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Abstract

Summary: Computational evaluation of variability across DNA or RNA sequencing datasets is a

crucial step in genomic science, as it allows both to evaluate reproducibility of biological or tech-

nical replicates, and to compare different datasets to identify their potential correlations. Here we

present fCCAC, an application of functional canonical correlation analysis to assess covariance of

nucleic acid sequencing datasets such as chromatin immunoprecipitation followed by deep

sequencing (ChIP-seq). We show how this method differs from other measures of correlation, and

exemplify how it can reveal shared covariance between histone modifications and DNA binding

proteins, such as the relationship between the H3K4me3 chromatin mark and its epigenetic writers

and readers.

Availability and Implementation: An R/Bioconductor package is available at http://bioconductor.

org/packages/fCCAC/.

Contact: pmb59@cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Computational assessment of reproducibility across nucleic acid

sequencing data is a pivotal component in genomic studies. Moreover,

the ever-growing list of available datasets demands robust methods to

quickly mine such resources to identify novel potential functional cor-

relations between various genetic and epigenetic regulations.

Chromatin immunoprecipitation followed by sequencing, or ChIP-

seq, is a widely used method to profile histone modifications (HMs)

and transcription factor (TF) binding at genome-wide scale. For each

dataset, a set of peaks (regions of statistically significant read counts

when compared against an IgG or input DNA controls) can be ob-

tained (Bailey et al., 2013). Reproducibility can then be evaluated by

genome-wide Pearson correlation analysis, and peaks in replicates can

be compared using Irreproducible Discovery Rate (IDR) analysis and/

or overlap analysis (Bailey et al., 2013; Li et al., 2011). However,

IDR was designed to find a set of reproducible peaks among different

replicates of the same type, but cannot be used to compare distinct

HMs or TFs datasets. Overlap analysis suffers as well from inherent

statistical problems (Bardet et al., 2011). The author has previously

developed a methodology that, by using functional principal compo-

nent analysis, revealed novel correlations between histone modifica-

tions that do not colocalize (Madrigal and Krajewski, 2015). Here,

we present fCCAC, a functional canonical correlation analysis ap-

proach to allow the assesment of: (i) reproducibility of biological or

technical replicates analyzing their shared covariance in higher order

components; (ii) the associations between different datasets. We pro-

pose a new statistic to summarize canonical correlations that can be

used instead of genome-wide (or peak based) Pearson correlation coef-

ficient, with the advantage of using the profile of the genomic regions

to study their covariance at higher orders. We assume that technical

and biological replicates will share most of the variability, as will do

so bona-fide interactions between different co-factors. Overall,

fCCAC greatly facilitates the assessment of covariance in genomic

applications.
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2 Implementation

Functional data analysis is a raising field of statistics that allows mov-

ing from discrete measurements to functional approximations using

an expansion in basis functions (Ramsay and Silverman, 2005). As in

Madrigal and Krajewski (2015), we have used cubic splines to ap-

proximate data, which we read from genomic coverages in bigWig

format. For N genomic regions (provided in BED format) we have

two sets of curves, (xi, yi), i ¼ 1; . . . ;N. The curves are then centered,

and principal modes of variation qni and qgi between xi and yi in terms

of probe weight functions n and g can be estimated (Supplementary

Material). The N pairs of probe scores represent shared variability if

they correlate strongly with one another. Then, squared canonical cor-

relations R2
1;R

2
2; . . . ;R2

k; k ¼ 1; . . . ;K, can be calculated as in

Ramsay and Silverman (2005) by constraining successive canonical

probe values to be orthogonal. Values of R2
k close to 1.0 imply high

covariation between the two samples (Supplementary Information).

For K squared canonical correlations, we can compute a weighted

squared correlation as SK ¼
PK

k¼1 R2
k=k �

PK
k¼1 1=k ¼M, where

the weights 1=k are the kth harmonic number, and decrease with the

order of the canonical component. Then, we can report SK as a frac-

tion over the maximum Fð%Þ ¼ 100� ðSK=MÞ, where F represents

an overall measure of shared covariation. The user interacts with the

main function fccac (examples can be found in the Supplementary

Information and in the vignette of the package in Bioconductor).

3 Results

To exemplify the methodology we explored the correlation between

the nucleosomal HM H3K4me3 and several TFs and chromatin epi-

genetic remodelers. For this, we focused on human embryonic stem

cells (hESCs). We took advantage of recently published H3K4me3

ChIP-seq data (Bertero et al., 2015), which was performed in biolo-

gical triplicate from the H9 hESC line. First, we defined an aggre-

gated list of peaks at H3K4me3 as our reference set to study

replicate reproducibility (23 422 peaks). The results showed high

shared covariation (F > 95%) for the H3K4me3 ChIP-seq tripli-

cates, as expected (analogous analysis for H3K27me3 confirmed the

irreproducibility of one of the replicates; Supplementary Material).

Then, we analyzed the relationships between H3K4me3 deposition

and other genomic datasets for DNA binding proteins. For this, we

included ChIP-seq data for DPY30 (Bertero et al., 2015), since this

protein is part of the enzymatic complex responsible for the depos-

ition of the H3K4me3 mark, as well 58 other DNA binding proteins

included in the ENCODE dataset for the H1 hESC line (97 datasets)

(ENCODE Project Consortium et al., 2012). We found high canon-

ical correlations between H3K4me3 and DPY30 (Fig. 1A), as ex-

pected (Bertero et al., 2015). Only PHF8 (F¼54.2%) and KDM4A

(JMJD2C) showed higher F value than DPY30 (F¼37.2%; Fig. 1B),

in agreement with their known ability to bind to H3K4me3 (Feng

et al., 2010; Pedersen et al., 2014). When we monitored all possible

combinations of interactions in H3K4me3 regions, TFs BRCA1 and

CHD2 showed F¼92% in H3K4me3, in agreement with motif ana-

lyses suggesting that they might form part of the same complex

(Kheradpour and Kellis, 2014). Finally, we compared F to Pearson

product-moment correlation coefficient. Both measures were similar

between replicates of same HM or TF, but substantially differed

otherwise (Supplementary Information).

4 Conclusion

fCCAC represents a more sophisticated approach that complements

Pearson correlation of genomic coverage. This method can be used

(i) to evaluate reproducibility, and flag datasets showing low canon-

ical correlations; (ii) or to investigate covariation between genetic and

epigenetic regulations, in order to infer their potential functional cor-

relations. Overall, this method will facilitate the development of new

hypothesis regarding how TFs, chromatin remodelling enzymes, his-

tone marks, RNA binding proteins, and epitranscriptome changes can

cooperatively dictate the specification of cell function and identity.
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Fig. 1. (A) Squared canonical correlations for H3K4me3 (Rep1) and 59 pro-

tein–DNA binding datasets (DPY30 and 58 ENCODE TFs). (B) First 5 and last 2

ranked interactions according to their percentage over maximum F. The

dashed line indicates perfect covariance (Color version of this figure is avail-

able at Bioinformatics online.)
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