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Abstract

Microarray measurements of gene expression constitute a large fraction of publicly shared biological

data, and are available in the Gene Expression Omnibus (GEO). Many studies use GEO data to shape

hypotheses and improve statistical power. Within GEO, the Affymetrix HG-U133A and HG-U133 Plus 2.0

are the two most commonly used microarray platforms for human samples; the HG-U133 Plus 2.0 plat-

form contains 54 220 probes and the HG-U133A array contains a proper subset (21 722 probes). When

different platforms are involved, the subset of common genes is most easily compared. This approach

results in the exclusion of substantial measured data and can limit downstream analysis. To predict the

expression values for the genes unique to the HG-U133 Plus 2.0 platform, we constructed a series of

gene expression inference models based on genes common to both platforms. Our model predicts

gene expression values that are within the variability observed in controlled replicate studies and are

highly correlated with measured data. Using six previously published studies, we also demonstrate the

improved performance of the enlarged feature space generated by our model in downstream analysis.

Availability and Implementation: The gene inference model described in this paper is available as

a R package (affyImpute), which can be downloaded at http://simtk.org/home/affyimpute.

Contact: rbaltman@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Gene Expression Omnibus (GEO) is a public repository for gen-

omic data supported by the National Center for Biotechnology

Information (NCBI), containing nearly two million samples and

growing. GEO enables multiple uses of expression datasets indi-

vidually and in combination, and is a rich resource for bench

researchers and bioinformaticians. Although we recognize that

RNA-sequencing is becoming the dominant mode for conducting

gene expression analysis, microarray-based studies continue to be

important, with over 4000 microarray studies added to GEO within

the past year. As of 1st Jan 2016, there are approximately one mil-

lion human samples (987 744) in GEO, half of which are based on

in situ oligonucleotide technology. The Affymetrix HG-U133 Plus

2.0 and HG-U133A are the two most prevalent microarray

platforms, collectively comprising one third of all such samples.

Data from many widely used landmark projects are based on these

two platforms. For instance, the Connectivity Map (Lamb, 2007;

Lamb et al., 2006), Genomics of Drug Sensitivity in Cancer (Yang

et al., 2013) and the Cancer Cell Line Encyclopedia (CCLE)

(Barretina et al., 2012) use the high-throughput version of the HG-

U133A array for gene expression analysis, whereas The Cancer

Genome Atlas (TCGA) uses the HG-U133 Plus 2.0 platform. Some

of these resources are not deposited in GEO, so the number of sam-

ples in GEO is in fact an underestimate of the amount of available

genomic data from the two platforms. Facilitating the analysis of

data between the two platforms will extend the usefulness of these

valuable public resources.
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The HG-U133A and Plus 2.0 platforms are based on the UniGene

Human Database release 133 (media.affymetrix.com/support/tech

notes/hgu133_design_technote.pdf), but differ in the number of

probe sets and represented genes. The HG-U133A array is actually

one half of the Affymetrix HG-U133 set, HG-U133B being the other

array which focuses mostly on expressed sequence tags. The newer

HG-U133 Plus 2.0 platform adds approximately 10 000 probe sets to

the combined HG-U133 set, representing an increase of 6500 genes

analyzed (Supplementary Fig. S1). When studies involve the use of

data arising from both platforms, typically only probes that are com-

mon to both platforms are retained for downstream analysis; since

the HG-U133A probe sets are fully contained in HG-U133 Plus 2.0,

this means restricting the data to the size of the HG-U133A array.

Although rarely acknowledged, the truncation of data can affect

any downstream analysis and is ultimately wasteful. For instance,

correlation-based methods used in clustering samples can produce sig-

nificantly different results when the feature size is reduced.

Computational methods such as the Gene Set Enrichment Analysis

(GSEA) assigns NA values to genes that were truncated from the HG-

U133 Plus 2.0 array, excluding them from all further analysis.

Although the truncation of data may have been justifiable back when

HG-U133A platform was the most common platform, the increasing

proportion of HG-U133 Plus 2.0 samples (Fig. 1) in public reposito-

ries suggests that the amount of discard ed data is no longer negligible.

In fact, the growth in the number of HG-U133A samples is likely to

eventually stagnate: the HG-U133A and B platforms have been dis-

continued at present, and can only be custom ordered in whole lots

from Affymetrix. Nonetheless, the substantial previous investment

should be maintained as a usable resource as long as possible.

There is evidence that measurements from the same probes on the

two platforms are directly comparable (media.affymetrix.com/support/

technotes/hgu133_p2_technote.pdf), and the vast majority of papers

published in the last decade using these two platforms have relied on

this. We hypothesize that the high correlation between gene expression

values allows us to predict the gene expression values for the genes meas-

ured only in the HG-U133 Plus 2.0 platform with high accuracy. In this

work, we use the large amount of data in GEO to build prediction mod-

els that can bring data measured on the HG-U133A space to the larger

feature space in HG-U133 Plus 2.0. We show that we can achieve high

accuracy with our predicted gene expression values, and that the

increased data dimension improves downstream biological analysis.

2 Methods

All analysis and model building were done using R 3.2.0 (R Core

Team, Vienna, Austria).

2.1 Data for model
We restricted our GEO query to human samples and selected all ser-

ies records (GSEs) as of March 2015 that were based on the

Affymetrix HG-U133 Plus 2.0 platform. Each GSE was then

mapped to its corresponding samples (GSMs). If a GSM appeared in

more than one GSE, we assigned it to the oldest GSE. GSMs without

associated microarray CEL files were treated as invalid for our pur-

poses, and only GSEs containing at least three valid samples were re-

tained. In total, 97 049 microarray CEL files, coming from 2753

accepted GSEs, were downloaded. The R packages GEOquery

(Davis and Meltzer, 2007) and GEOmetadb (Zhu et al., 2008) were

used to perform the above tasks.

The CEL files within each GSE were processed using robust

multi-array average (RMA) (Bolstad et al., 2003; Gautier et al.,

2004). Technical bias correction was done using the R package bias

v0.0.5 (Eklund and Szallasi, 2008). The probe sets were then

mapped to Entrez gene identifiers using the R package Jetset v3.1.2

(Li et al., 2011). The mapping from Jetset yielded 20 089 and

12 210 unique Entrez gene identifiers for the HG-U133 Plus 2.0 and

HG-U133A platforms respectively, with the latter being a proper

subset of the former. Of these, only 10 103 Entrez gene identifiers

were obtained from the same probes on both platforms. We refer to

these 10 103 genes as the ‘common gene set’ (Fig. 2).

2.2 Gene models
We built LASSO models (R package glmnet (Friedman et al., 2010))

independently for each of the 9986 genes found only on the HG-

U133 Plus 2.0 platform, using the common gene set as predictors. A

set of 20 049 arrays were randomly chosen and held-out as a test

set, while the remaining 77 000 arrays were used to train the gene

models. Ten-fold cross-validation was performed on the training set

to determine the regularization parameter k. We retained the coeffi-

cients corresponding to kmin, the value of k that gave the minimum

mean cross-validated error, and also k1se, the largest k for which the

error is within one standard error of the minimum error. We refer to

the collective set of coefficients as our model, with two possible

Fig. 1. Number of GEO samples from each platform over time. The sample

counts were limited to only human samples

Fig. 2. Venn diagram depicting the common and imputed gene sets
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choices of coefficient matrices based on kmin and k1se. The analyses

presented in this paper were performed using the k1se coefficient ma-

trix. Both coefficient matrices can be obtained at http://simtk.org/

home/affyimpute.

2.3 Analysis of model performance
Predictions of gene expression were done on the held-out test set

comprising 20 049 arrays. The predicted gene levels were compared

with the measured levels to get the root-mean-squared error (RMSE)

for each gene model. To account for the differences in magnitude

across the 9986 genes, we used the coefficient of variance of RMSE,

CV(RMSE), which is defined as:

CV RMSEðgiÞð Þ ¼ RMSEðgiÞ
MeanðgiÞ

1ð Þ

where RMSEðgiÞ and Mean gið Þ are the RMSE and mean value of

gene i respectively.

Separately, we downloaded the Affymetrix HGU-133 Plus 2.0

data from the MicroArray Quality Control (MAQC) Project

(GSE5350) (MAQC et al., 2006), which contains four sample types

based on the Universal Human Reference RNA (UHRR) from

Stratagene and the Human Brain Reference RNA (HBRR) from

Ambion: Sample A, 100% UHRR; Sample B, 100% HBRR; Sample

C, 75% UHRR:25% HBRR; Sample D, 25% UHRR:75% HBRR.

Each sample was tested in six different institutes, with five replicates

done in each of the institutes, yielding a total of 30 samples per sam-

ple type. Greater detail on the protocol is provided in the original

paper from MAQC. We processed the data for each sample type in-

dependently as per the methods described in the earlier section

(‘Data for Model’). For each sample type, we obtained the unbiased

estimate of the coefficient of variation (Haldane, 1955; Sokal and

Braumann, 1980) for each of the 9986 genes using the formula:

CV gið Þ ¼ 1þ 1

4N

� �
SDðgiÞ

MeanðgiÞ
2ð Þ

where N is the number of samples of a particular type, SDðgiÞ and

Mean gið Þ are the standard deviation and mean value of gene i

respectively.

2.4 Human disease network genes and MSigDB

signatures
We obtained the curated table of diseases and OMIM IDs from

Supplementary Table S1 of Goh et al. (2007), and mapped the 1752

unique OMIM IDs to their corresponding Entrez IDs using the

mim2gene file from OMIM (www.omim.org).

We downloaded the eight gene set collections from MSigDB v5.1

(Subramanian et al., 2005) based on the Entrez IDs. For each gene

signature in a collection (C1: positional, C2: curated, C3: motif, C4:

computational, C5: Gene Ontology, G6: oncogenic signatures, C7:

immunologic signatures, H: hallmark), the percentage overlap with

the genes from each array was computed.

2.5 Evaluation sets
All external evaluation datasets were downloaded separately from

GEO and processed using RMA (Bolstad et al., 2003; Gautier et al.,

2004). We then mapped the probe sets to Entrez gene identifiers

using Jetset and predicted the expression level of genes not measured

in the HG-U133A platform using our model. We define the gene set,

comprising of the measured genes on the HG-U133A platform and

the predicted genes, as the ‘imputed gene set’ (Fig. 2), and the corres-

ponding transformed HG-U133A sample as the ‘imputed sample’.

To evaluate the accuracy of our model, we used three previously

published works (GSE17700 (Symmans et al., 2010), GSE23906

(Wen et al., 2010) and GSE3061 (Zhang et al., 2006)) that assessed

the concordance of data from both platforms. These three studies

consist of samples that were measured using both the HG-U133A

and the HG-U133 Plus 2.0 platforms. We compared the 9986

imputed HG-U133 Plus 2.0 genes to those measured on the HG-

U133 Plus 2.0 array using Spearman’s correlation. We additionally

correlated the imputed sample of 20 089 genes to the measured sam-

ple to assess the similarity of using the imputed versus measured val-

ues of the imputed gene set in downstream analysis.

We also applied our model to another three studies (GSE11482

(Gadd et al., 2010), GSE3893 (Schuetz et al., 2006) and GSE26712

(Bonome et al., 2008)) to demonstrate the effect of the increased

number of features on downstream data analysis. GSE11482 con-

sists of 53 samples representing four different types of pediatric kid-

ney tumors measured on the HG-U133A platform. We performed

hierarchical clustering (using 1-Spearman’s correlation as the metric)

on the samples restricted to the common gene set as defined previ-

ously and also on the imputed samples.

In analyzing GSE3893 and GSE26712, we applied the methods

described in the original papers to the samples, filtered by (i) the full

probe set used in the original work, (ii) the common gene set and (iii)

the imputed gene set. GSE3893 consists of 24 breast cancer samples

from 20 tumors with ductal carcinoma in situ (DCIS) and invasive duc-

tal carcinoma (IDC). Ten samples were profiled using the HG-U133A

array, and the remaining 14 samples used the HG-U133 Plus 2.0 array.

We constructed imputed samples from the HG-U133A samples, and

used these alongside the original HG-U133 Plus 2.0 samples in our ana-

lysis. For their analysis, Schuetz et al. performed hierarchical clustering

using the neighbor-joining method with 1-Pearson’s correlation as the

distance metric. We applied the same method using the ape v.3.4 pack-

age (Paradis et al., 2004) to the original data and the imputed arrays.

For GSE26712, Bonome et al. derived a gene signature to predict

survival in suboptimally debulked ovarian carcinoma patients and

validated their signature in an independent dataset from Berchuck

et al. (2005). In concordance with their methods, we constructed

univariate Cox proportional hazards models for each gene. Genes

with p-value less than 0.01 were used to form a gene signature to

differentiate long and short survival time in suboptimally debulked

ovarian cancer patients. A compound covariate regression model

was constructed using the significant genes from GSE26712 and

tested on the data from Berchuck et al. Data from both studies were

median-adjusted as done in Bonome et al. Validation data was ob-

tained via the R package FULLVcuratedOvarianData (Ganzfried

et al., 2013), which contained 28 of the original 29 suboptimally

debulked ovarian cancer samples (Berchuck et al., 2005). We eval-

uated performance on the validation data using the chi-squared test

as done in Bonome et al. We assigned short survival, or poor prog-

nosis, patients as the positive case, and we further measured per-

formance using accuracy, precision, recall and the F1 measure.

3 Results

3.1 Analysis of model performance
The distribution of test set CV(RMSE) across the gene models indi-

cates that the vast majority of the gene models had a low

CV(RMSE) around 0.05 (Fig. 3). Analysis of the ten genes with the

highest test CV(RMSE) showed that the error distributions are

heavy tailed, with the median absolute error for each gene being less

than 0.5 (Supplementary Fig. S2A). These errors are typically less
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than 10% of the mean gene expression value (Supplementary Fig.

S2B). Although the coefficient of variation for each of the four sam-

ple types from the MAQC project were generally slightly lower, the

ranges are comparable (Fig. 4). The test set CV(RMSE) had a max-

imum value of 0.206 whereas the maximum CVs for the MAQC

sample types were between 0.181 and 0.226.

The analysis of genes from the Human Disease Network yielded

1643 unique Entrez IDs, of which 365 were in our set of 9986 pre-

dicted genes. The mean and median test CV(RMSE) of the corres-

ponding 365 gene models were 0.0625 and 0.0537, respectively,

and the standard deviation was 0.0294.

3.2 Signatures from MSigDB
The default settings of gene set enrichment analysis (GSEA)

(Subramanian et al., 2005) are to ignore any signature that has fewer

than 25 genes, or more than 500 genes. Table 1 shows the number of

gene signatures in each MSigDB collection that are retained when the

two platforms are used. There were cases where a gene signature was

not retained for testing when the smaller HG-U133A platform was

used, but would have been retained if HG-U133 Plus 2.0 were used. For

the C2 collection, there were 128 of these cases, accounting for nearly

3% of signatures in the collection. For the other collections, such cases

accounted for 0.5–1%, with the notable exceptions of the C7 and H

collections which each had zero, and the C1 collection which had 18%.

3.3 Evaluation sets
3.3.1 GSE3061, GSE17700, GSE23906

Our imputed gene samples showed high correlation with the original

measured HG-U133 Plus 2.0 gene samples, with mean Spearman

correlation coefficients of 0.90 6 0.012, 0.96 6 0.005 and

0.94 6 0.004 for GSE3061, GSE17700 and GSE23906, respectively.

The corresponding heatmaps for the sample-wise comparison for

these three studies are shown in Supplementary Figures S3–S5.

Comparing only the 9986 predicted genes showed similar perform-

ance with correlation coefficients of 0.89 6 0.012, 0.95 6 0.006 and

0.92 6 0.009 for the three respective studies. Overall, sample correl-

ation coefficients ranged from 0.87 to 0.97, and correlation coeffi-

cients for the subset of predicted genes ranged from 0.87 to 0.95.

Supplementary Figure S3B shows that predicted genes lie close to

the identity line, indicating that the imputed sample closely mimics

the measured sample at the individual gene level.

3.3.2 GSE3893

In replicating the hierarchical clustering on the nine sets of patient

tumors in GSE3893 (Fig. 5A), we recreated the original dendrogram

in Figure 2 of Schuetz et al. (Fig. 5B). Figure 5C shows the hierarchical

clustering when we use the imputed samples. Notably, the estrogen re-

ceptor (ER) positive and ER negative subclusters are preserved, and

IDC and DCIS samples from the same tumor remain linked. Though

the dendrogram structures closely resemble each other, the use of the

imputed sample s resulted in tumor 2 clustering with tumors 8 and 3

in the ER positive subgroup instead of with tumors 4, 6 and 7.

3.3.3 GSE11482

When hierarchical clustering was done using only the common gene

set, we observed four distinct clusters of kidney tumors, one

Fig. 3. Test and training CV(RMSE). Each colored circle represents a gene

model. The marginal histograms show the distribution of errors across the

9986 gene models. The 365 gene models from the Human Disease Network

are depicted in orange
Fig. 4. Coefficient of variation of MAQC data (in comparison with test

CV(RMSE))

Table 1. Gene overlap between MSigDB collections and platforms

Collection

H C1 C2 C3 C4 C5 C6 C7

Total number of valid

signatures

50 271 2949 752 702 737 186 1910

Overlap with HG-U133A 50 156 2752 747 680 664 184 1910

Overlap with HG-U133

Plus 2.0

50 215 2880 752 689 715 186 1910

A valid signature contains between 25 and 500 genes.
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corresponding to each tumor type (Fig. 6). However, one of the cel-

lular mesoblastic nephroma (CMN) samples erroneously associated

with the Wilms tumors (WT). Using the imputed genes produced

four homogeneous clusters while maintaining the general substruc-

ture within clusters observed originally. There is a slight restructur-

ing in the upper branches of the tree, where CMN is now more

closely associated with clear cell sarcoma of the kidney (CCSK) than

the other two tumor types.

3.3.4 GSE26712

Bonome et al. reported 572 HG-U133A probes to be significantly

associated with survival time in the suboptimally debulked ovarian

cancer patients. Our univariate Cox models yielded 323 and 588 sig-

nificant genes in the common and imputed gene sets, respectively.

We found that a cutoff score of 0 using the original 572 probes div-

ided the training data into 50 patients with good prognosis and 45

patients with poor prognosis, matching the data presented in Figure

2 of Bonome et al. Table 2 shows the classification results from

applying our regression models to the validation data for each gene

set, together with the original results as described in Bonome et al.

Limiting the analysis of the imputed genes to the most significant

572 yielded the same classification results as using the entire set of

588 genes.

4 Discussion

GEO represents a large trove of data for mining and inference and

has enabled many valuable secondary analyses (termed by some as

‘research parasitism’ (Longo and Drazen, 2016)). In this work, we

take advantage of a large collection of publicly available arrays to de-

velop a statistical model that combines two of the most popular

microarray platforms for downstream analysis. The expression levels

of many human genes are highly correlated with one another (Daigle

et al., 2010), and has been leveraged by previous methods (Liew

et al., 2011; Troyanskaya et al., 2001) that impute sporadic missing

data within the same platform. We extend this concept to perform

large-scale imputation across platforms, which cannot be accom-

plished using the existing methods. Specifically, we used a regularized

linear model (LASSO) to obtain the desired gene weights.

Mapping probe sets from microarrays to gene names remains a

contentious issue. The selection of probes on the HG-U133 plat-

forms was based on build 133 of the UniGene Human Database (the

current build is 236), and Affymetrix provides probe set definitions

to map them to genes. However, as our understanding of genes and

their transcripts have grown, many of the old definitions have been

challenged. As early as 2005, Dai et al. (2005) pointed out that the

original definitions provided by Affymetrix were inaccurate and

Fig. 5. Tumor grade and estrogen receptor (ER), progesterone receptor (PR)

and HER2/neu immunoreactive scores for patients in GSE3893 (A).

Hierarchical clustering of breast cancer tumors from GSE3893 using the ori-

ginal HG-U133A probes (B) and the imputed HG-U133 Plus 2.0 array (C)

Fig. 6. Hierarchical clustering of kidney tumors using the HG-U133A array

and the imputed HG-U133 Plus 2.0 array
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proposed an update based on more recent genomic and transcrip-

tomic databases. Sandberg and Larsson subsequently showed that

these custom chip definition files (CDFs) achieved better perform-

ance than Affymetrix’s original CDFs (Sandberg and Larsson,

2007). The use of custom CDFs, however, is not without its own

flaws. Although nearly all of the probe sets on the Affymetrix plat-

form consist of eleven probes, the number of probes in each probe

set as defined by custom CDFs can vary greatly, resulting in larger

standard errors. Jaksik et al. (2014) also showed that there is high

intra-probe set variance when custom CDFs are used, and suggested

that the lack of consideration for probe proximity when defining

custom CDFs may be one of the underlying reasons. An alternative

to custom CDFs is to retain the original probe sets, but choose the

‘optimal’ probe set for each gene. This approach was adopted in the

Jetset method (Li et al., 2011), where a pseudo metric based on

probe specificity, splice isoform coverage, and robustness against

transcript degradation was used to rate each probe set. Since only

the best probe set is chosen for each gene, the Jetset method also

negates the issue of having multiple probe sets being mapped to the

same gene, or vice versa. Similar to work done by Haibe-Kains et al.

when comparing data from the two Affymetrix platforms (Haibe-

Kains et al., 2013), we used Jetset to select the best probe set for

each gene and performed subsequent analysis on the selected probe

sets rather than the full array.

In gene set enrichment analysis, gene signatures can be tested for

enrichment in the data. The Molecular Signature Database collects

such gene signatures and groups them into eight main collections. In

practice, a user may choose to provide a self-defined signature, or

scan across a subset of the collection(s). The C2 collection, which

consists of 4726 curated gene sets, is a popular choice.

Supplementary Figures S6–S13 show the amount of overlap the

microarray platforms have with each gene signature in the respective

collections. It is clear that the HG-U133 Plus 2.0 has greater cover-

age across the gene signatures, as compared to the smaller HG-

U133A platform (Table 1). Although GSEA will proceed even if the

coverage of a gene signature is not complete (as long as the number

of genes retained is more than 25), a better coverage of the gene sig-

nature will improve statistical inference. More importantly, we note

that there are some signatures that would have been rejected due to

an overlap of fewer than 25 genes with the HG-U133A platform,

but are retained for testing when the HG-U133 Plus 2.0 platform is

used. Although it is common practice to limit GSEA to common

genes/probes in cross-platform studies, our work suggests that this is

no longer necessary.

To benchmark the model’s performance, we compared the vari-

ation in our gene predictions to observed variations in controlled

studies containing replicates. The MAQC project provides data well

suited for this purpose, with four different sample types tested under

a fixed protocol across six institutions. The calculated coefficients of

variation (CVs) represent the natural variation in microarray meas-

urements of well-defined RNA compositions under a controlled

protocol. This is a high standard for benchmarking our model’s

CV(RMSE)s, given that the CV(RMSE)s were obtained across a di-

verse range of studies, and were based on different sample types and

experimental protocols. We reported low test errors for our model

across the genes, with a mean CV(RMSE) of 0.05, whereas the aver-

age CV of the MAQC sample types was slightly lower, at 0.037.

The distribution of the CV(RMSE) also has a heavier right tail than

that of the CVs. However, the range of our CV(RMSE) values were

well within that of the four MAQC sample types, indicating that

even the worst performing gene model is within the limits of vari-

ation observed in controlled replicates. Additionally, it is clear that

CV is dependent on sample type, where a higher proportion of

HBRR is correlated with a higher CV (Fig. 4). Given the heterogen-

eity of tissue samples in GEO, it is unsurprising that the distribution

of our CV(RMSE) is more diffuse than the CV of the four MAQC

samples.

The CV(RMSE) values observed when using the kmin coefficients

were marginally lower (Supplementary Fig. S14), but with slightly

worse performance in our analysis on external data (data not

shown). For these reasons, we chose to base our analyses on the k1se

coefficients. Using our k1se criterion, 61.9% of coefficients are non-

zero. Further reduction could be realized by choosing an arbitrary,

larger value for k, but the incurred errors increase non-linearly

(Supplementary Fig. S15). As our model is intended to be used with

other bioinformatics approaches in downstream analysis, we chose

to keep to a principled method of retaining coefficients using k1se ra-

ther than artificially enforcing a pre-determined level of sparsity.

In our evaluation of the errors, we recognized that not all genes

are equally informative with regards to clinical studies. In particular,

downstream analysis is likely to be more severely impacted when

error is incurred in key genes as opposed to nonessential genes. To

address this, we obtained a set of known disease genes from the

Human Disease Network, and found that 365 of those genes were in

our predicted gene set. Our test errors on those 365 genes were

found to be small, with about 90% having a CV(RMSE) less than

0.10 (Fig. 3).

We demonstrated our model’s utility in multiple previously pub-

lished studies and showed that the performance was at least compar-

able if not superior to the original analysis. We observed very high

correspondence between the 9986 predicted genes and their meas-

ured counterparts (Supplementary Fig. S3B), indicating that our

model was able to closely capture key relationships between genes.

Additionally, the high correlation between the imputed and meas-

ured HG-U133 Plus 2.0 gene samples implies that the former can be

a suitable surrogate for the latter in downstream analysis.

For GSE3893, Schuetz et al. limited their analysis of the HG-

U133 Plus 2.0 samples to the probe sets found on the HG-U133A

platform, and observed distinct subclusters corresponding to ER

positive and ER negative samples (Fig. 5B). We showed that using

the larger imputed gene set maintains the desired separation and

generally reproduced the pairing of patient tumor samples (Fig. 5C).

This suggests that using our enlarged feature space does not elimin-

ate key underlying biological signal.

We also demonstrated the applicability of our method in studies

involving multiple categories. GSE11482 contains four types of

pediatric renal tumors, and hierarchical clustering using only the

common gene set fails to achieve a perfect delineation of the four

Table 2. Performance results of gene signature models in distinguishing long from short survival on external validation data

Gene set Accuracy Precision Recall F1 Measure Chi-squared P-value

Original Probes (N ¼ 572) 0.759 0.789 0.833 0.811 0.029

Common Genes (N ¼ 323) 0.643 0.786 0.611 0.689 0.236

Imputed Genes (N ¼ 588) 0.786 0.800 0.889 0.842 0.021
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tumor types. The imputed gene set, however, results in the correct

assignment of all samples to their tumor type while maintaining the

general tree structure. Of note, the imputed gene set also led to

CMN being more closely associated with CCSK than the other two

tumor classes. It has been previously proposed that CCSK is the ma-

lignant counterpart of CMN based on ontological methods (Haas

et al., 1984), and our result suggests that there may be an underlying

genetic basis for the perceived similarity.

The ovarian cancer study reported by Bonome et al. is one of the

landmark papers in ovarian cancer. Using their data, we sought to

answer two questions: (i) how well does the prognostic signature

perform when implemented within the current cross-platform

framework, where only common genes are retained and (ii) how

does the use of a larger feature set based on our imputation affect

the result. It is immediately evident that the common gene set signa-

ture is roughly half the size of the original signature reported by

Bonome et al. and is less accurate in its prediction (Table 2). We

find that the truncation of data to the common genes limited by the

HG-U133A array, as commonly practiced in cross-platform studies,

results in lackluster performance and should be discontinued.

Encouragingly, the use of the imputed gene set resulted in a signa-

ture comparable in size to the original probe set signature and in

fact achieved better performance across our reported metrics.
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