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Abstract

Motivation: While high-throughput sequencing (HTS) has been used successfully to discover

tumor-specific mutant peptides (neoantigens) from somatic missense mutations, the field currently

lacks a method for identifying which gene fusions may generate neoantigens.

Results: We demonstrate the application of our gene fusion neoantigen discovery pipeline, called

INTEGRATE-Neo, by identifying gene fusions in prostate cancers that may produce neoantigens.

Availability and Implementation: INTEGRATE-Neo is implemented in Cþþ and Python. Full source

code and installation instructions are freely available from https://github.com/ChrisMaherLab/

INTEGRATE-Neo.

Contact: christophermaher@wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The mutational landscape of cancer genomes results in the produc-

tion of tumor specific peptides recognizable by immune molecules.

These so-called neoantigens can be exploited for personalized cancer

immunotherapy (Heemskerk et al., 2013). To date, multiple studies

have successfully used Next Generation Sequencing (NGS) to dis-

cover tumor specific neoantigens (Carreno et al., 2015; Gubin et al.,

2014; Matsushita et al., 2012). These analyses have relied on som-

atic missense mutation-based neoantigen discovery workflows like

pVAC-Seq (Hundal et al., 2016). Despite these successes, such meth-

ods do not consider gene fusions, which occur when two genes are

rearranged in the genome to encode an aberrant transcript that

may translate into a novel immunogenic peptide. To address this

critical gap, we developed the first open source pipeline, called

INTEGRATE-Neo, for gene fusion neoantigen discovery using NGS

data. INTEGRATE-Neo expands the functionality of our highly ac-

curate gene fusion discovery tool, INTEGRATE (Zhang et al.,

2016). Here, we apply INTEGRATE-Neo to the TCGA prostate co-

hort data (PRAD) to demonstrate its utility for identifying gene

fusion neoantigens that may serve as personalized cancer immuno-

therapy targets.

2 The INTEGRATE-neo pipeline

The gene fusion neoantigen discovery pipeline, INTEGRATE-Neo,

is comprised of the following steps: (1) gene fusion peptide predic-

tion, (2) HLA allele prediction and (3) gene fusion neoantigen dis-

covery (Fig. 1).

The first step takes (1) the human reference genome in FASTA

format, (2) gene models in GenePred format and (3) gene fusions in

BEDPE format predicted by INTEGRATE as input to predict gene

fusion peptides. The BEDPE follows the standards provided by The

ICGC-TCGA DREAM Somatic Mutation Calling-RNA Challenge

(SMC-RNA). This step annotates the gene fusion predictions with

information such as gene fusion exonic boundaries, open reading

frames (ORF), and the predicted peptide at the fusion junction. Each

codon within the 50 gene partner is inferred according to the starting

position of the 50 ORF. The amino acids spanning the fusion
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junction are determined by the codons that result from merging the

sequences of both the 50 and 30 gene partners. The 30 reading frames,

which may have shifted, are then calculated for the remaining por-

tion of the gene fusion transcript downstream of the fusion junction

until a stop codon is encountered. These annotations are appended

as user defined columns to the BEDPE file. Gene fusions that do not

produce a predicted fusion peptide are subsequently filtered.

The second step takes (1) high-throughput sequencing reads in

FASTQ format and (2) reference HLA alleles in FASTA format as in-

put to predict HLA alleles. It performs alignment using BWA (Li and

Durbin, 2009) and predicts the HLA alleles using HLAminer v 1.3

(Warren et al., 2012). This module outputs a Tab-separated value

(TSV) file for the predicted HLA alleles that includes the four-digit

HLA allele names, scoring metrics from HLAminer (score, e-value

and confidence), and the prediction source. To increase the flexibility

of INTEGRATE-Neo, a user has the option to upload their own HLA

alleles in case they use another method, such as sequence-specific

oligonucleotide probe hybridization and serotyping techniques, or al-

ready have algorithmic predicted results for their dataset.

The third neoantigen discovery step takes in (1) a TSV file for

the predicted HLA alleles, (2) an annotated BEDPE file for the pre-

dicted gene fusion peptides and (3) a file of the list of HLA alleles

supported by NetMHC v 4.0 (Andreatta and Nielsen, 2016). The

epitope lengths supplied are 8–11 by default but can be defined by

the user. For each epitope length, a FASTA file is prepared with pep-

tides of 2n � 1 amino acids, where n is the epitope length set by

‘�l’. The single amino acid in the middle spans the fusion junction.

If the 50 junction is at a full codon, then a peptide of 2n � 2 amino

acids is used. If a non-coding region (UTR) is encountered, the pep-

tide sequence can be shorter than 2n � 1 (or 2n � 2). The summar-

ization module keeps the epitope with the highest predicted binding

affinity (nM) passed a user-defined threshold (default: 500) for each

neoantigen. The final result is a BEDPE file with gene fusion neoan-

tigen predictions. The summarization module appends the epitope

sequences, binding affinities, HLA alleles and metrics of the HLA al-

leles, as user defined columns, to the output BEDPE file.

To ensure user-friendliness, all of the modules within INTEGRATE-

Neo are designed as standalone tools with their own optional param-

eters. This enables users to incorporate INTEGRATE-Neo functions

within their existing pipelines. INTEGRATE-Neo also ensures that all

the modules are running the same version of the software. The paths to

software and databases can be set in setup.ini.

3 Application to TCGA PRAD cohort

RNA-seq reads of 333 TCGA PRAD tumor samples were used to dis-

cover gene fusions and gene fusion neoantigens using INTEGRATE

and INTEGRATE-Neo (Supplementary Methods). We discovered

1761 gene fusions in the 333 prostate cancer samples that generate

2707 fusion transcript isoforms (Supplementary Table S1). 2369 (87.

5%) of the 2707 fusion transcripts have canonical exon boundaries,

and 338 (12.5%) have junctions in other (non-exonic or truncated

exonic) regions. 61 (3.5%) of the 1761 gene fusions are recurrent

(occur in�2 patients; Supplementary Table S2; Supplementary Figs.

S1 and S2) and 1700 (96.5%) are singletons (occur in 1 patient).

INTEGRATE-Neo predicted 1600 (1300 singleton and 300 recurrent)

fusion junction peptides for the 2,707 gene fusion transcripts. Of

these, 240 (15%) (Supplementary Fig. S3a and Table S3) have epi-

topes with binding affinity scores�500 nM. The epitopes encom-

passed all epitope lengths as follows: 2.7%, 60.8%, 33.7% and 2.7%

for 8, 9, 10 and 11 amino acids, respectively (Supplementary Fig.

S3b). Interestingly, binding affinity scores skewed towards 1 rather

than 500, with smaller scores indicating better binding affinities

(Supplementary Fig. S3c). This pattern was consistent across all epi-

tope lengths (Supplementary Fig. S3d). The most frequent gene fusion

neoantigen from TMPRSS2-ERG is shown in Supplementary Figure

S4. Epitope affinities in different HLA alleles and in recurrent gene fu-

sions are shown in Supplementary Figure S5.

Analysis of the TCGA PRAD data with the aforementioned par-

ameters on our servers with 2.50 GHz Intel Xeon processors had an

average runtime of 75.1 6 29.2 seconds and average memory usage

of 1.88 6 0.90 GB per patient using single thread highlighting the ef-

ficiency of INTEGRATE-Neo (Supplementary Fig. S6).

4 Discussion

Here, we described the first automated gene fusion neoantigen dis-

covery pipeline, INTEGRATE-Neo, and demonstrated that it can ef-

ficiently process the TCGA prostate cancer patient cohort. This

revealed predicted gene fusions neoantigens across a distribution of

epitope binding affinities. Overall, INTEGRATE-Neo provides a

valuable resource to the cancer community by complementing exist-

ing somatic missense mutation-based neoantigen discovery methods

to ensure that no potential neoantigen is missed in the search for

personalized immunotherapy targets.
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