Skip to main content
. 2016 Oct 22;33(3):347–353. doi: 10.1093/bioinformatics/btw656

Table 3.

Single- and multi-label performance with different combinations of input features on the SCEXP2016 dataset by adopting a 10-fold cross-validation procedure

Multi-label prediction
Single-label prediction
Input features ACCml mlACC mlPRE mlREC mlF1 ACCsl(I) ACCsl(O) ACCsl(S) ACCsl(L) ACCsl(M) ACCsl(P) ACCsl
Basic 0.48 0.56 0.56 0.61 0.59 0.33 0.26 0.60 0.61 0.57 0.48 0.58
Basic+target (predicted) 0.62 0.75 0.76 0.90 0.83 0.62 0.57 0.89 0.89 0.82 0.80 0.89
Basic+mem (predicted) 0.60 0.74 0.75 0.89 0.82 0.67 0.65 0.84 0.85 0.83 0.75 0.85
Basic+target+mem (predicted) 0.63 0.77 0.79 0.93 0.85 0.66 0.63 0.90 0.89 0.84 0.81 0.91
Basic+target+mem (observed) 0.73 0.82 0.84 0.93 0.89 0.81 0.75 0.97 0.97 0.92 0.86 0.96

Basic = PSSM + Hydrophobicty; target = [p(c),p(t)]; mem = [p(s),p(m),p(r)]. Scoring indexes are defined as in Section 2.3. In single-label scoring indexes, I, O, S, L, M and P stand for inner membrane, outer membrane, stroma, thylakoid lumen, thylakoid membrane and plastoglobule, respectively.