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Abstract

A major challenge in systems biology is to understand the relation-
ship between a circuit’s structure and its function, but how is this
relationship affected if the circuit must perform multiple distinct
functions within the same organism? In particular, to what extent
do multi-functional circuits contain modules which reflect the dif-
ferent functions? Here, we computationally survey a range of bi-
functional circuits which show no simple structural modularity:
They can switch between two qualitatively distinct functions,
while both functions depend on all genes of the circuit. Our analy-
sis reveals two distinct classes: hybrid circuits which overlay two
simpler mono-functional sub-circuits within their circuitry, and
emergent circuits, which do not. In this second class, the bi-func-
tionality emerges from more complex designs which are not fully
decomposable into distinct modules and are consequently less
intuitive to predict or understand. These non-intuitive emergent
circuits are just as robust as their hybrid counterparts, and we
therefore suggest that the common bias toward studying modular
systems may hinder our understanding of real biological circuits.
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Introduction

A circuit’s structure, that is, the topology of its interactions, and the

biological function it performs do not bear a simple one-to-one rela-

tionship (Ingram et al, 2006; Payne & Wagner, 2015; Ahnert & Fink,

2016). Indeed, real biological systems show evidence of pleiotropy:

Genes, pathways, and even whole circuits often contribute to more

than one function. A clear example is found in developmental

biology, where just a handful of signaling pathways is essential

to the patterning and morphogenesis of many different organs

(Pires-daSilva & Sommer, 2003; Carroll et al, 2013). Similar

phenomena are seen in other types of biological networks, such as

neural networks where small sets of connected neurons drive a high

diversity of functions in the nervous system (Bargmann & Marder,

2013). So, how is the structure of a circuit influenced if that same

circuit must also perform (or contribute to) other distinct functions

in the same organism?

A spectrum of hypothetical scenarios can be imagined to explain

how two distinct functions are performed in two different tissues

(Fig 1). At one extreme, an organism may employ two completely

separate circuits: The genes of circuit A are expressed in tissue A

and perform function A (and the same for circuit B in tissue B)

(Fig 1A). This scenario invokes distinct sets of genes to perform dif-

ferent functions and has been described as structural modularity

(Hartwell et al, 1999; Wagner et al, 2007). An alternative scenario

is that two modules with distinct tissue-specific functions may share

some of their genes (Pires-daSilva & Sommer, 2003; Carroll et al,

2013). The shared genes will be expressed in both tissues, while the

remaining genes may only be expressed in one tissue or the other

(Fig 1B and C). Although the two modules still function separately,

their circuitry overlaps, that is, there is a loss of structural modular-

ity. This theoretical spectrum of scenarios helps us to define what

we mean by multi-functionality: The scenario in Fig 1A is not multi-

functional at all, and the degree of multi-functionality increases as

we progress to the right until the complete overlap of modules in

Fig 1D.

Studies of multi-functionality have considered this concept in a

variety of different ways. The common underlying theme is that

some kind of “change” to the circuit leads to a different “outcome”.

However, different scenarios can lead to slightly different interpreta-

tions of the meaning of multi-functionality. Although the following

categories are not always mutually exclusive, we propose them as

a useful framework for comparing and contrasting alternative

situations:

1 Mutually compatible functions. Some circuits have been stud-

ied which perform more than one qualitatively distinct func-

tion, but whose functions are simultaneously compatible—

they do not in fact require any change to the circuit. For exam-

ple, Ten Tusscher & Hogeweg (2011) describe multi-cellular

pattern-forming circuits which can perform two functions:

segment a field of cells and also provide the segments with dif-

ferent expression identities. Since the spatial expression
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patterns are different from each other (one is periodic, and the

other is aperiodic giving each segment a different identity),

thus the functions have to use at least partially different sets of

genes to express the different spatial patterns. This is not the

type of multi-functionality we seek in the current study, as we

are looking for a minimal network where the two functions

depend on the exact same set of genes.

2 Multi-stable circuits. Some studies have considered multi-stabi-

lity as a type of multi-functionality. Payne and Wagner (2013,

2015) studied small Boolean circuits and considered each

possible stable attractor as a distinct function. Multiple attrac-

tors in the phase portraits of continuous dynamical circuits

have also often been used to represent alternative cell types in

models of cell fate choice—for example, Slack, 1991; Huang

et al, 2007; Graf & Enver, 2009; Corson & Siggia, 2012;

Furusawa & Kaneko, 2012;. However, the different end-states in

these examples (whether Boolean or continuous) are typically

stable point attractors, which do not correspond to qualita-

tively distinct dynamical behaviors (although cyclic attractors

are also possible in these systems). Indeed, in many other

contexts, a circuit which “classifies” many possible input

states, or initial conditions, into a few final states, is consid-

ered to have a single “decision-making” function. Good exam-

ples include pattern-recognition circuits (in the field of neural

networks; Sussillo & Abbott, 2009) and bi-fan motifs, in which

a single motif function is similar to a Boolean “truth table”,

mapping all possible combinations of input states to few

distinct output states (Ingram et al, 2006).

3 Altering circuit structure. Other studies have explored cases in

which the switch in function requires an explicit change in

circuit structure. Kashtan & Alon (2005), Kashtan et al (2009)

found that Boolean circuits which evolved in an environment

with alternating fitness functions contained distinct modules.

However, these modules did not reflect the two alternative

functions of the whole circuit—instead they reflected two

“subproblems” which were common to both of the functions—

a feature the authors termed “modularly varying goals”. (The

modules were therefore providing mutually compatible sub-

functions (an example of point 1 above) rather than alternative

functions). Also, since function-switching depended on

“mutating” the structure of the circuit—not just changing

parameter values—each given circuit was in fact mono-

functional.

4 Multi-functional circuits. Many other studies have found

simple circuits which can switch between distinct dynamical

behaviors without requiring a change in structure—just a

change in parameter values. Turing circuits can switch

between forming spots or stripes (Meinhardt, 1982; Lin et al,

2009), although these two outcomes are qualitatively very

similar (both being periodic patterns in space). Other circuits

display phase transitions between two qualitatively distinct

behaviors, such as oscillatory dynamics and bi-stability

A B C D

Figure 1. Defining a multi-functional circuit.

A In order to achieve multiple functions it has been proposed that circuits can be structurally modular, i.e they allocate distinct highly interconnected and non-
overlapping sets of genes to each individual function (Di Ferdinando et al, 2001; Solé & Valverde, 2008; Clune et al, 2013; Ellefsen et al, 2015). In this scenario
modules do not overlap.

B, C Partial module overlap (Panovska-Griffiths et al, 2013; Sorrells et al, 2015). The AC/DC circuit is able to alternate between distinct behaviors upon a change in the
strength of its gene interactions. This circuit is formed by the superimposition of two distinct modules, a mutual inhibition motif and a repressilator motif, that
combine under the same topology. As the strength of specific repressive interactions is adjusted, the AC/DC circuit switches between two distinct dynamical
behaviors, that is, a bistable switch or oscillatory behavior, using the mutual inhibition and repressilator circuits, respectively.

D Hypothetical scenario describing a complete module overlap: The same collection of interacting genes is essential to both functions.
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(François & Hakim, 2005; Rouault & Hakim, 2012; Panovska-

Griffiths et al, 2013). These examples tend to be quite simple

dynamical systems; nevertheless, this type of multi-function-

ality is closer in spirit to the general biological phenomenon of

pleiotropy because the alternative functions are not simply

alternative decision states (which need not be qualitatively

distinct), but instead they directly embody the distinct dynami-

cal behaviors of two different biological functions.

Although these previous studies have provided important

insights into questions of multi-functionality, here we seek to focus

in a more detailed manner on the question of modularity or decom-

posability. Specifically, which nodes and which links of a multi-

functional circuit are involved in each of its functions? Can we

always decompose a multi-functional circuit into the distinct sub-

modules that underlie each function? And can we understand the

structure-to-function relationship in terms of both decomposable

structure and decomposable dynamics? Additionally, we designed

our study to go beyond the analysis of just one or two chosen

circuits, and instead perform a systematic survey across a given

class of circuits, so that more general conclusions can be drawn.

Finally, to enhance the qualitative distinction between alternative

functions, we chose to go beyond temporal (single cell) dynamics

and to explore behaviors which show both temporal and spatial

dynamics in a multi-cellular field.

To address these questions, we take inspiration from the broadly

studied Notch-Delta paracrine signaling pathway, which can exhibit

two mutually exclusive, and qualitatively distinct behaviors: lateral

induction or lateral inhibition (Lewis, 1998; Fig 2A). The first of

these, lateral induction, is the process by which a cell signals to its

neighbors to adopt the same gene expression state. It results in a

dynamic, progressive spreading of this state across the tissue, like a

wave propagating from cell to cell resulting finally in a continuous

domain of cells expressing the same genes. In contrast, in lateral

inhibition cells inhibit their neighbors from adopting the same state,

leading to a “salt and pepper” pattern of cells in alternating differen-

tiation states. Unlike lateral induction, this behavior does not

depend on a progressive spread across the field—the pattern may

appear simultaneously everywhere. Both the molecular details of

how Notch and Delta interact (Collier et al, 1996; Lewis, 1996; de

Celis et al, 1997; Panin et al, 1997; Formosa-Jordan & Ibanes,

2009), and the variety of patterns they can achieve (Palau-Ortin

et al, 2015), such as boundary formation (Huppert et al, 1997) or

synchronization of oscillations (Horikawa et al, 2006), are more

complex than the model we explore here. In our case, the goal of

this model is not to understand the details of real Notch-Delta

signaling, but instead to provide an abstract but biologically rele-

vant model to explore the concept of multi-functionality.

Results

The model

To explore multi-functionality in paracrine signaling circuits, we

developed a simple model of direct cell–cell communication (similar

to Salazar-Ciudad et al, 2000; Plahte, 2001), which considers both

inter- and intra-cellular gene regulation in a one-dimensional spatial

system comprising 33 cells (Fig 2B and Box 1). To restrict the search

to the simplest “minimal” multi-functional circuits, we consider

two-gene circuits where only one signaling gene (the black node in

Fig 2B) is able to regulate expression of genes in the neighboring

cells. This signaling gene is labeled D (black), as it can be seen to

A

B

Figure 2. Defining a multi-patterning circuit.

A We explore multi-functional circuits capable of two qualitatively distinct
multi-cellular patterns: lateral induction and lateral inhibition. Analogous
to biological processes such as the progression of the morphogenetic
furrow in Drosophila (Sato et al, 2013), lateral induction leads to the
propagation in time and space of a given gene expression state. In contrast,
lateral inhibition describes processes such as neurogenesis, where a fine-
grained pattern of alternating cell fates is formed (Daudet & Lewis, 2005;
Petrovic et al, 2014).

B While genes (represented by black and yellow nodes) interact identically in
both tissues/contexts, an external input signal termed the context signal C
allows the circuit to switch between functions. The context signal (pink
arrow) affects the basal expression level of one of the genes in every cell of
the tissue. A circuit achieves lateral induction when it causes a progressive
spread of expression from trigger T (thick black and white arrow) which is
received by the central cell of the tissue. A circuit achieves lateral inhibition
when it causes consecutive cells to be in alternating gene expression states.
In subsequent figures, we use a simplified 2-cell representation where, for
simplicity, the inter-cellular circuit is only shown in one direction (from the
first cell to the second).
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represent the Notch-Delta signaling pathway, while the second gene

is cell-autonomous and is labeled A (yellow).

We had to define objective functions to determine whether a

given circuit achieves lateral induction, lateral inhibition or neither

of these behaviors. The process of lateral induction cannot be

assessed by analyzing the end-point of a simulation. The correct

end-point is a uniform gene expression pattern, but this observation

alone is ambiguous—much simpler processes than lateral induction

could also result in this end-point pattern (e.g., a circuit with a

constant positive input to a gene). Lateral induction is thus intrinsi-

cally a dynamical process in which a given cell state propagates

through the field of cells resulting in a domino-effect—each newly

activated cell inducing the next one. Identifying this dynamical

process therefore depends on assessing the state of the simulation at

multiple time-points. To observe this propagatory wave, we there-

fore set up all simulations with a pre-defined molecular trigger T at a

specific cell in the middle of the field, which acts as an external input

to one of the genes of the circuit. In contrast, the scoring of lateral

inhibition does not depend on the dynamics of pattern formation but

only on the final pattern. Once the pattern has reached equilibrium,

lateral inhibition is scored by counting the number of consecutive

cell state changes from high to low expression of the patterning gene.

We allow for imperfections and thus consider successful patterns

that show more than 13 of those cell-state switches from high to low

expression. In a 33 cell tissue, a “perfect” lateral inhibition pattern

would count 16 of those switches. Although the trigger T is not

strictly necessary for the lateral inhibition case, we include it so that

the conditions are identical in all simulations (Appendix Fig S1).

Finding minimal circuits for either lateral induction or
lateral inhibition

We chose to search for multi-functional circuits in a two-step process.

Since bi-functional circuits may be direct combinations of two simple

mono-functional circuits, we first focused on identifying all the mini-

mal circuits able to achieve either induction or inhibition alone.

We performed an exhaustive and unbiased search through gene

circuit space by enumerating all the 1,200 possible two-gene topolo-

gies (see Materials and Methods) and subsequently sampling large

numbers of parameter sets (107) for simulating each topology. This

type of systematic exploration of circuit space has been used previ-

ously to explore the design space of small circuits for single func-

tions such as gradient interpretation (Cotterell & Sharpe, 2010;

Schaerli et al, 2014), somite formation (Cotterell et al, 2015),

biochemical adaptation (Ma et al, 2009), or cell polarization (Chau

et al, 2012).

Using the objective functions described above, 584 topologies

were found to achieve lateral induction, and 632 lateral inhibition.

These are displayed in a complexity atlas (Cotterell & Sharpe,

2010; Cotterell et al, 2015; Jiménez et al, 2015) in blue or red,

respectively (Fig 3A). Similar to a neutral network (Schuster et al,

1994), a complexity atlas is a metagraph that comprises all circuits

achieving a given function, and is constructed with the following

two rules: (i) Gene circuit topologies (nodes of the atlas) are

directly connected (by edges) if they differ by a single gene inter-

action, that is, topologies differ by the gain or removal of one

regulatory interaction. (ii) Topologies are ordered along the verti-

cal axis with respect to their complexity (which we define as

number of regulatory links) with complexity increasing upwards.

This way, the simplest successful circuits—the minimal topologies

—appear at the bottom of stalactite-like structures in the atlas

(Cotterell & Sharpe, 2010). A number of topologies were capable

of both behaviors (lateral induction or lateral inhibition) depend-

ing on the parameter values, but before studying these potentially

bi-functional designs (next section), we chose to explore in detail

the various minimal mechanisms which perform either lateral

induction or lateral inhibition separately.

From the tips of the stalactite-like structures in the atlas

(Fig 3A), we obtained the minimal circuits to achieve lateral induc-

tion (D0–D5) or lateral inhibition (H0–H5) (Fig 3B and C). Within

each function, core circuits could be classified according to the

Box 1: The gene regulatory model

The model describes how the concentration gij of the ith gene in the
jth cell changes with time:

dgij
dt

¼ v U
X2
l¼1

Wli
interglj þWli

intragljþT þ C

" #" #
þkgijþgðtÞgij ð1Þ

where vðxÞ is the Heaviside function to prevent negative gene product
production rates, Winter and Wintra are matrices containing the
strengths of gene interactions (Fig 2B), T is the trigger signal received
by one of the genes in the central cell and equal to 1, C is the context
signal received by one of the genes in every cell of the tissue and
defines tissue-specificity (when C = 0 the circuit is embedded in
tissue A and when C = 1 the circuit is in tissue B), k is the decay rate
equal to 0.05 and gðtÞ is a noise term, which adds uniformly distrib-
uted fluctuations (� 1%) to the concentration of every gene in every
cell at every time step. /ðxÞ is the regulatory function that describes
the rate of change of a gene level in response to its various regulatory
inputs. It represents the real process of gene regulation in which
multiple transcription factors bind specific cis-regulatory regions
(Setty et al, 2003; Ben-Tabou de-Leon & Davidson, 2009). Here, we
employed the commonly used sigmoid function with the following
particularity: We included a parameter ai which allows each gene to
independently adopt a qualitatively distinct regulatory behavior with
respect to their inputs: either showing a constitutive expression, that
is, being transcribed in the absence of input values or despite nega-
tive inputs (e.g., ai = �60), or being dependent on lower (ai = 15) or
higher (ai = 60) input value. b controls the steepness of the function.

/ðxÞ ¼ 1

1þ expai�bx
ð2Þ

We use reflective or zero-flux boundary conditions that do not allow
any diffusion in or out of the system, therefore modeling the system
as isolated from other tissues. The simulation starts with every gene
in every cell set to have a concentration of 0.1. The two types of
external input signals T and C are kept constant throughout the simu-
lation.
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A

B C

Figure 3. Dynamical mechanisms of lateral induction and lateral inhibition.

A Color-coded complexity atlas that contains all two-gene circuits able to achieve lateral induction or lateral inhibition. Nodes are circuit topologies and edges link
those with a single-topological change (addition or removal of a gene interaction). Topologies (nodes) are colored according to their function: Blue and red
exclusively hold circuits capable of induction or inhibition, respectively. Green topologies are capable of both induction and inhibition (see Fig 4). The atlas layout,
where topologies are ordered according to their number of regulatory links, reveals the core motifs at the tip of stalactites.

B, C Minimal core circuits to achieve induction (D0–D5) or inhibition (H0–H5) are classified into three distinct mechanisms for each function. Alternative mechanisms
correspond to distinct spatiotemporal courses of gene expression to achieve a given function. The dynamical strategy of each mechanism is captured in the unique
final profile. While simulations take places on a one-dimensional row of 33 cells, for increased clarity, most graphic representations show 15 cells.
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dynamical strategy they use, that is, their dynamical mechanism.

While circuits D0–D5 all lead to a spread of a given cell state

through the tissue (induction), they do so with distinct time-

courses of gene expression, thus using alternative dynamical mech-

anisms to achieve this behavior (Fig 3B, Appendix Figs S2A and

S3A and B). The simplest mechanism, that of auto-activation (D0

and D1), leads to the autonomous expansion of the signaling gene.

Instead, the mechanism activate-activator (D2 and D3) orchestrates

a synchronous in-phase expansion of both genes, while inhibit-

inhibitor (D4 and D5) leads an out-of-phase expansion of both

genes as their expression profiles are complementary, that is, the

signaling gene (black node, D) is able to spread by lowering

expression of its inhibitor (yellow node, A). In a similar way, three

alternative dynamical mechanisms were found for inhibition

(Fig 3C, Appendix Figs S2B and S3A and C).

These initial findings about the simplest mono-functional circuits

propose a handful of alternative mechanisms likely to be used in

real biological systems. Interestingly, among the mechanisms found,

some have been proposed to orchestrate specific biological

processes (marked with a Drosophila symbol in Fig 3B and C): acti-

vate-activator controls dorsoventral boundary formation in the

Drosophila wing (de Celis & Bray, 1997; Panin et al, 1997) while

activate-inhibitor is associated to processes such as neurogenesis in

vertebrates, flies, and worms (Lewis, 1996), shaping Drosophila

wing vein morphogenesis (Huppert et al, 1997) or synchronizing

oscillations during somitogenesis (Horikawa et al, 2006). More

importantly, those mechanisms not known to be used in real biolog-

ical systems constitute potential candidate designs to achieve lateral

induction or lateral inhibition in other organisms.

Strongly bi-functional circuits: Maximal module overlap and
minimal structural change

Our complexity atlas revealed that some topologies (N = 258) are

compatible with both functions (green nodes in Fig 3A). From the

finding of these bi-functional circuits, two observations follow.

First, while 58% of all topologies can perform a single function,

only 21% of them are able to perform both functions. This obser-

vation supports the finding of previous work with Boolean circuits

(Payne & Wagner, 2013, 2015) which showed that there are fewer

multi-functional circuits than mono-functional ones (albeit using a

distinct definition of multi-functionality, see Introduction). This

supports the intuitive idea that multi-functionality constrains

circuit structure. Second, distinct bi-functional topologies have dif-

ferent likelihoods to implement lateral induction or lateral inhibi-

tion. The probability of achieving each function is given by the

proportion of the 107 sampled parameters that yield induction or

inhibition. We thus picture each bi-functional topology as a pie

chart showing the proportion of parameter space that gave each

function (Appendix Fig S4). We notice that most bi-functional

topologies are strongly biased toward one of the functions, that is,

specialized (Macı́a et al, 2009)—pie charts which appear almost

entirely blue or entirely red, while fewer topologies hold similar

probabilities to implement each function, that is, flexible (Macı́a

et al, 2009).

For each of these bi-functional topologies, their behavior can be

switched from lateral induction to lateral inhibition by changing one

or more of the weighting parameters (wn) that define the strength of

the regulatory interactions. Two examples of such circuits are

shown in Fig 4. In a real organism, the strength of any regulatory

link could be modulated in a tissue-specific manner, by controlling

the expression levels of a co-factor protein (Narita & Rijli, 2009).

However, we wished to explore further the minimal change in the

circuit able to cause a switch in function. Could we maintain the

innate structure of the circuit unaltered—without any changes to

the topology or the weights of the regulatory interactions? That is,

switch the function while the genes still interact in the exact same

manner (with the same wn parameters)? The minimal influence on

the circuit we could imagine was to allow the background expres-

sion level of just one of the constituent genes to be different in the

two tissues. We thus introduced a second external input signal

termed the context signal C. This signal defines two distinct tissue

A B C D

Figure 4. Parameter spaces for mono-functional and bi-functional circuits.

A–D Unlike mono-functional topologies (A, B), green topologies (C, D) (see Fig 3A) are capable of induction and inhibition depending on the values of their gene
interactions. (C, D) Each function occupies a distinct region in parameter space.
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environments: a first environment in which the basal expression

level of one of the genes is unaltered (tissue A, C = 0) and a second

environment in which that same gene will have a higher basal

expression level homogeneously throughout the tissue (tissue B,

C = 1). A successful strong bi-functional circuit would be one which

performs lateral induction in one tissue and lateral inhibition in the

other (or vice versa). In order to identify such circuits, we consid-

ered all previous simulations to have taken place in the first envi-

ronment (tissue A), as C was zero in these cases. Using the same

objective functions as before, we re-simulated this initial pool of

circuits in the second environment (tissue B) as we add the context

signal (to each of the genes in turn) and selected those able to

switch from their original function to the alternative one. We identi-

fied 72 different topologies capable of strong bi-functional behavior

(1,130 parameter sets in total). Highlighting these topologies as

black nodes and edges in the complexity atlas revealed that they

formed a new restricted set of stalactites (Fig 5A, Appendix Fig

S5A). As before, the minimal bi-functional circuits are revealed at

the bottom of these new stalactites (full list given in Appendix Fig

S5B). We have thus identified a collection of strongly bi-functional

circuits (referred in the text from now on as simply bi-functional):

Not only do both functions depend on both genes, but the switch in

A

C

B

Figure 5. Two classes of multi-functional circuits.

A Subregion of the complete atlas (Appendix Fig S5A) where strong multi-functional circuits are shown in black. Of the 13 bi-functional core circuits (Appendix Fig S5A
and B), four are shown here.

B Compatible combinations of two core induction and inhibition circuits are candidates to multi-functionality, labeled A to G.
C Multi-functional motifs show distinct modular properties. Hybrids are composed of two separable modules, or sub-circuits, while emergent circuits cannot be

decomposed into distinct sub-circuits. As such, hybrid circuits visually appear as the sum of two induction and inhibition circuits—the union of two mono-functional
stalactites—while emergent circuits “emerge” at higher levels of complexity within a stalactite.
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function is achieved just by changing the background expression

level of one of the genes (in other words: maximal circuit overlap,

with minimal structural change between functions).

Two classes of multi-functional circuits: hybrid and emergent

As defined in the introduction, these circuits are not structurally

modular, that is, their functional modules are tightly overlapped.

But to what extent can these circuits nevertheless be understood as

the union of simpler circuits? In other words, to what extent can

they be decomposed into two basic mono-functional circuits—each

responsible for one of the functions?

Figure 3 lists all the minimal mono-functional circuits for our

two functions (lateral induction and lateral inhibition). We first had

to consider which pairs of these simple circuits are topologically

compatible to be combined into potentially bi-functional circuits.

Figure 5B shows that not all combinations are possible. For exam-

ple, D1 and H1 cannot be combined, because they have opposite

signs for the same regulatory interaction. On this basis we found

that, of the 42 hypothetical combinations, seven are topologically

possible, which we label A to G (Fig 5B, Appendix Fig S6).

We could now examine which of the compatible hybrid circuits

(A–G) appeared in the complexity atlas, that is, which are success-

fully bi-functional (black nodes in Fig 5A, Appendix Fig S5A). Most,

but not all, of the simple hybrids gave bi-functional behavior. For

example, C (which is the hybrid of D3 and H1) does produce a bi-

functional circuit, while F does not (Appendix Fig S5A). However,

for all non-bi-functional minimal hybrids, the addition of an extra

regulatory link was able to render the circuit successfully bi-func-

tional. For example, the addition of positive auto-regulation to the

cell-autonomous gene of F produces a bi-functional circuit which we

label F’. All these modified hybrids are found one level higher in the

atlas and are listed as A’ to G’ (Appendix Fig S5A and B). Thus, our

first general conclusion is that many bi-functional circuits can indeed

be decomposed into their simpler constituent mono-functional

“building blocks”. The decomposability of hybrids is graphically

illustrated within the structure of the complexity atlas itself (Fig 5C).

Hybrid circuits can be found at the position where two mono-func-

tional stalactites meet (e.g., in Fig 5A stalactites D3 and H1 fuse to

create hybrid C, while in Appendix Fig S5A stalactites D0 and H4

fuse to create hybrid G).

However, examination of the complexity atlas also revealed a

very different class of circuits, which do not fit this picture. Some of

the successful bi-functional circuits (e.g., AI1 and AI2 in Fig 5A or

Pattern-Convertor in Appendix Fig S7) are not decomposable into

two simpler mono-functional circuits. This can be appreciated both

in terms of their circuit structure, and their position within the atlas,

which we illustrate here by describing AI1 (so named because it

contains an Activator-Inhibitor feedback loop within it). Structurally,

AI1 contains the H1 module within it, and this is responsible for its

ability to perform lateral inhibition. However, the second function—

lateral induction—cannot be explained by a module or sub-set

within AI1. Specifically, none of the minimal lateral induction

circuits (D0–D5) can be found within it. Instead, the lateral induction

functionality only arises when we consider the whole circuit at a

higher level of circuit complexity, and is dependent on the whole

bi-functional circuit—no sub-set of AI1 is capable of lateral induc-

tion. To appreciate this in more detail (Fig 5C), if we consider the

mono-functional lateral inhibition circuit H1, two extra regulatory

interactions must be added to create the bi-functional AI1 (an

auto-activation in the yellow gene and a repression from the black to

the yellow gene) but neither of these additions re-creates any of the

minimal circuits D0–D5.

We call this second class emergent bi-functional circuits, because

one of the two functions only emerges at higher level of complexity,

when the full bi-functional circuit is complete. Again our complexity

atlas proves a useful way to visualize the mechanistic relationships.

Unlike hybrid circuits, which are found at the union of two mono-

functional stalactites, emergent circuits always arise inside a single

stalactite. The position of emergence is a few steps up from the

lowest/minimal point of the stalactite, and the path from one to

the other (dashed lines in Fig 5A and C) represents the addition of

the extra regulatory links which must be added to the minimal

mono-functional circuit.

The dynamics and decomposability of hybrid
bi-functional circuits

Our analysis above proposed that two classes exist for bi-functional

circuits: hybrids which are clearly decomposable into two modules

or sub-circuits, each of which is responsible for one of the functions,

and more complex emergent circuits in which one of the functions

cannot be explained by a sub-module and thus depends on all regu-

latory links of the full circuit. To explore this result in more detail,

we wished to go beyond the structural analysis described above and

explore whether the same distinction could be found in terms of

circuit dynamics. As previous studies have proposed (Slack, 1991;

Huang et al, 2007; Macı́a et al, 2009; Corson & Siggia, 2012; Rouault

& Hakim, 2012), a geometric analysis of a system’s phase space can

help us understand how this system can give rise to different cell

states. Indeed, a circuit’s design (structure and parameter values)

encodes the shape of the nullclines which in turn determine—

through their crossing—the steady states of the system, basins of

attraction and separatrices (Strogatz, 2014).

This “dynamical systems” analysis of hybrid and emergent

circuits aims to ask: Are the two different classes of circuits distin-

guishable from the geometry of their phase space? In this section we

first tackled hybrid circuits, to explore whether their dynamics are a

simple composition of the underlying mono-functional modules.

Afterward, in the subsequent section, we address emergent circuits.

To address the dynamical decomposability of hybrid circuits, we

independently needed to understand how the two functions (lateral

induction and lateral inhibition) are implemented as distinct dynam-

ical mechanisms. As this study focuses on spatial patterning circuits,

our phase portraits must represent the states of more than one cell.

We thus chose a simplified 2-cell model (Box 2) to describe how the

states of two neighboring cells affect each other. This simplified

model has four state variables: Dc1, Ac1, Dc2, Ac2, (the concentra-

tions of the signaling and cell-autonomous genes in cell 1 and cell

2). To keep the phase portraits 2-dimensional we describe the

dynamics of the system using just one variable per cell, and we

chose D since it represents the essential signaling event. Thus,

unlike many previous phase portraits where attractors represent

alternative differentiation states of single cells (Slack, 1991; Huang

et al, 2007; Corson & Siggia, 2012), the steady states in our phase

portraits represent different multi-cellular patterns.
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We draw the phase portraits of all minimal induction (D0–D5)

and inhibition (H0–H5) circuits to observe the various arrangements

of steady states and nullclines (Appendix Fig S8). The general

features of the geometry of phase space that characterize induction

and inhibition functions are illustrated in Box 2.

From the general dynamics of lateral induction and lateral inhibi-

tion (Box 2), we can now address the question of how hybrid

circuits work and we chose the circuit hybrid C (Fig 5) as a concrete

case to study. We compare the key dynamical features of hybrid C

for each of the two functions to those of its corresponding mono-

functional modules (D3 and H1) (Fig 6). The collection of steady

states of hybrid C as it achieves induction (tissue B, C = 1) is exactly

the same as for its underlying induction module D3. Both phase

portraits show two attractors, at positions low–low (h1) and high–

high (h2), and upon receiving a signal from a neighbor cell, the

lower steady states annihilates and the system shifts up to the

remaining attractor h2 (Bifurcation 1 Fig 6A). The arrangement of

steady states and the annihilation we observe are characteristic of

Box 2: Dynamics of lateral induction and lateral inhibition

From the general gene regulatory model in Box 1, we can write the
equations of a simplified two-cell model for any given circuit, for exam-
ple:

dDc1

dt
¼ 1

1þ exp aD�bðw5Ac1þw1Dc2Þ�kDc1 ð3Þ

dAc1
dt

¼ 1

1þ expaA�bðTþw2Dc2Þ�kAc1 ð4Þ

dDc2

dt
¼ 1

1þexpaD�bðw5Ac2þw1Dc1Þ �kDc2 ð5Þ

dAc2

dt
¼ 1

1þexpaA�bðw2Dc1Þ �kAc2 ð6Þ

Using this simplified model, we draw the instantaneous phase portraits
(Verd et al, 2014) of D5 and H5 as concrete examples to study the dynam-
ics of induction and inhibition, respectively. First, we explore how lateral
induction is

performed—that is, how a wave of gene expression progresses across the
field. The dynamical requirements for a propagatory wave are that
each cell should stably maintain low expression until the wave of
induction reaches it. Once a cell receives an inductive signal from its
neighbor, it them moves up to a new stable state of high expression.
This is exactly what we observe as D5 performs induction. When the
pair of cells has no external input (e.g., the initial state of cells near
the edge of the field) the nullclines for Dc1 and Dc2 cross at three
positions, and the system is indeed bi-stable (two stable steady states,
or attractors, with an unstable steady state in between). The initial
conditions of the simulation have low levels of D in every cell, so the
simplified 2-cell system remains stably at h1 (the attractor where Dc1

is low and Dc2 is also low, which we will call low–low). When cell 1
receives the inductive signal (either from the trigger T, or from a
neighboring cell which is propagating the wave) this effectively shifts
the nullcline for Dc1 (see zoomed region of the phase portrait on the
right), such that both steady states in this region disappear. In
dynamical systems theory the steady states are said to have annihi-
lated each other—an event called a bifurcation (Strogatz, 2014). There
is only one remaining steady state, h2, which is high expression for
both Dc1 and Dc2 (high–high), so both cells move up to this new
state. This sequence of events holds for every pair of cells in the field,
and so the inductive wave propagates in a controlled manner from
the center to the edges of the tissue.

When exploring how lateral inhibition is performed, we observe
that the system is also bi-stable, but along a different diagonal
axis: h3 has low Dc1 and high Dc2 (low–high), while h4 has the reverse
(high–low). This corresponds precisely to the behavior of a lateral
inhibition systems where any pair of neighboring cells should have
opposite states for the patterning gene. Pattern formation in this case
does not strictly depend on a dynamic propagation across the field.

ª 2017 The Authors Molecular Systems Biology 13: 925 | 2017

Alba Jiménez et al Multi-functional gene circuits Molecular Systems Biology

9



all minimal induction modules (Box 2). The analysis of hybrid C as

it achieves inhibition (tissue A, C = 0) reveals a similar story—the

arrangement of steady states is identical to that of H1 and character-

istic of all inhibition modules (Box 2): two attractors at high–low

(h4) and low–high (h3) with an unstable steady state in between.

Thus, in terms of the distribution and movements of attractors, the

dynamical mechanisms for the two functions of hybrid C are indeed

equivalent to the dynamics of the underlying mono-functional

circuits. But how are the nullclines of the single bi-functional circuit

able to specify the two very different arrangements of steady states?

In both D3 and H1, the nullclines for Dc1 and Dc2 (Fig 6B) take

the form of sharp S-shaped sigmoids (which is a direct result of the

non-linear gene regulation function chosen, see Box 1). However,

their relative orientation is exactly opposite in D3 compared to H1

(i.e., the green nullcline for Dc2 is oriented like “S” in D3, but like

“Z” in H1, and vice versa for Dc1). As we now focus on the more

A

B C

Figure 6. Function-switching mechanism and decomposability of hybrid circuits.

A How is hybrid C capable of performing both functions upon a change in the context signal? We use the simplified 2-cell model of Box 2 with parameters (wA = 0.41,
wB = 5.49, wC = �0.30, aA = 6.93, aD = 12.79). The context signal changes the position and number of steady states through a pitchfork bifurcation (Strogatz, 2014)
(Bifurcation 2). This bifurcation drives the trajectory to access different attractors found in regions of the phase portrait corresponding to induction (h2) and inhibition
(h4) patterns, respectively.

B Phase portraits of the mono-functional modules (induction and inhibition) that build hybrid C.
C The nullclines of hybrid C can be decomposed into sub-parts which correspond to the induction and inhibition modules.
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complex nullclines of hybrid C, we observed they can indeed be

decomposed into the two sigmoids of D3 and H1 (Fig 6C). For

example, the green composite nullcline for Dc2 can be characterized

as a \-shaped function. The “up” and “down” parts of the \-shape
are constructed from the two sigmoids (f1 and f2) going in opposite

directions—one responsible for the lateral induction function, and

the other for lateral inhibition. Indeed only half of each \-shaped
nullcline is required for each function. In the case of lateral induc-

tion the first sigmoid (f1) is necessary to produce the correct bi-

stable attractors h1 and h2. The second sigmoid (f2), which brings

the function back down to Dc2 = 0, is present in the phase portrait

but does not contribute at all to the lateral induction function.

However, when the tissue context changes and the nullclines shift

to alter the phase portrait, it is now the second sigmoid (f2) which

is essential for the function (producing the h3 and h4 attractors).

Again the first sigmoid is still present (on the left-hand side of the

portrait), but is no longer important for the dynamics of the circuit.

We next explore how the hybrid is able to switch between func-

tions just by changing the background expression level of one of the

genes. How does a change on the external context input C affect

the relative arrangement of the system’s nullclines? Starting from

the induction case, if the level of context signal C is reduced, the

nullclines for Dc1 and Dc2 shift in such a way that the h2 attractor

bifurcates to create two new attractors (h3 and h4) with an unstable

steady state in between (Bifurcation 2 in Fig 6A). As the value of C

decreases further, the two new stable steady states move away from

each other toward the high–low and low–high positions, thus re-

creating the antagonistic bi-stable arrangement of the lateral

inhibition function (a movie of this changing phase portrait shown

in Appendix Fig S9 is provided as Movie EV1).

We have thus demonstrated in two distinct ways—both struc-

turally and dynamically—that the hybrid circuit C is a simple

composition of its underlying mono-functional “building blocks”.

The structural analysis (previous sections) showed that both sub-

circuits (D3 and H1) exist within the design of the full circuit, and

also that this relationship can be seen from the stalactites in the

complexity atlas. In this section we have gone further, and shown

that the same decomposability can be directly seen from the func-

tional dynamics in the phase portraits.

Dynamics of emergent bi-functional circuits

Can we now perform similar dynamical analysis to confirm that

emergent circuits are different? The structural analysis has shown

that in these cases the first function is indeed explained by a mini-

mal sub-module within the circuit, but the second function is more

complex, depends on all regulatory links of the full circuit, and

therefore cannot be explained by a sub-module. Can we also show

that the dynamics of this second more complex function is not

equivalent to one of the minimal mono-functional building blocks?

We chose to study emergent AI1 (Fig 7). We follow how the

concentrations of the four species (Dc1, Ac1, Dc2, Ac2) evolve in time

as the circuit performs inhibition (Fig 7A and B) or induction

(Fig 7C and D). As predicted by the structural analysis, AI1 achieves

the first function using the same dynamics as its inhibition sub-

module (H1). Indeed, the collection of steady states and positions of

nullclines correspond to the characteristic arrangement of minimal

inhibition circuits (Fig 7A, Box 2, Appendix Fig S8). However, in

order to achieve the second function, the circuit shows a phase

portrait with no resemblance to those of minimal induction

modules. The mono-functional circuits employ attractor-switching

(orange boxes in Fig 7D), while AI1 instead involves a dynamic

known as pursuit (Verd et al, 2014, 2017). This type of mechanism

has also been identified to drive pattern formation in real biological

cases, for example, leading the transient domain shifts in the gap

genes of Drosophila (Manu et al, 2009a,b).

During pursuit, the trajectory of a system follows a moving

attractor which is finally reached. To visualize how AI1 implements

pursuit, we calculate instantaneous phase portraits at a series of

time-points (Fig 7D). The system is permanently attracted toward

the h5 moving attractor. The change in position of this particular

attractor is caused by two consecutive shifts in the position of the

Dc1 (horizontal shift) and Dc2 (vertical shift) nullclines. As the h5
attractor shifts its position faster than the current state of the system

can manage, the trajectory is deviated and follows the moving

attractor first horizontally (from t1 to t3 as Dc1 increases) then verti-

cally (from t3 to t4 as Dc2 increases). Finally, the moving attractor is

reached as it stands at a [high–high] induction state. Since only two

of the four variables are plotted in these phase portraits, the attractor

h5 is probably in reality a manifold. However, this does not change

the key conclusion that pursuit dynamics are involved rather than

the bifurcation and attractor selection seen in D3.

Thus, we have been able to confirm that, while the lateral inhibi-

tion function is explained by the basic mono-functional circuit H1, the

lateral induction function of this emergent circuit is qualitatively

distinct from any of our minimal lateral induction circuits (D0–D5).

Precisely, the induction behavior corresponds to a pursuitmechanism,

which only emerges when the full bi-functional circuit is present.

Gradual pattern transitions to mimic real biological systems

So far we have considered our model as representing how a single

circuit could switch functions in two distinct tissues. As a final analy-

sis, we here explored a slightly different scenario, in which both

functions occur in the same tissue, but sequentially over time. This

scenario is known in real biological systems: In the retina of Droso-

phila a wave of cellular differentiation known as the morphogenetic

furrow progresses through the tissue and subsequently gives rise to a

“salt and pepper” pattern of photoreceptor cells (Sato et al, 2013;

Fig 8A). Likewise, in the chick inner ear a continuous domain of

precursor cells known as patches of pro-sensory cells are induced by

lateral induction, and this tissue subsequently creates a fine-grained

pattern of neurogenic versus non-neurogenic (Daudet & Lewis, 2005;

Petrovic et al, 2014). These cases bring up the interesting question

of how one behavior transitions to the other. Unlike the cases

discussed above, in which the two different tissue types are repre-

sented with a binary difference (C = 0 versus C = 1), in this case

where a single tissue changes its behavior over time, the underlying

context must change smoothly. So would the change in patterning

mode also change smoothly, or instead exhibit an abrupt change?

We modeled time-dependent cues by gradually increasing the

value of the context signal C from 0 to 1. A simulation of the hybrid

circuit G’ (Fig 8B) shows how the pattern develops over time. Inter-

estingly, it shows how despite the smooth change in C, the switch in

behavior from lateral induction behavior to lateral inhibition is

sudden. The calculated phase portraits for this time-course explains
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this abrupt transition: the high–high attractor, which provides the

initial lateral induction behavior (equivalent to h2 from Fig 6), is

annihilated as the nullclines shift and two unstable steady states

collide with it, leaving only the low–high and high–low attractors to

provide the lateral inhibition behavior (known as a subcritical pitch-

fork bifurcation).

A

C

E

D

B

Figure 7. Dynamics of emergent circuits.

A–D For AI1 circuit with parameters (wA = �0.05, wB = �7.98, wC = 6.47, wD = 9.61, aA = 6.40, aD = 6.81), we follow how concentrations of the four species (Dc1, Ac1,
Dc2, Ac2) evolve in time as emergent circuit Activation-Inhibition AI1 achieves (A, B) inhibition or (C, D) induction. In (B), we see how the phase portrait of AI1 (gray
box) is equivalent to that of the mono-functional inhibition circuits (orange box). (D) The lateral induction pattern results from a pursuit behavior (Verd et al, 2014,
2017) where the horizontal then vertical movement of the attractor h5 deviates the trajectory which exhibits a sudden change in direction. This dynamic (gray
boxes) is not equivalent to the dynamics seen in the minimal lateral induction circuits (orange boxes).

E Structural view: The lateral inhibition function can be reduced to a sub-circuit which is indeed the minimal circuit H1, but the lateral induction function cannot—
it requires the full circuit.
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Interestingly, the specific pattern transition shown in Fig 8B

mimics the above mentioned real biological systems in which lateral

induction precedes lateral inhibition. This sequence of events

appears to be generally biologically relevant, as during organogene-

sis lateral induction is often an early event establishing a controlled

uniform field of progenitor cells, which later undergo “salt and

pepper” differentiation into two cell types. Finally, we should

emphasize that the abrupt change in behavior shown for G’ is not

true for all hybrids. Hybrid C (shown in Appendix Fig S9) undergoes

instead a smooth transition in which the amplitude of the “salt and

pepper” pattern gradually decreases all the way to a very faint

pattern, until finally becoming uniform.

Discussion

Over the last couple of decades, scientists have built an encyclope-

dia of network motifs or building blocks able to explain the different

functions that real biological circuits perform (Milo et al, 2002;

Shen-Orr et al, 2002; Alon, 2007; Davidson, 2010). This encyclope-

dia associates a given circuit (including parameter values) to a given

function. Although this one-to-one relationship between structure

and function has brought invaluable intuitive understanding on

how biological processes are encoded, other features of real biologi-

cal circuits are likely to complicate this simple picture. For example,

genetic pleiotropy during embryo development highlights that

genes, pathways, and circuits are often involved in multiple biologi-

cal functions (Pires-daSilva & Sommer, 2003; Carroll et al, 2013).

How is the structure of a circuit influenced if it performs multiple

distinct functions in the same organism?

Our approach for studying multi-functional circuits had the

following advantages. First, we imposed strong constraints on our

model to seek the most highly compact multi-functional circuits. Our

choice to seek the minimal collection of interacting genes able to

achieve two qualitatively distinct functions allowed us to find

circuits in which all components are essential to both functions

A B

Figure 8. Pattern transitions to model real biological systems.

A Real biological systems are found where lateral induction precedes lateral inhibition in the same tissue. In the Drosophila eye, an initial wave of differentiation
(morphogenetic furrow) progresses through the tissue to later give rise to a fine-grained pattern of R8 photoreceptor cells (Sato et al, 2013). In the chick’s inner ear, a
continuous domain of precursor cells, that is, patch of prosensory cells, gives rise to a mosaic of hair cells and supporting cells (Daudet & Lewis, 2005; Petrovic et al,
2014).

B We chose to model hybrid G’ circuit with parameters (wA = �4.93, wB = 3.22, wC = 0.43, wD = 0.14, aA = 15.86, aD = 8.62). The context signal is treated as a time-
dependent cue to model the transient nature of tissue environment. We show the final pattern and phase portraits for different values of C from 0 to 1 (Box 2). The
context C behaves as a bifurcation parameter (subcritical pitchfork type): Two unstable states coalesce into a new fixed point that changes its stability: from stable to
unstable. This type of bifurcations leads to a discontinuity in pattern transition.
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(Fig 1D). Importantly, these results go a step further than previous

studies where the overlap between functional modules is only partial

(Fig 1A–C). Second, in contrast to previous studies which focused

on particular gene circuit architectures able to perform multiple func-

tions [where these functions range from distinct dynamical behav-

iors (Panovska-Griffiths et al, 2013), to different single cell fates

(Martin & Wagner, 2008) or distinct patterning functions (Palau-

Ortin et al, 2015)], here our exhaustive theoretical search of circuit

space was less biased and thus leads to more universal conclusions.

Through these approaches our key finding was revealed. Some

bi-functional circuits can be seen as relatively intuitive composites

of two simpler mono-functional modules. This can be true even for

cases where the mono-functional “building blocks” are very tightly

overlapping, that is, with no discernable structural modularity. In

these hybrid cases, decomposability can be observed both at the

level of circuit structure, and also in the dynamical mechanisms of

the circuits (as seen in the analysis of phase portrait structure).

However, we also found another class of bi-functional circuits—

emergent circuits—which show no clear decomposability into pairs

of simpler building blocks. These circuits are less easy to under-

stand—both regarding this lack of modular decomposability, and

also at the level of dynamics (Fig 7)—and so raise important ques-

tions about how we study the structure-function relationship for real

circuits.

Intuition tends to guide many studies of real biological systems,

and modularity is a well-documented finding in gene circuits, but

there are clear dangers of trusting our intuition too much. The emer-

gent circuits revealed here are not easy to understand, but they are

just as robust as their hybrid counterparts (Appendix Fig S5C), and

therefore equally biologically plausible. Data about the structure of

real circuits tends to be incomplete and sometimes contain false

positives (falsely inferred regulatory links). The structural dif-

ferences between a hybrid circuit and an emergent one can be small

(e.g., compare hybrid C with emergent AI1) and so it may be diffi-

cult to rigorously distinguish which dynamical mechanism is more

likely to explain a given set of functions. Theoretical mapping of

complete atlases of possible circuits should therefore become

invaluable guides to help our interpretation of empirical data and

reduce the risks of jumping to false conclusions.

Although we explored only one particular pair of functions here

(lateral induction and lateral inhibition), we expect that our primary

conclusion will be a general finding. For many types of multi-func-

tional circuits, a spectrum will exist, from those which can be intu-

itively decomposed into distinct sub-circuits underlying each

function (hybrid class), to those in which the functions are more

subtly distributed across a complex network (emergent class).

In addition to this direct consequence for understanding real

gene circuits, our demonstration of strongly multi-functional circuits

may have implications for some more general questions in biology.

First, is the question of how densely biological information is

encoded in the genome. A much discussed observation is that the

number of genes an organism has does not correlate well with its

organismal complexity (measured, e.g., as the number of distinct

cell types in the organism). One broad approach to resolve this so

called “G-value paradox” (Hahn & Wray, 2002), has been to search

for further sources of complexity within the genome that could

account for the acquisition of additional biological functions

(Mattick et al, 2010; Schad et al, 2011)—such as modulation of

chromatin (Kouzarides, 2007; Cairns, 2009), alternative splicing

(Kim et al, 2007), the multi-functionality of proteins (Jeffery, 1999)

or the newly discovered regulatory functions of dozens of types of

non-protein coding RNAs such as lncRNAs or miRNAs (Sempere

et al, 2006; Taft et al, 2007). However, knowing that multiple

biological functions could be encoded in the same circuit—the same

collection of genes—allows us to shift attention away from the idea

that additional organismal complexity comes from additional molec-

ular components. Instead, additional organismal complexity may

derive from subtle adjustments to gene circuits which allow them to

acquire extra functions without losing their original ones and with-

out the need for additional molecular components—thus de-

coupling biological complexity from genomic complexity.

Second, the existence of highly compact multi-functional circuits

may have consequences for evolution. Structural modularity (as

seen in Fig 1A) has been proposed to confer advantages such as

high robustness and evolvability: The failure of one module/

function does not lead to the malfunctioning of the rest, and each

module/function can evolve relatively independently (Raff &

Conway Morris, 1996; Wagner & Altenberg, 1996; Kirschner

& Gerhart, 1998; Brandon, 1999; von Dassow & Munro, 1999; Raff &

Sly, 2000; Schlosser & Wagner, 2004). This could indeed be an a

prioi reason to expect modularity in circuits. However, the current

paucity of data on the structures and dynamics of real circuits does

not yet allow universal conclusions to be made, and so the reverse

argument should still be explored: In some cases multi-functional

(pleiotropic) gene circuits may lack strong modularity and therefore

have an impact on evolution—solidifying a circuit into a given con-

figuration with low evolvability, because most mutations would

interfere with too many processes simultaneously. This scenario

could be a plausible explanation for phenomena like the pentadactyl

vertebrate limb. During evolution from fish to tetrapods, the geolog-

ical record shows that the evolutionary variability in digit number

has consistently decreased. Many phenotypic features of the

mammalian limb have evolved dramatically (between, e.g., bats,

whales, dogs, and humans), but the number of digits has remained

fixed. This could potentially be explained by highly multi-functional

developmental circuits, as the genes and signaling pathways impor-

tant to this organ are also known to be essential for many other

organs (eg. the tail bud, Sheeba et al, 2016). Indeed, this

concept could go further—while structural modularity could explain

the ability of two traits to evolve autonomously, the existence of

compact overlapping modules could instead account for their

covariation.

Last, we believe that the approach of mapping out landscapes of

dynamical mechanisms, using tools such as the complexity atlas,

has been and will remain important to engineering attempts to

design and build new circuits synthetically (Matsuda et al, 2012;

Schaerli et al, 2014; Matsuda et al, 2015). In this context, the

finding of bi-functional motifs is of particular interest to synthetic

biology. Already, distinct circuits have been successfully engineered

that propagate a signal throughout a cell population under lateral

induction (Matsuda et al, 2012) or lateral inhibition (Matsuda et al,

2015) modes—precisely the core circuits D2 and H2 have, respec-

tively, been implemented. Despite the many technical challenges,

the simple multi-functional designs found here could potentially be

built synthetically as pattern-switch circuits able to achieve distinct

patterns upon a tunable external input.
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Materials and Methods

Exploring gene circuit space

A gene circuit consists of a topology, that defines the interactions

among genes, and a specific set of parameters. A topology is

composed of an inter-cellular and an intra-cellular circuit repre-

sented in the form of matrices. The inter-cellular matrix Winter

describes how the signaling gene D regulates genes in the neighbor-

ing cells, while the intra-cellular matrix Wintra describes how genes

interact among themselves within a cell. Within those matrices, posi-

tive values represent activation, negative values represent repres-

sion, and zero indicates no interaction. A parameter set consists of

nine parameters: six regulatory parameters for the strengths of gene

interactions, two parameters a (one per gene) to control gene-

specific regulatory behavior, and one parameter b to control the

steepness of the regulatory function. To explore gene circuit space

for solutions we first enumerate every possible topology (1,200 in

total), then sample 107 parameter sets per topology. The number of

topologies can be calculated taking into account both the number of

entries to Winter and Wintra matrices—six entries with three choices

each (�1,0,1)—and the choice of which of the genes is chosen to be

the signaling gene D. From this potential number of topologies,

isometric ones are removed. Parameters are chosen randomly within

the following ranges: regulation [�10;10], a [�60;60], bf5; 10g.

Defining functional gene circuits

Gene expression profile candidates to be classified as induction or

inhibition must be stable and robust to developmental noise. That is,

a gene profile is considered to have reached equilibrium when it

remains stable for more than 100 consecutive time steps. Further-

more, equilibrium needs to be reached for four independent noise

runs. First, in order to classify a pattern as induction, we measure

the expansion level of a candidate gene at multiple time-points. The

expansion of a gene is measured as the number of consecutive cells

adjacent to the central cell for which its concentration is high, that is,

above a certain threshold. This measure must increase at least five

times during the simulation to finally be equal to the total number of

cells in the tissue, that is, at equilibrium all cells express an homoge-

neous high expression level for the gene. Second, a gene was consid-

ered to have an inhibition pattern if its steady state expression level

alternates between high and low expression states at least 13 times.

Expanded View for this article is available online.
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