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Abstract

Motivation: The application of a genomics assay to samples from a cohort is a frequently applied

experimental design in cancer genomics studies. The collection and analysis of cancer sequencing

data in the clinical setting is an elaborate process that may involve consenting patients, obtaining

possibly-multiple DNA samples, sequencing and analysis. Many of these steps are manual. At any

stage mistakes can occur that cause a DNA sample to be labelled incorrectly. However, there is a

paucity of methods in the literature to identify such swaps specifically in cancer studies.

Results: Here, we introduce a simple method, HYSYS, to estimate the relatedness of samples and

test for sample swaps and contamination. The test uses the concordance of homozygous SNPs be-

tween samples. The method is motivated by the observation that homozygous germline popula-

tion variants rarely change in the disease and are not affected by loss of heterozygosity. Our tools

include visualization and a testing framework to flag possible sample swaps. We demonstrate the

utility of this approach on a small cohort.

Availability and Implementation:http://github.com/PapenfussLab/HaveYouSwappedYourSamples

Contact: papenfuss@wehi.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large cohorts of matched somatic and germline samples are used in

many cancer genomics studies and there is increasing interest in can-

cer evolution leading to the use of multiple somatic samples. From

the conception of a study, through DNA sample collection, library

preparation and sequencing many manual steps are taken before the

data is generated and analyzed by bioinformaticians. The manual

nature of the wet lab is a source of error that is difficult to eliminate.

Sample swaps, loss and contamination can occur, even in the best

laboratories (Lohr et al., 2015). To deal with these risks, methods

are required to test for sample contamination (e.g. ContEst

(Cibulskis et al., 2011)) and swaps.

Here, we propose a simple strategy to establish the relatedness of

possibly-multiple somatic samples with a matched germline sample

in a cohort. Our method relies on data produced by SNV calling or

SNP arrays. The method offers several advantages over existing

methods, such as PLINK (Purcell et al., 2007) or Prest (McPeek and

Sun, 2000): (i) dealing with allele-specific copy number changes and

loss of heterozygosity, (ii) visualising relationships between samples,

(iii) automatic modeling and flagging of unusual relationships and

(iv) ease of use.

2 Methods

There are various tests that can be employed to establish whether

two samples are genetically related to each other, for example,

identity-by-descent (IBD) methods (Purcell et al., 2007), relatedness

estimation (McPeek and Sun, 2000) and forensic testing methods.

Here, we refer to the more specific case relevant in cancer cohort

studies, where we need to assess whether two possibly mutated sam-

ples are from the same patient (such as primary, metastasis and

germline, multiple samples, or multi-regional samples) rather than
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the degree of similarity or matching. However, in the context of can-

cer, IBD methods can suffer from the change in allele frequencies

caused by copy number changes, which occur on a large scale in

many cancers (Shlien and Malkin, 2009). Therefore, our method is

designed to be robust to such rearrangements by focusing on homo-

zygous germ line mutations. The motivation is as follows: a cancer

descends from germ line cells and therefore shares all variants in the

early stages. In the case of a homozygous germline variant, it is un-

likely that the cancer would carry any other genotype—amplifying a

chromosome or parts thereof does not change the frequency if there

is only one allele to begin with; neither does losing a copy (except

for the loss of both copies of a chromosome). Structural variants,

such as inversions, translocations or other amplifications do not dis-

turb such variants either (only indirectly by disrupting mappability

around variants, but those are local phenomena).

Our proposed method is simply taking the concordance of

homozygous germ line variants in the sample as a metric of related-

ness. This metric allows sample relationships to be visualized using

simple heat map plots to quickly verify that all samples that should

be paired in a cohort are indeed paired. Further, it allows a simple

statistical model to be created on the metric data as it follows a

fairly tractable bimodal distribution. Such a model can identify any

significant outliers to allow assessment of potential problems of con-

tamination or unpaired samples within the cohort.

More specifically, our cohort analysis method offers three modules:

Concordance calculation: The first module takes samples and

controls (or only samples) as input and calculates the concordance

metric as outlined above. The results are written to an output file for

further analysis.

Heat map plotting: The second module takes the output from

the first to generate a graphical representation of the results. An ex-

ample of such a plot can be seen in Figure 1.

Statistical modeling and flagging: The final module creates a

mixed model of Gaussian distributions from the concordance data

and then establishes for every pair of sample and control (or sample,

sample) whether they are (i) unrelated, (ii) related, or (iii) neither. The

latter case may occur if a sample has been contaminated with unre-

lated DNA causing a change of genotype in some of the homozygous

variants (see Supplementary Fig. S1). Contamination can be further

estimated with tools such as ContEst by (Cibulskis et al., 2011).

3 Results

The example heat map in Figure 1 shows the graphical representa-

tion of the concordance values for a cohort of gastric cancer sam-

ples. A separation of related and unrelated samples is obvious due to

the colouring. A sample/normal swap is also easily spotted due to

the sort order of samples and normals and a shift away from the di-

agonal (bottom left). Furthermore, there are two normal and one

sample that are not paired up (identifiable by dark rows/column).

Finally, there is a distinctly dark column in patient 2 (P2C1S2).

The statistical modeling of the data through a mixture of

Gaussian functions allows the automation of data analysis. The model

components are described in more detail in the supplement and plot-

ted in Figure S1. This module of our method automatically identifies

samples P2C1S2 and P24C3S0 as being non-paired within the data. It

also flags the concordance values of P2C1S2 and its expected pairings

as abnormal under the model (the sample has since been confirmed to

be contaminated by another patient’s DNA). In contrast, when apply-

ing the same modeling technique to the results obtained by PLINK’s

IBD testing, only the unpaired sample P24C3S0 can be identified, but

the bimodal distribution of the IBD-sharing does not allow for confi-

dent identification of values that lie distinctly between the two peaks.

4 Discussion

We developed a method that allows for a quick automatic and visual

sanity check of relationships within cancer cohorts. While similar re-

sults could be achieved using IBD methods (albeit with less sensitiv-

ity to uncommon relationship values), our approach allows for a

statistical model that identifies outlying values more reliably, and

offers higher ease of use.
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Fig. 1. Heat map plot of concordance values in a cohort of 70 gastric cancers and matched normals. Annotations in red highlight the specific issues with the co-

hort that can be visually identified
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