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Abstract

Motivation: Many bioinformatics algorithms are designed for the analysis of sequences of some

uniform length, conventionally referred to as k-mers. These include de Bruijn graph assembly

methods and sequence alignment tools. An efficient algorithm to enumerate the number of unique

k-mers, or even better, to build a histogram of k-mer frequencies would be desirable for these tools

and their downstream analysis pipelines. Among other applications, estimated frequencies can be

used to predict genome sizes, measure sequencing error rates, and tune runtime parameters for

analysis tools. However, calculating a k-mer histogram from large volumes of sequencing data is a

challenging task.

Results: Here, we present ntCard, a streaming algorithm for estimating the frequencies of k-mers

in genomics datasets. At its core, ntCard uses the ntHash algorithm to efficiently compute hash val-

ues for streamed sequences. It then samples the calculated hash values to build a reduced repre-

sentation multiplicity table describing the sample distribution. Finally, it uses a statistical model to

reconstruct the population distribution from the sample distribution. We have compared the per-

formance of ntCard and other cardinality estimation algorithms. We used three datasets of 480 GB,

500 GB and 2.4 TB in size, where the first two representing whole genome shotgun sequencing ex-

periments on the human genome and the last one on the white spruce genome. Results show

ntCard estimates k-mer coverage frequencies >15� faster than the state-of-the-art algorithms,

using similar amount of memory, and with higher accuracy rates. Thus, our benchmarks demon-

strate ntCard as a potentially enabling technology for large-scale genomics applications.

Availability and Implementation: ntCard is written in Cþþ and is released under the GPL license. It

is freely available at https://github.com/bcgsc/ntCard.

Contact: hmohamadi@bcgsc.ca or ibirol@bcgsc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many bioinformatics applications rely on counting or cataloguing

fixed-length substrings of DNA/RNA sequences, called k-mers, gen-

erated from reads coming out of high-throughput sequencing plat-

forms. This is a very important step in de novo assembly (Butler

et al., 2008; Li et al., 2010; Salzberg et al., 2012; Simpson et al.,

2009; Zerbino and Birney, 2008), multiple sequence alignment

(Edgar, 2004), error correction (Medvedev et al., 2011; Heo et al.,

2014), repeat detection (Simpson, 2014), SNP detection (Nattestad

and Schatz, 2016; Shajii et al., 2016) and RNA-seq quantification

analysis (Patro et al., 2014). The problem of counting k-mers has

been well studied in the literature, including the Jellyfish (Marçais

and Kingsford, 2011), BFCounter (Melsted and Pritchard, 2011),

DSK (Rizk et al., 2013) and KMC (Deorowicz et al., 2015) algo-

rithms. These tools need considerable computational resources and

can be improved in terms of memory, disk space and runtime
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requirements for processing and obtaining the histogram of k-mer

frequencies in large sets of DNA/RNA sequences. During the past

few years, there have been many studies to improve the memory and

time requirements for the k-mer counting problem. While a naı̈ve

approach would keep track of all possible k-mers in the input data-

sets, employing a succinct and compact data structure (Conway and

Bromage, 2011), or a disk-based workflow (Deorowicz et al., 2015;

Rizk et al., 2013) would reduce memory usage. Although the im-

proved methods with efficient implementations have considerable

impact on memory and time usage, they require processing all pos-

sible k-mers base-by-base and storing them in memory or disk.

Therefore, the time and memory requirements for theses efficient so-

lutions grow linearly with the input data size, and can take hours or

days using terabytes of memory for large datasets. In the recent

works by Chikhi-Medvedev (Chikhi and Medvedev, 2014) and

Melsted-Halld�orsson (Melsted and Halld�orsson, 2014), the authors

proposed methods to approximate the k-mer coverage histogram in

large sets of DNA/RNA sequences, which are about an order of

magnitude faster, and use only a fraction of the memory compared

with previous k-mer counting algorithms. However, these methods

still can take considerable amount of time for processing terabytes

of high-throughput sequencing data, or may not provide the full

histogram for k-mer abundance.

In this article, we present an efficient streaming algorithm,

ntCard, for estimating the k-mer coverage histogram for large high-

throughput sequencing genomics data. The proposed method re-

quires fixed amount of memory, and runs in linear time with respect

to the size of the input dataset. At its core, ntCard uses the ntHash

algorithm (Mohamadi et al., 2016) to efficiently compute hash val-

ues for streamed sequences. It samples the calculated hash values to

build a reduced representation multiplicity table describing the sam-

ple distribution, which it uses to statistically infer the population dis-

tribution. We compare the histograms estimated by ntCard with the

exact k-mer counts of DSK (Rizk et al., 2013), and illustrate that the

ntCard estimations are approximations within guaranteed intervals.

We also compare the accuracy, runtime and memory usage of

ntCard with the best available exact and approximate algorithms

for k-mer count frequencies such as DSK (Rizk et al., 2013),

KmerGenie (Chikhi and Medvedev, 2014), KmerStream (Melsted

and Halld�orsson, 2014) and Khmer (Irber and Brown, 2016).

2 Methods

Let’s first introduce the problem background and notations on

streaming algorithms for identifying the distinct elements. Then we

will derive a statistical model to estimate k-mer frequencies, and

outline the generated model.

2.1 Background, notations and definitions
Streaming algorithms are algorithms for processing data that are too

large to be stored in available memory, but can be examined online,

typically in a single pass. There has been a growing interest in

streaming algorithms in a wide range of applications, in different do-

mains dealing with massive amounts of data. Examples include, ana-

lysis of network traffic, database transactions, sensor networks and

satellite data feeds (Cormode and Garofalakis, 2005; Cormode and

Muthukrishnan, 2005; Indyk and Woodruff, 2005).

Here, we propose a streaming algorithm for estimating the fre-

quencies of k-mers in massive data produced from high-throughput

sequencing technologies. Let fi denote the number of distinct k-mers

that appear i times in a given sequencing dataset. The k-mer

frequency histogram is then the list of fi, i � 1. The kth frequency

moment Fk is defined as

Fk ¼
X1
i¼1

ik:fi (1)

The numbers Fk provide useful statistics on the input sequences. For

example, F0 denotes the number of distinct k-mers appearing in the

stream sequences, F1 is the total number of k-mers in the input data-

sets, F2 is the Gini index of variation that can be used to show the di-

versity of k-mers and F1 results in the most frequent k-mer in the

input reads.

There are streaming algorithms in the literature for estimating

different kth frequency moments. The problem of estimating F0,

also known as distinct elements counting, has been addressed by

the FM-Sketch (Flajolet and Martin, 1985) and K-Minimum

Value (Bar-Yossef et al., 2002) algorithms. An F2 estimation algo-

rithm was first proposed in Alon et al. (Alon et al., 1999), and F1

was investigated by Cormode and Muthukrishnan (Cormode

and Muthukrishnan, 2005). These proposed algorithms can per-

form their estimations within a factor of (16�) with a set

probability using Oð��2 log ðNÞÞ operations, where N is the num-

ber of distinct k-mers in the dataset (Melsted and Halld�orsson,

2014).

2.2 Estimating k-mer frequencies, fi

To estimate the k-mer frequencies, we use a hash-based approach

similar to the KmerStream algorithm (Melsted and Halld�orsson,

2014). KmerStream is based on the K-Minimum Value algorithm

(Bar-Yossef et al., 2002), and it samples the data streams at dif-

ferent rates to select the optimal sampling rate giving the best

result.

ntCard works by first hashing the k-mers in read streams, which

it samples to build a reduced multiplicity table. After calculating the

multiplicity table for sampled k-mers, it uses this table to infer the

population histogram through a statistical model.

2.2.1 Hashing

ntCard utilizes the ntHash algorithm (Mohamadi et al., 2016) to

efficiently compute the canonical hash values for all k-mers in

DNA sequences. ntHash is a recursive, or rolling, hash function in

which the hash value for the next k-mer in an input sequence

of length l (l � k) is derived from the hash value of the previous

k-mer.

Hi ¼ rol1Hi�1 � rolkhðr½i� 1�Þ� hðr½iþ k� 1�Þ (2)

This calculation is initiated for the first k-mer in the sequence using

the base function

H0 ¼ rolk�1hðr½0�Þ� rolk�2hðr½1�Þ� . . . � hðr½k� 1�Þ (3)

In the above equations � is bitwise exclusive or operation, rol is

cyclic binary left rotation, and h is a seed table mapping the nucleo-

tide letters to a pre-designed 64-bit random integers. The 64-bit ran-

dom integers are designed in a way that in every bit position in the

64-bit random seeds, there is equal number of 0’s and 1’s spread

randomly. The time complexity of ntHash for a sequence of length l

is Oðkþ lÞ, compared to O(kl) for regular hash functions.

To compute the reverse-complement and consequently the ca-

nonical hash values (i.e. hash values invariant of reverse-

complementation), ntHash modifies the seed table h by placing the
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complement nucleotide seeds within a fixed distance d of the corres-

ponding nucleotide seeds, and then computes the hash values using

�H0 ¼ hðr½0� þ dÞ� rol1hðr½1� þ dÞ� � � � � rolk�1hðr½k� 1� þ dÞ
�Hi ¼ ror1 �Hi�1 � ror1hðr½i� 1� þ dÞ� rolk�1hðr½iþ k� 1� þ dÞ

(4)

Where ror is a cyclic binary right rotation. We have shown earlier

that ntHash has substantial speed improvement over conventional

approaches, while retaining a near-ideal hash value distribution

(Mohamadi et al., 2016).

2.2.2 Sampling and building the multiplicity table

After computing the hash values for k-mers in DNA streams using

ntHash, ntCard segments the 64-bit hash values into three parts as

shown in Figure 1. It uses the left s bits in the 64-bit hash value for

its sampling criterion, picking k-mers for which these bits are zero,

which results in an average sampling rate of 1=2s. Earlier, we have

demonstrated that ntHash bits are independently and uniformly

distributed (Mohamadi et al., 2016). Consequently, 1/2 of the

hash values start with 0, 1/4 of them will start with two zeros, and

1=2s start with s zeros. Therefore, by selecting the hash values

starting with s zeros, we build our sample with the cardinality of

1=2s.

Also building on the statistical properties of computed hash val-

ues, we use the right r bits, called the resolution bits, to build a

k-mer multiplicity table for sampled k-mers. To do so, we use an

array of size 2r to keep observed k-mer counts. The resolution bits

of each hash value serve as the index for the count array. We note

that, each entry in the array is an approximate count of the sampled

k-mers, since there may be multiple k-mers with the same r bit pat-

tern, resulting in count collisions.

Ideally, one would want a hash function that generates a unique

hash value for every k-mer, say using infinite number of bits. Also, if

one has access to infinite memory to hold all these values, the ideal

values for s and r would be zero and infinity, respectively. Since we

do not in practice have access to such resources, we use 64-bit hash

values, subsample our dataset by 1=2s, and tabulate 2r patterns

(some of which with zero counts). To infer the population histogram

from these measurements, we derived the following statistical

model.

Let’s denote the count array with 2r entries by tðrÞ. If we were to

extend our resolution to rþ1, we would obtain a new count array,

tðrþ1Þ, with 2rþ1 entries, twice the size of the current array tðrÞ. There

is a relation between the entries of the current array tðrÞ and the new

count array tðrþ1Þ. By folding the first half of tðrþ1Þ with its second

half, we can construct tðrÞ using

tðrÞn ¼ tðrþ1Þ
n þ t

ðrþ1Þ
2rþn ; 8n 2 ½0; . . . ; 2r � 1� (5)

where t
ðrÞ
n denotes the count for entry n in the table tðrÞ.

Next, if we let p
ðrÞ
i be the relative frequency of counts i � 0 in

table tðrÞ, with
P1

i¼0 p
ðrÞ
i ¼ 1, we can make the following observa-

tions. An entry of t
ðrÞ
i ¼ 0 is only possible if t

ðrþ1Þ
i ¼ 0 and t

ðrþ1Þ
2rþi ¼ 0.

Since there is no a priori reason why the first and second half of

tðrþ1Þ should have different count distributions, we can relate the fre-

quencies of zero counts in the two tables through

p
ðrÞ
0 ¼ ðp

ðrþ1Þ
0 Þ2 (6)

Similarly, a count of one in tðrÞ is only possible if the first half of

tðrþ1Þ is a one and the second half a zero corresponding to that entry,

or vice versa, which we can write mathematically as

p
ðrÞ
1 ¼ 2p

ðrþ1Þ
0 p

ðrþ1Þ
1 (7)

This can be generalized as

p
ðrÞ
i ¼

Xi

i0¼0

p
ðrþ1Þ
i0 p

ðrþ1Þ
i�i0 (8)

Note that, Equations (6)–(8) can be solved for p
ðrþ1Þ
i through the re-

cursive formula

p
ðrþ1Þ
i ¼

p
ðrÞ
0

� �1=2
for i ¼ 0

p
ðrÞ
1

2p
ðrþ1Þ
0

for i ¼ 1

1

2p
ðrþ1Þ
0

p
ðrÞ
i �

Xi�1

i0¼1

p
ðrþ1Þ
i0 p

ðrþ1Þ
i�i0

 !
for i > 1

8>>>>>>>>>><
>>>>>>>>>>:

(9)

Now, just like extensions from a resolution of r to rþ1, resolution

to rþx is also mathematically tractable. Ultimately, we would be

interested in relating the observed count frequencies p
ðrÞ
i to the count

frequencies p
ð1Þ
i , and in calculating k-mer multiplicity frequencies

f̂ i ¼
p
ð1Þ
i

1� p
ð1Þ
0

(10)

For example, for i¼1, this can be calculated as

f̂ 1 ¼ lim
x!1

p
ðrÞ
1

2xðpðrÞ
0
Þ
2x�1

2x

1� ðpðrÞ0 Þ
1

2x
¼ �p

ðrÞ
1

p
ðrÞ
0 lnp

ðrÞ
0

(11)
Fig. 1. 64-bit hash value generated by ntHash. The s left bits are used for sam-

pling the k-mers in input datasets and the r right bits are used as resolution

bit for building the reduced multiplicity table, with r þ s < 64

Algorithm 1. The ntCard algorithm

1: function Update(k-mer)

2: for each read seq do

3: for each k-mer in seq do

4: h ntHash (k-mer) " Compute 64-bit h using ntHash

5: if h64:64�sþ1 ¼ 0s then " Checking the s left bit in h

6: i hr:1 " r is resolution parameter

7: ti  ti þ 1

8: function Estimate

9: for i 1 to 2r do

10: pt½i�  pt½i� þ 1

11: for i 1 to tmax do

12: pi  pi=2
r

13: F0 ¼ �lnp0 � 2sþr " F0 estimate

14: for i 1 to tmax do

15: f̂ i  �pi

p0lnp0
� 1

i

Pi�1
j¼1

jpi�j f̂ j

p0
" Relative estimates

16: for i 1 to tmax do

17: fi  f̂ i � F0 " fi estimates

18: return f ; F0
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and for i¼2 as

f̂ 2 ¼
�p
ðrÞ
0 p

ðrÞ
2 þ 1

2 ðp
ðrÞ
1 Þ

2

ðpðrÞ0 Þ
2ln p

ðrÞ
0

(12)

In general, for f̂ i; i � 1, we can write the following equation

f̂ i ¼
1

ðpðrÞ0 Þ
iln p

ðrÞ
0

Xi�1

j¼0

ð�1ÞiþjðpðrÞ0 Þ
j

i� j

 

X
8ðl; uÞ 2 Z

2 s:t:P
k uk ¼ i� jP
k lkuk ¼ i

Yjuj
k¼1

i� j�
Pk�1

k0¼0 uk0

uk

 !
ðpðrÞlk
Þuk

!
(13)

where u0 ¼ 0; uk 6¼ uk0 for all k 6¼ k0, and juj ¼ argmaxkfukg.
This complex-looking formula can also be written in the follow-

ing recursive form

f̂ i ¼
�p
ðrÞ
i

p
ðrÞ
0 lnp

ðrÞ
0

� 1

i

Xi�1

j¼1

jp
ðrÞ
i�j f̂ j

p
ðrÞ
0

(14)

The two terms of this equation can be interpreted as follows. The

first term corresponds to count frequencies i in table tðrÞ assuming

none of the entries collided with any non-zero entries through fold-

ing rounds from limx!1ðrþ xÞ to r. The second term is a correction

to the first term, accounting for all collisions of ði� jÞ; 0 < j < i

and j, result of which is a count frequency of i.

Now, we can derive an estimate for F0 by a similar approach we

used for relative frequencies.

F0 ¼ lim
x!1

2sð1� p
ðrþxÞ
0 Þ2rþx (15)

This formula has three terms inside the limit, the first one, 2s, cor-

recting for the subsampling we have performed. The second term is

the frequency of non-zero entries in table tðrþxÞ, and the third entry

is the normalizing factor that was used to convert occurrences of

counts in this table to their frequencies, p
ðrþxÞ
i . Taking this limit then

gives

F0 ¼ �2sþrlnp
ðrÞ
0 (16)

Using the Equations (14) and (16) we can obtain the k-mer coverage

frequencies as outlined in Algorithm 1 with a binomial proportion

confidence interval. The workflow of ntCard algorithm is also pre-

sented in Supplementary Figure S1.

2.3 Implementation details
Selection of the resolution parameter, r, represents a tradeoff be-

tween accuracy and computational resources. While it should not be

too low to avoid poor estimates of frequency counts, it should not

be too high for feasible peak memory usage. In our experience, val-

ues r>20 work well for accurate estimates, and memory usage

peaks above 1 GB for r � 28. We have set the default value to

r¼27. We have also observed that estimations based on only tr,

without applying the statistical model, has higher error rates due to

count collisions, as expected.

If input reads or sequences contain ambiguous bases, or charac-

ters other than fA;C;G;Tg, ntCard ignores them in the hashing

stage. This is performed as a functionality of ntHash algorithm.

When ntHash encounters a non-ACGT character it can jump over

the ambiguous base, and restarts the hashing procedure from the

first valid k-mer containing only ACGT characters.ntCard is written

in Cþþ and parallelized using OpenMP for multi-threaded

computing on a single computing node. As input, it gets the set of se-

quences in FASTA, FASTQ, SAM and BAM formats. The input se-

quences can also be in compressed formats such as.gz and.bz

formats. ntCard is distributed under GNU General Public License

(GPL). Documentation and source code are freely available at

https://github.com/bcgsc/ntCard.

3 Results

3.1 Experimental setup
To evaluate the performance and accuracy of ntCard, we down-

loaded the following publicly available sequencing data.

• The Genome in a Bottle (GIAB) project (Zook et al., 2016)

sequenced seven individuals using a large variety of sequencing

technologies. We downloaded 2x250 bp paired-end Illumina

whole genome shotgun sequencing data for the Ashkenazi

mother (HG004).
• We downloaded a second H. Sapiens dataset from the 1000

Genomes Project, for the individual NA19238 (SRA:ERR309932).
• To represent a larger problem, we used the white spruce (Picea

glauca) genome sequencing data that represents the genotype PG29

(Warren et al., 2015) (accession number: ALWZ0100000000 and

PID: PRJNA83435).

The information of each dataset including the number of se-

quences, size of sequences, total number of bases and total input size

of datasets is presented in Table 1. To evaluate the performance of

ntCard, we compare it to KmerGenie, KmerStream and Khmer in

terms of accuracy of estimates, runtime and memory usage. We also

compare the accuracy of our results with DSK, which is an exact k-

mer counting tool. Results were obtained on computing nodes with

48 GB of RAM and dual Intel Xeon X5650 2.66GHz CPUs with 12

cores. The operating system on each node was Linux CentOS 5.4.

All five tools are run with their default parameters, and the par-

ameters related to the resource usage are set in a way to utilize the

maximum capacity on each computing node as described in

Supplementary Data. For example, all tools are run in multi-

threaded mode with the maximum number of threads available on

the computer.

3.2 Accuracy
In Tables 2–4, we see the results of DSK, ntCard, KmerGenie,

KmerStream, and Khmer for distinct number of k-mers, F0, as well as

the number on singletons, f1, on three datasets. We compared the ac-

curacy of estimated counts from ntCard, KmerGenie, KmerStream

and Khmer with exact counts from DSK. We see that, for all k-mer

lengths, ntCard computes F0 and f1 for all three datasets with error

rates less than 0.7%. In comparison, the error rates of KmerGenie,

KmerStream and Khmer can be up to 17%, 9% and 11%, respect-

ively. Note that, the Khmer algorithm only estimates the total number

of distinct k-mers, F0. The full results from all algorithms other than

DSK are presented in Supplementary Tables S1–S3.

Table 1. Dataset specification

Dataset Read number Read length Total bases Size

HG004 868,593,056 250 bp 217,148,264,000 480 GB

NA19238 913,959,800 250 bp 228,489,950,000 500 GB

PG29 6,858,517,737 250 bp 1,714,629,434,250 2.4 TB
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Compared to ntCard and KmerStream, Khmer and KmerGenie

estimates for distinct number of k-mers, F0, have the highest error

rates (>7%) on PG29 data; though, for HG004 and NA19238,

Khmer estimates F0 with lower error rates, and KmerGenie has very

accurate estimates with error rates<1% for all k values. On all three

datasets, KmerStream has more accurate estimates for longer k-

mers, where error rates increasing rapidly for shorter k-mers.

Although ntCard generally has the opposite trend, it also has the

most stable performance for all three datasets. Except for k¼128 bp

on NA19238 and PG29, and k¼96 bp on NA19238 and HG004,

ntCard consistently displays the best accuracy both for F0 and f1, as

indicated by the bold entries in Tables 2–4.

We have also evaluated the accuracy of full k-mer frequency

histograms of ntCard on all three datasets with different k values.

Since the KmerStream algorithm only computes estimates for F0 and

f1 and Khmer only estimates F0, we could only compare the accur-

acy of the ntCard histogram with the estimated results of

KmerGenie and the exact histogram from DSK method. Figure 2

shows the k-mer frequency histograms of DSK, ntCard, and

KmerGenie for all three datasets with four k values,

f32; 64; 96; 128g. Since the results of f1 have already been presented

in Tables 2–4, and since f2. . .f62 � f1, the histograms in Figure 2

show the k-mer frequencies starting from f2. The exact numbers of

f1. . .f62 for DSK, ntCard, and KmerGenie on all three datasets are

presented in Supplementary Tables S4–S15. From Figure 2 and

Supplementary Tables S4–S15, we can see ntCard estimates the k-

mer frequency histograms for all three datasets more accurate than

KmerGenie.

3.3 Runtime and memory usage
We have calculated the memory usage of all benchmarked tools.

DSK uses both main memory and disk space for counting k-mers,

and therefore we obtained both values for it. We should also men-

tion that DSK was executed on compute nodes equipped with solid-

state drives (SSD). This helps the runtime of DSK be greatly reduced

with the SSD and multi-threaded parallelism. The memory usage for

DSK on all three datasets was the same at about 20 GB of RAM,

while the disk space usage was 500 GB for human genomes HG004

and NA19238, and 1 TB for the white spruce genome PG29.

The memory usage of KmerGenie to estimate the full k-mer fre-

quency histograms for all datasets was about 200 MB of RAM.

KmerStream uses 2-bit counters to estimate F0 and f1, resulting in

lower memory requirement. The memory usage for KmerStream on

all three datasets was about 65 MB of RAM. The Khmer algorithm

requires the lowest amount of memory among all algorithms but

only estimates F0. It requires about 15 MB of RAM to estimate the

total number of distinct k-mers in all three datasets. The memory re-

quirement of ntCard for all three datasets was about 500 MB of

RAM, although we note that it computes the full k-mer multiplicity

histogram. We have also implemented a special runtime parameter

to only compute the total number of distinct elements, F0, in which

case it requires about 2 MB of RAM.

Figure 3 shows the runtime of all methods on the experimented

datasets with different k values from 32 to 128. The runtime of

ntCard to obtain the full k-mer frequency histograms for human

genome datasets (HG004, NA19238) is about 6 mins. For

KmerStream, it takes about 100 mins to obtain F0 and f1 on human

genome datasets, while this is about 200 mins for Khmer to estimate

just the total number of distinct k-mers, F0. DSK and KmerGenie

take up to 600 and 800 minutes, respectively, to compute the k-mer

coverage histograms for human genome datasets. For the white

spruce PG29 dataset, ntCard requires about 30 mins to estimate k-

mer frequency histograms, while for KmerStream it takes about 450

mins to obtain F0 and f1. The Khmer takes longer time about 1200

mins to estimate F0. DSK can take up to 2700 mins to compute the

k-mer frequency histograms and this number is 3400 mins for

KmerGenie to estimate k-mer coverage histograms. We should note

that ntCard, KmerGenie and KmerStream algorithms have an option

to pass multiple k values and compute multiple k-mer coverage

histograms in a single run. This option will reduce the amortized

runtime per k value, but it will increase the memory usage. From the

runtime results, we see ntCard estimates the full k-mer coverage fre-

quency histograms >15� faster than the closest competitor,

KmerStream, which only computes F0 and f1. Supplementary Figure

S2 shows the runtime performance versus the number of threads for

the ntCard algorithm. In our experiments and computing

Table 3. Accuracy of algorithms in estimating F0 and f1 for

NA19238 reads

k DSK ntCard KmerGenie KmerStream Khmer

32 f1 14,881,561,565 0.00% 0.53% 6.36% –

F0 18,091,801,391 0.00% 0.40% 4.64% 1.82%

64 f1 19,074,667,480 0.02% 0.75% 0.68% –

F0 22,527,419,136 0.01% 0.77% 0.65% 1.22%

96 f1 19,420,503,673 0.22% 0.66% 0.09% –

F0 22,932,238,161 0.16% 0.66% 0.07% 0.46%

128 f1 17,902,027,438 0.21% 0.85% 0.19% –

F0 21,421,517,759 0.13% 0.76% 0.03% 1.05%

The DSK column reports the exact k-mer counts, and columns for the other

tools report percent errors.

Table 4. Accuracy of algorithms in estimating F0 and f1 for PG29

reads

k DSK ntCard KmerGenie KmerStream Khmer

32 f1 27,430,910,938 0.02% 15.33% 9.41% –

F0 42,642,198,777 0.01% 11.02% 7.37% 8.86%

64 f1 44,344,130,469 0.04% 16.36% 2.61% –

F0 67,800,291,613 0.02% 11.14% 1.73% 11.18%

96 f1 43,300,244,443 0.66% 17.51% 0.73% –

F0 69,855,690,006 0.46% 11.13% 0.57% 9.36%

128 f1 32,089,613,024 0.40% 14.82% 0.06% –

F0 58,195,246,941 0.30% 8.35% 0.27% 7.39%

The DSK column reports the exact k-mer counts, and columns for the other

tools report percent errors.

Table 2. Accuracy of algorithms in estimating F0 and f1 for HG004

reads

k DSK ntCard KmerGenie KmerStream Khmer

32 f1 13,319,957,567 0.01% 0.97% 7.04% –

F0 16,539,753,749 0.02% 0.64% 5.12% 0.67%

64 f1 17,898,672,342 0.02% 0.35% 0.73% –

F0 21,343,659,785 0.00% 0.22% 0.66% 0.15%

96 f1 18,827,062,018 0.36% 0.87% 0.00% –

F0 22,313,944,415 0.24% 0.69% 0.05% 0.31%

128 f1 18,091,241,186 0.36% 0.76% 0.40% –

F0 21,555,678,676 0.25% 0.62% 0.20% 0.30%

The DSK column reports the exact k-mer counts, and columns for the other

tools report percent errors.
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environment, approximately one third of the ntCard runtime is

spent on reading input datasets, and the rest on computing k-mer

coverage histograms. Therefore I/O efficiency, which is system and

architecture dependent, has a considerable impact on the runtime

performance of ntCard.

4 Discussion

With growing throughput and dropping cost of the next generation

sequencing technologies, there is a continued need to develop faster

and more effective bioinformatics tools to process and analyze data

associated with them. Developing algorithms and tools that analyze

these huge amounts of data on the fly, preferably without storing

intermediate files, would have many benefits in a broad spectrum of

genomics projects such as de novo genome and transcriptome as-

sembly, sequence alignment, repeat detection, error correction and

downstream analysis.

In this work, we introduced the ntCard streaming algorithm for

estimating the k-mer coverage frequency histogram for high-

throughput sequencing genomics data. It employs the ntHash algo-

rithm for hashing all k-mers in DNA/RNA sequences efficiently,

samples the k-mers in datasets based on the k-mer hashes, and re-

constructs the k-mer frequencies using a statistical model. Using an

amount of memory comparable to similar tools, ntCard estimates k-

mer frequency histogram for massive genomics datasets, several

folds faster than the state-of-the-art approaches.

Sample use cases of ntCard include tuning runtime parameters in

de Bruijn graph assembly tasks such as optimal k value for the as-

sembly, and setting parameters in applications utilizing the Bloom

Fig. 2. k-mer frequency histograms for human genomes HG004 and NA19238 (rows 1 and 2, respectively), and the white spruce genome PG29 (row 3). We have

used DSK k-mer counting results as our ground truth in evaluation (orange circle data points). The k-mer coverage frequency results, f2::f62 of ntCard and

KmerGenie for different values of k ¼ 32; 64; 96; 128 (the four columns from left to right) are shown with the symbols (þ) and (�), respectively

Fig. 3. Runtime of DSK, ntCard, KmerGenie, KmerStream and Khmer for all three datasets, HG004, NA19238 and PG29. We have calculated the runtime of all algo-

rithms for different values of k in f32; 64; 96; 128g. As we see in the plots, ntCard estimates the full k-mer coverage frequency histograms >15� faster than

KmerStream
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filter data structure. ntCard has been used in the new version of our

genome assembly software package, ABySS 2.0 (Jackman et al.,

2016), to determine the values for total memory size and number of

hash functions. It has been also utilized to set the Bloom filter sizes

in BioBloom tools (Chu et al., 2014), which is a general use fast se-

quence categorization tool utilizing Bloom filters. Using ntCard

these tools are able to get the total number of distinct k-mers F0, as

well as the number of k-mers above a certain multiplicity threshold.

The k-mer coverage histograms computed by ntCard can be also

used as input to utilities like GenomeScope (http://qb.cshl.edu/

genomescope/) for estimating genome sizes, sequencing error rates,

repeat contents, and heterozygosity of genomes (Chikhi and

Medvedev, 2014; Marçais and Kingsford, 2011; Melsted and

Halld�orsson, 2014; Simpson, 2014).

We expect ntCard to provide utility in efficiently characterizing

certain properties of large read sets, helping quality control pipelines

and de novo sequencing projects.
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