTEX issue address the most prevalent human hazards, i.e., oral toxicity, 

skin sensitization and eye irritation.

One goal of this publication is to underscore the importance of structuring data in a 

machine-readable format – while REACH in many ways has a workable ontology for 

classifying endpoints, the toxicological value of REACH data could be realized by using 

formal data structures for results extracted from the main guideline-compliant studies, 

especially for the key hazards of eye irritation and skin sensitization, which easily lend 

themselves to this approach. Eventually the development of ontologies (e.g., OpenTox, 

ToxML) to classify studies by type and study results and outcomes for more complicated 

endpoints, such as developmental toxicity, will greatly aid the ability of toxicologists to 

assemble large datasets.

Furthermore, it is our hope that our arguments and referenced articles will motivate the 

systematic and more comprehensive publication of REACH data to the general public. An 

open REACH platform would allow third parties to investigate concepts such as OECD TG 

use and quality assessment, testing redundancies, and hazard distributions, and could 

automate many research tasks.

As we have demonstrated, REACH would provide computational toxicology with an 

unparalleled dataset for QSAR development, in vitro to in vivo extrapolation, and 

computational toxicology approaches. Making REACH open and available to the 

community should be a priority for both scientists and legislators.
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Fig. 1. Prevalence of purpose flags
Prevalence of the four purpose flags (disregarded study, key study, weight of evidence) over 

an extraction of 509,083 studies with purpose flags in REACH registrations 2008–2014.
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Fig. 2. Klimisch score pie chart
Prevalence of different Klimisch values over 539,675 studies with assignable Klimisch 

values in REACH registrations 2008–2014.
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Fig. 3. Chemical similarity for 3,122 substances mapped from ECHA dossiers to PubChem
Minimum similarity of 0.6. Substances without neighbors are filtered out. Gephi algorithm 

“Force Layout 2” used for layout.
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Fig. 4. Filtering of chemical similarity graph via K-Core
Chemical coloring via module membership (determined by Blondel et al. (2008) algorithm) 

to the nine global modules numbered 0–8.
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Fig. 5. 
Chemical examples from each module in Figure 4
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Fig.6. Frequency of different health hazards in extracted dataset of REACH registrations 2008–
2014
Hazard definitions given in Table 4 (Hazard values extracted for 6,186 substances). Green 

bars designate the frequency of chemicals labeled with the given hazard, red bars designate 

the frequency of chemicals not labeled with given hazard.
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Fig. 7. Number of sources from each year
Possible double counting due to absence of reference identifiers in ECHA dossiers.
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Fig. 8. Number of animals used in data sources from referenced year in REACH registrations 
2008–2014
Possible double counting due to missing reference identifiers in ECHA dossiers.
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Tab. 3
Top 3 OECD TG counts by category in REACH registrations 2008–2014

Counts give total number of studies following the given OECD TG.

Category OECD TG Count Description

InVitro 471 6044 Bacterial Reverse Mutation Test (OECD, 1997)

431 3576 in vitro Skin Corrosion: Human Skin Model Test (OECD, 2014)

435 3287 in vitro Membrane Barrier Test Method for Skin Corrosion (OECD, 2006)

QSAR/PCHEM 105 2920 Water Solubility (OECD, 1995b)

109 2420 Density of liquids and solids (OECD, 2012a)

102 2322 Melting Point/Range (OECD, 1995a)

InVivo 404 8548 Acute Dermal Irritation/Corrosion (OECD, 2002)

405 8142 Acute Eye Irritation/Corrosion (Draize) (OECD, 2012b)

401 7852 Acute Oral Toxicity (OECD, 1987)

ReadAcross 471 3896 Bacterial Reverse Mutation Test (OECD, 1997)

401 2747 Acute Oral Toxicity (OECD, 1987)

201 2679 Cyanobacteria Growth Inhibition Test (OECD, 2011)
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