
Sequence analysis

Edlib: a C/C 11 library for fast, exact sequence

alignment using edit distance

Martin �So�si�c1 and Mile �Siki�c1,2,*

1Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, Zagreb, HR 10000, Croatia,
2Bioinformatics Institute, A*STAR, #07-01 Matrix, 138671 Singapore, Singapore

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on August 19, 2016; revised on November 3, 2016; editorial decision on November 21, 2016; accepted on December 1, 2016

Abstract

Summary: We present Edlib, an open-source C/Cþþ library for exact pairwise sequence alignment

using edit distance. We compare Edlib to other libraries and show that it is the fastest while not lacking

in functionality and can also easily handle very large sequences. Being easy to use, flexible, fast and low

on memory usage, we expect it to be easily adopted as a building block for future bioinformatics tools.

Availability and Implementation: Source code, installation instructions and test data are freely

available for download at https://github.com/Martinsos/edlib, under the MIT licence. Edlib is imple-

mented in C/Cþþ and supported on Linux, MS Windows, and Mac OS.

Contact: mile.sikic@fer.hr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the fundamental operations in bioinformatics is pairwise se-

quence alignment—a way to measure either the similarity or dis-

tance between two sequences. Due to the quadratic time complexity,

deterministic algorithms that yield optimal alignment are inefficient

for the comparison of long sequences. Therefore, they are used in

the very last step when the aligning substrings of the given sequences

are roughly determined using heuristic methods.

Deterministic, optimal alignment algorithms are unavoidable for

the resequencing of genomes when the exact alignments of reads and

reference are necessary for the successful determination of differ-

ences—especially, the existence of single nucleotide variants. Owing

to that, many aligners use some of the efficient variants of these algo-

rithms for the final phase. For example, SNAP (Zaharia et al., 2011)

uses Landau–Vishkin (Landau et al., 1986) as the core component.

The increased need for exact algorithms that could align longer seg-

ments has recently emerged as a consequence of the advent of long-read

sequencing technologies such as Pacific Biosciences Single Molecule

Real-Time (SMRT) sequencing technology and Oxford Nanopore

Technologies (ONT), which produce reads over 10 kbp in length.

Deterministic methods can be categorized as local, global or semi-

global (overlap) alignment methods, regarding their scoring scheme.

The basic global alignment algorithm is the dynamic programming

Needleman–Wunsch algorithm (Needleman and Wunsch, 1970), and

the basic local alignment algorithm is its variation, the Smith–

Waterman algorithm (Smith and Waterman, 1981). Semi-global

alignment methods, quite popular for read alignment, are similar to

global alignment but they do not penalize gaps at the beginning or/

and the end of the sequences. Both Needleman–Wunsch and Smith–

Waterman algorithms have quadratic time and space complexity, so

there has been a lot of work on trying to improve that. Ukkonen’s

banded algorithm (Ukkonen, 1985) reduces needed time by cleverly

reducing the space of search, while Hirschberg’s algorithm

(Hirschberg, 1975), adapted by (Myers and Miller, 1988) to accom-

modate affine gap penalties, trades space for speed, reducing space

complexity from quadratic to linear.

An important sub-category of alignment methods is the calcula-

tion of Levenshtein distance—the minimum number of single-

character edits (insertions, deletions or substitutions) required to

change one sequence into the other (also referred to as edit distance).

Myers managed to exploit its special properties by developing a bit-

vector algorithm (Myers, 1999), reducing the computation time by a

constant factor. Although it is one of the fastest deterministic align-

ment algorithms it is quite complex to implement and does not sup-

port global alignment. Hence, it is rarely implemented in practice. In

this article, we present Edlib—our implementation of Myers’s bit-

vector algorithm, extended with additional methods and features

that are important for its practical application.

VC The Author 2017. Published by Oxford University Press. 1394

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 33(9), 2017, 1394–1395

doi: 10.1093/bioinformatics/btw753

Advance Access Publication Date: 31 January 2017

Applications Note

https://github.com/Martinsos/edlib
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw753/-/DC1
Deleted Text: -
Deleted Text: &hx2013;
Deleted Text: -
Deleted Text: p
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
http://www.oxfordjournals.org/

2 Methods

Myers’s bit-vector algorithm transforms the dynamic programming

matrix which enables us to store multiple cells as a bit-vector into

one CPU register and achieve parallelization. Myers additionally

applies Ukkonen’s banded algorithm to reduce the number of calcu-

lated bit-vectors.

The original algorithm was designed only for a semi-global align-

ment method where gaps at the start and at the end of the query se-

quence are not penalized (infix method). In Edlib, we extended

Myers’s algorithm to support the global alignment method and the

semi-global alignment method where gaps at the end of the query se-

quence are not penalized (prefix method). For this, we came up with

extended banded algorithm that also supports prefix and global

method (Supplementary Methods).

Originally, Myers’s algorithm returns no information about the

optimal alignment path—the optimal sequence of edit operations that

need to be performed on the query sequence to transform it to the tar-

get sequence. In Edlib, we further extended Myers’s algorithm with

the finding of the optimal alignment path for all three supported

alignment methods in linear space by combining it with Hirschberg’s

algorithm. Inspired by the SSW Library (Zhao, 2013), we reduced the

problem of finding the path for infix and prefix method to finding the

path for global alignment, which both simplifies the implementation

and improves the computation speed (Supplementary Figure 1).

Unlike Myers’s algorithm, Edlib can work without defined upper

limit for edit distance and guarantees to find optimal solution in

such case.

We implemented Edlib as both C/Cþþ library and a stand-alone

application.

3 Results

We compared Edlib with SeqAn library (Döring et al., 2008), Parasail

library (Daily, 2016) and the original Myers’s implementation.

We chose SeqAn to be the center of our comparison, since Döring

et al. (2008) show it is the library with the fastest implementation of

sequence alignment using edit distance (they also combine Myers’s bit

vector algorithm with Hirschberg’s algorithm), and to our knowledge,

there are no developments up to now showing otherwise. SeqAn is

one of the most advanced sequence alignment libraries and offers

many additional methods next to calculation of edit distance.

Next we chose Parasail, which is one of the fastest sequence

alignment libraries that support similarity search with custom score

matrix, and not only edit distance. We did this comparison to show

the difference in speed between Edlib, which is specialized for edit

distance, and more general libraries like Parasail.

Comparison was done against SeqAn v2.2.0 and Parasail v1.1.0,

which were the latest releases at the moment of writing this article.

The tests were performed on Linux, Intel Core i7-4710HQ

2.5 Ghz with 16GB RAM. As test data, we used real DNA sequences

ranging from 10 to 5000 kbp in length and their artificially mutated

versions, in order to show how the similarity and length of aligned

sequences affect performance.

The run times for finding the global alignment edit distance, with

and without alignment path, are displayed in Table 1. Results show

that Edlib is 2.5–100 times faster than SeqAn, and 12–1000 times

faster than Parasail, the difference being the largest when the se-

quences are large and similar. Additionally, we ran similar tests

(Supplementary Tables 1–3) for the semi-global methods where Edlib

also outperformed both SeqAn and Myers’s implementation, while

Parasail does not support infix and prefix semi-global methods.

Regarding the alignment path, SeqAn could not complete our tests

with semi-global methods because it was allocating too much memory,

while Parasail and Myers do not support the finding of alignment path.

As can be seen from the results, Edlib exhibits significant improve-

ment in speed with increase of sequence similarity, in contrast to other

libraries. This is due to our implementation of the banded algorithm,

which significantly reduces search space for similar sequences.

Acknowledgements

The authors would like to thank Ivan Sovi�c for valuable help with testing

Edlib and providing comments on the manuscript.

Funding

This work has been supported in part by Croatian Science Foundation under

the project UIP-11-2013-7353 “Algorithms for Genome Sequence Analysis”.

Conflict of Interest: none declared.

References

Daily,J. (2016) Parasail: SIMD C library for global, semi-global, and local

pairwise sequence alignments. BMC Bioinformatics, 17, 11.

Döring,A. et al. (2008) SeqAn an efficient, generic Cþþ library for sequence

analysis. BMC Bioinformatics, 9, 11.

Hirschberg,D.S. (1975) A linear space algorithm for computing maximal com-

mon subsequences. Commun. ACM, 18, 341–343.

Landau,G.M. et al. (1986) An efficient string matching algorithm with k differ-

ences for nucleotide and amino acid sequences. Nucleic Acids Res., 14, 31–46.

Myers,E.W. and Miller,W. (1988) Optimal alignments in linear space.

Comput. Appl. Biosci., 4, 11–17.

Myers,G. (1999) A fast bit-vector algorithm for approximate string matching

based on dynamic programming. J. ACM, 46, 395–415.

Needleman,S.B., and Wunsch,C.D. (1970) A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol.

Biol, 48, 443–453.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–197.

Ukkonen,E. (1985) Algorithms for approximate string matching. Inform.

Control, 64, 100–118.

Zaharia,M. et al. (2011) Faster and more accurate sequence alignment with

Snap. arXiv, 1111.5572.

Zhao,M. et al. (2013) SSW Library: an SIMD Smith–Waterman C/Cþþ li-

brary for use in genomic applications. PloS One, 8, e82138.

Table 1. Run time comparison of finding global alignment edit distance

and alignment path for different sequence lengths and similarities

Seq. sizes Similarity (%) Edlib (path) SeqAn (path) Parasail

106 � 106 99 1.1s (2.58s) 111.83s (252.71s) 1234.5s
106 � 106 90 7.16s (17.35s) 111.51s (253.32s) 1212.37s
106 � 106 80 14.42s (34.6s) 111.7s (252.95s) 1247.44s
106 � 106 70 33.8s (65s) 112s (253.1s) 1205.16s
106 � 106 60 30.75s (71.59s) 111.44s (252.61s) 1212s
105 � 105 99 0.01s (0.06s) 1.01s (2.27s) 4.79s
105 � 105 90 0.13s (0.24s) 0.98s (2.32s) 4.68s
105 � 105 80 0.2s (0.45s) 0.98s (2.31s) 4.79s
105 � 105 70 0.16s (0.49s) 1s (2.29s) 4.76s
105 � 105 60 0.4s (0.83s) 1s (2.3s) 4.76s

The similarity of two sequences was calculated as

1� edit distance=minðlengthquery; lengthtargetÞ. Two different DNA sequences

were used for these tests. We artificially mutated them to achieve different simi-

larities. Myers’s implementation is not included in this comparison as it does

not support global alignment. For SeqAn and Edlib, time needed for finding of

not only score but also of alignment path is provided in parentheses.

Edlib 1395

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw753/-/DC1
Deleted Text: &hx2013;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw753/-/DC1
Deleted Text: to
Deleted Text: to
Deleted Text: -
Deleted Text: p
Deleted Text: -
Deleted Text: -
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw753/-/DC1

	btw753-T1

