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Abstract

This paper considers the problem of unconstrained minimization of smooth convex functions 

having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the 

optimized gradient method for this problem and showed that it has a worst-case convergence 

bound for the cost function decrease that is twice as small as that of Nesterov’s fast gradient 

method, yet has a similarly efficient practical implementation. Drori showed recently that the 

optimized gradient method has optimal complexity for the cost function decrease over the general 

class of first-order methods. This optimality makes it important to study fully the convergence 

properties of the optimized gradient method. The previous worst-case convergence bound for the 

optimized gradient method was derived for only the last iterate of a secondary sequence. This 

paper provides an analytic convergence bound for the primary sequence generated by the 

optimized gradient method. We then discuss additional convergence properties of the optimized 

gradient method, including the interesting fact that the optimized gradient method has two types of 

worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results 

help complete the theory of an optimal first-order method for smooth convex minimization.
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1 Introduction

We recently proposed the optimized gradient method (OGM) [1] for unconstrained smooth 

convex minimization problems, building upon Drori and Teboulle [2]. We showed in [1] that 

OGM has a worst-case cost function convergence bound that is twice as small as that of 

Nesterov’s fast gradient method (FGM) [3], yet has an efficient implementation that is 

similar to FGM. In addition, Drori [4] showed that OGM achieves the optimal worst-case 

convergence bound of the cost function decrease over the general class of first-order 

methods (for largedimensional problems), making it important to further study the 

convergence properties of OGM.
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The worst-case convergence bound for OGM was derived for only the last iterate of a 

secondary sequence in [1], and this paper additionally provides an analytic convergence 

bound for the primary sequence generated by OGM by extending the analysis in [1]. We 

further discuss convergence properties of OGM, including the interesting fact that OGM has 

two types of worstcase functions: a piecewise affine-quadratic function and a quadratic 

function. These results complement our understanding of an optimal first-order method for 

smooth convex minimization.

2 Problem, Algorithms and Contributions

We consider the unconstrained smooth convex minimization problem

(M)

with the following two conditions:

– f : ℝd → ℝ is a convex function of the type , i.e., continuously 

differentiable with Lipschitz continuous gradient:

where L > 0 is the Lipschitz constant.

– The optimal set X∗(f) = arg minx∈ℝd f (x) is nonempty, i.e., problem (M) is 

solvable.

We use ℱL(ℝd) to denote the class of functions that satisfy the above conditions hereafter.

For large-scale optimization problems of type (M) that arise in various fields such as 

communications, machine learning and signal processing, general first-order algorithms that 

query only the cost function values and gradients are attractive because of their mild 

dependence on the problem dimension [5]. For simplicity, we initially focus on the class of 

fixed-step first-order (FO) algorithms having the following form:

FO updates use weighted sums of current and previous gradients  with (pre-

determined) step sizes  and the Lipschitz constant L. Class FO includes the 

(fixed-step) gradient method (GM), the heavy-ball method [6], Nesterov’s fast gradient 

method (FGM) [3, 7], and the recently introduced optimized gradient method (OGM) [1]. 
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Those four methods have efficient recursive formulations rather than directly using (1) that 

would require storing all previous gradients and computing weighted summations every 

iteration. Among class FO, Nesterov’s FGM has been used widely, since it achieves the 

optimal rate O(1/N2) for decreasing a cost function in N iterations [8], and has two efficient 

forms as shown below for smooth convex problems.

Both FGM1 and FGM2 produce identical sequences {yi} and {xi}, where the primary 

sequence {yi} satisfies the following convergence bound [3, 7] for any 1 ≤ i ≤ N :

(2)

In [1], we showed that the secondary sequence {xi} of FGM satisfies the following 

convergence bound that is similar to (2) for any 1 ≤ i ≤ N :

(3)

Taylor et al. [9] demonstrated that the upper bounds (2) and (3) are only asymptotically 

tight.

When the large-scale condition “d ≥ 2N + 1” holds, Nesterov [8] showed that for any first-

order method generating xN after N iterations there exists a function φ in ℱL(ℝd) that 

satisfies the following lower bound:

(4)

Although FGM achieves the optimal rate O(1/N2), one can still seek algorithms that improve 

upon the constant factor in (2) and (3), in light of the gap between the bounds (2), (3) of 

FGM and the lower complexity bound (4). Building upon Drori and Teboulle (hereafter 
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“DT”)’s approach [2] of seeking FO methods that are faster than Nesterov’s FGM (reviewed 

in Section 3.3), we recently proposed following two efficient formulations of OGM [1].

OGM1 and OGM2 have computational efficiency comparable to FGM1 and FGM2, and 

produce identical primary sequence {yi} and secondary sequence {xi}. The last iterate xN of 

OGM satisfies the following analytical worst-case bound [1, Theorem 2]:

(5)

which is twice as small as those for FGM in (2) and (3). Recently for the condition “d ≥ N 
+ 1”, Drori [4] showed that for any first-order method there exists a function ψ in ℱL(ℝd) 

that cannot be minimized faster than the following lower bound:

(6)

where xN is the Nth iterate of any first-order method. This lower complexity bound (6) 

improves on (4), and exactly matches the bound (5) of OGM, showing that OGM achieves 

the optimal worst-case bound of the cost function for first-order methods when d ≥ N + 1. 

What is remarkable about Drori’s result is that OGM was derived by optimizing over the 

class FO having fixed step sizes, leading to (5), whereas Drori’s lower bound in (6) is for the 

general class of first-order methods where the step sizes are arbitrary. It is interesting that 

OGM with its fixed step sizes is optimal over the apparently much broader class.

Because OGM has such optimality, it is desirable to understand its properties thoroughly. 

For example, analytical bounds for the primary sequence {yi} of OGM have not been studied 

previously, although numerical bounds were discussed by Taylor et al. [9]. This paper 

provides analytical bounds for the primary sequence of OGM, augmenting the convergence 

analysis of xN of OGM given in [1]. We also relate OGM to another version of Nesterov’s 

accelerated first-order method in [10] that has a similar formulation as OGM2.
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In [1, Theorem 3], we specified a worst-case function for which OGM achieves the first 

upper bound in (5) exactly. The corresponding worst-case function is the following 

piecewise affine-quadratic function:

(7)

where OGM iterates remain in the affine region with the same gradient value (without 

overshooting) for all N iterations. Section 5 shows that a simple quadratic function is also a 

worst-case function for OGM, and describes why it is interesting that the optimal OGM has 

these two types of worst-case functions.

Section 3 reviews DT’s Performance Estimation Problem (PEP) framework in [2] that 

enables systematic worst-case performance analysis of optimization methods. Section 4 

provides new convergence analysis for the primary sequence of OGM. Section 5 discusses 

the two types of worst-case functions for OGM, and Section 6 concludes.

3 Prior Work: Performance Estimation Problem (PEP)

Exploring the convergence performance of optimization methods including class FO has a 

long history. DT [2] were the first to cast the analysis of the worst-case performance of 

optimization methods into an optimization problem called PEP, reviewed in this section. We 

also review how we developed OGM [1] that is built upon DT’s PEP.

3.1 Review of PEP

To analyze the worst-case convergence behavior of a method in class FO having given step 

sizes h = {hi,k }0≤k<i≤N , DT’s PEP [2] bounds the decrease of the cost function after N 
iterations as

(P)

for given dimension d, Lipschitz constant L and the distance R between an initial point x0 

and an optimal point x∗ ∈ X∗(f).

Since problem (P) is difficult to solve, DT [2] introduced a series of relaxations. Then the 

upper bound of the worst-case performance was found numerically in [2] by solving a 
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relaxed PEP problem. For some cases, analytical worst-case bounds were revealed in [1, 2], 

where some of those analytical bounds were even found to be exact despite the relaxations. 

On the other hand, Taylor et al. [9] studied the numerical tight worst-case bound of (P) by 

avoiding DT’s one relaxation step that is not guaranteed to be tight and showing the 

tightness of the rest of DT’s relaxations in [2] (for the condition “d ≥ N + 2”).

To summarize recent PEP studies, DT extended the PEP approach for nonsmooth convex 

problems [11], Drori’s thesis [12] includes an extension of PEP to projected gradient 

methods for constrained smooth convex problems, and Taylor et al. [13] studied PEP for 

various first-order algorithms for solving composite convex problems. Similarly but using 

different relaxations of (P), Lessard et al. [14] applied the Integral quadratic constraints to 

(P), leading to simpler computation but slightly looser convergence upper bounds.

The next two sections review relaxations of DT’s PEP and an approach for optimizing the 

choice of h for FO using PEP in [2].

3.2 Review of DT’s Relaxation on PEP

This section reviews relaxations introduced by DT to make (P) into a simpler semidefinite 

programming (SDP) problem. DT first relax the functional constraint f ∈ ℱL(ℝd) by a well-

known property of the class of ℱL(ℝd) functions in [8, Theorem 2.1.5] and then further 

relax as follows:

(P1)

for any given unit vector ν ∈ ℝd, where we denote  and 

 for i = 0, … , N, ∗, and define 

 and .

Maximizing relaxed problem (P1) is still difficult, so DT [2] use a duality approach on (P1). 

Replacing maxG,δ LR2δN by minG,δ −δN for convenience, the Lagrangian of the 

corresponding constrained minimization problem (P1) with dual variables 

 and  becomes

(8)
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where

(9)

and  is the (i + 1)th standard basis vector.

Using further derivations of a duality approach on (8) in [2], the dual problem of (P1) 

becomes the following SDP problem:

(D)

where

Then, for given h, the bound BD(h, N, L, R) (that is not guaranteed to be tight) can be 

numerically computed using any SDP solver, while analytical upper bounds BD(h, N, L, R) 

for some choices of h were found in [1, 2]. Section 4 finds a new analytical upper bound for 

a modified version of BD.

3.3 Review of Optimizing the Step Sizes Using PEP

In addition to finding upper bounds for given FO methods, DT [2] searched for the best FO 

methods with respect to the worst-case performance. Ideally one would like to optimize h 
over problem (P):

(HP)

However, optimizing (HP) directly seems impractical, so DT minimized the dual problem 

(D) using a SDP solver over the coefficients h as

(HD)
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Due to relaxations, the computed  is not guaranteed to be optimal for problem (HP). 

Nevertheless, we show in [1] that solving (HD) leads to an algorithm (OGM) having a 

convergence bound that is twice as small as that of FGM. Interestingly, OGM is optimal 

among first-order methods with d ≥ N + 1 [4], i.e.,  is a solution of both (HP) and (HD) 

for d ≥ N + 1. An optimal point  of (HD) is given in [1, Lemma 4 and Proposition 

3] as follows:

(10)

(11)

(12)

Thus both OGM1 and OGM2 satisfy the convergence bound (5) [1, Theorem 2, Propositions 

4 and 5].

4 New Convergence Analysis for the Primary Sequence of OGM

4.1 Relaxed PEP for the Primary Sequence of OGM

This section applies PEP to an iterate yN of the following class of fixed-step first-order 

methods (FO′), complementing the worst-case performance of xN in the previous section.

We first replace f (xN) − f(x∗) in (P) by f(yN +1) − f (x∗) as follows:
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(P′)

We could directly repeat relaxations on (P′) as reviewed in Section 3.2, but we found it 

difficult to solve a such relaxed problem of (P′) analytically. Instead, we use the following 

inequality [8]:

(13)

to relax (P′), leading to the following bound:

(P1′)

This bound has an additional term  compared to (P). We later show that 

the increase of the worst-case upper bound due to this strict relaxation step using (13) is 

negligible asymptotically.

Similar to relaxing from (P) to (P1) in Section 3.2, we relax (P1′) to the following bound:

(P2′)

for any given unit vector ν ∈ ℝd. Then, as in Section 3.2 and [1, 2], one can show that the 

dual problem of (P2′) is the following SDP problem
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(D′)

by considering that the Lagrangian of (P2′) becomes

(14)

when we replace  in (P2′) by 

for simplicity as we did for (P1) and (8). The formulation (14) is similar to (8), except the 

term . The derivation of (D′) and (14) is omitted here, since it is almost identical to 

the derivation of (D) and (8) in [1, 2].

4.2 Convergence Analysis for the Primary Sequence of OGM

To find an upper bound for (D′), it suffices to specify a feasible point.

Lemma 4.1 The following choice of  is a feasible point of (D′):

(15)

(16)

(17)
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Proof The equivalency between (15) and (16) follows from [1, Proposition 3]. Also, it is 

obvious that  using .

We next rewrite  to show that the choice  satisfies the positive 
semidefinite condition in (D′). For any h and (λ, τ) ∈ Λ, the (i, k)th entry of the symmetric 
matrix S(h, λ, τ) in (9) can be written as

(18)

Inserting  and  into (18), we get

where the second equality uses .

Finally, using , we have

where .

Since  (10) and  (15) are identical except for the last iteration, the intermediate iterates 

 of FO with both  and  are equivalent. We can also easily notice that the 
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sequence  of FO′ with both  and  are also identical, implying that both the 

primary sequence {yi} of OGM and FO′ with  are equivalent.

Using Lemma 4.1, the following theorem provides an analytical convergence bound for the 

primary sequence {yi} of OGM.

Theorem 4.1 Let f ∈ ℱL(ℝd) and let y0, · · · , yN ∈ ℝd be generated by OGM1 and OGM2. 
Then for 1 ≤ i ≤ N , the primary sequence for OGM satisfies:

(19)

Proof The sequence  generated by FO′ with  is equivalent to that of OGM1 and 
OGM2 [1, Propositions 4 and 5].

Using  (17) and , we have

(20)

based on Lemma 4.1. Since the primary sequence  of OGM1 and OGM2 does not 

depend on a given N , we can extend (20) for all 1 ≤ i ≤ N.

Due to a strict relaxation leading to (P1′), we cannot guarantee that the bound (19) is tight. 

However, the next proposition shows that bound (19) is asymptotically tight by specifying 

one particular worst-case function that was conjectured by Taylor et al. [9, Conjecture 4].

Proposition 4.1 For the following function in ℱL(ℝd):

(21)

the iterate yN generated by OGM1 and OGM2 provides the following lower bound:

(22)
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Proof Starting from x0 = Rν, where ν is a unit vector, and using the following property of 

the coefficients [1, Equation (8.2)]:

(23)

the primary iterates of OGM1 and OGM2 are as follows

where the corresponding sequence  stays in the affine region of 
the function f1,OGM′ (x; N) with the same gradient value:

Therefore, after N iterations of OGM1 and OGM2, we have

exactly matching the lower bound (22).

The lower bound (22) matches the tight numerical worst-case bound in [9] (see Table 1). 

While Taylor et al. [9] provide numerical evidence about the tight bound of the primary 

sequence of OGM, our (22) provides an analytical bound that suffices for asymptotically 

tight worst-case analysis.

4.3 New Formulations of OGM

Using [1, Propositions 4 and 5], Algorithm FO′ with the coefficients  (15) and (16) can be 

implemented efficiently as follows:
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The OGM′ is very similar to OGM, because it generates same primary and secondary 

sequence; only the last iterate of the secondary sequence differs. Therefore, the bound (19) 

applies to the primary sequence {yi} of both OGM and OGM′, as summarized in the 

following corollary.

Corollary 4.1 Let f ∈ ℱL(ℝd) and let y0, · · · , yN ∈ ℝd be generated by OGM1′ and 
OGM2′. Then for 1 ≤ i ≤ N ,

(24)

4.4 Comparing Tight Worst-case Bounds of FGM, OGM and OGM′

While some analytical upper bounds of FGM, OGM and OGM′ such as (2), (3) (5), (19) and 

(24) are available for comparison, some of those are tight only asymptotically or some 

bounds for such algorithms are even unknown analytically. Therefore, we used the code of 

Taylor et al. [9] for tight (numerical) comparison of algorithms of interest for some given N. 

Table 1 provides tight numerical bounds of the primary and secondary sequence of FGM, 

OGM and OGM′. Interestingly, the worst-case performance of the secondary sequence of 

OGM′ is worse than that of FGM sequences, whereas the primary sequence of OGM (and 

OGM′) is roughly twice better.

The following proposition uses a quadratic function to define a lower bound on the worst-

case performance of OGM1′ and OGM2′.

Proposition 4.2 For the following quadratic function in ℱL(ℝd):

(25)

both OGM1′ and OGM2′ provide the following lower bound:
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(26)

Proof We use induction to show that the following iterates:

(27)

correspond to the iterates of OGM1′ and OGM2′ applied to f2(x). Starting from x0 = Rν, 
where ν is a unit vector, and assuming that (27) holds for i < N, we have

(31)

where the second and third equalities use (1) and (15). Therefore, we have

after N iterations of OGM1′ and OGM2′, which is equivalent to the lower bound (26).

Since the analytical lower bound (26) matches the numerical tight bound in Table 1, we 

conjecture that the quadratic function f2(x) is the worst-case function for the secondary 

sequence of OGM′ and thus (26) is the tight worst-case bound. Whereas FGM has similar 

worst-case bounds (and behavior as conjectured by Taylor et al. [9, Conjectures 4 and 5]) for 

both its primary and secondary sequence, the two sequences of OGM′ (or intermediate 

iterates of OGM) have two different worst-case behaviors, as discussed further in Section 

5.2.

4.5 Related Work

Nesterov’s Accelerated First-order Method in [10] Interestingly, an algorithm in [10, Section 

4] is similar to OGM2′ and satisfies same convergence bound (19) for the primary sequence 

{yi}, which we call Nes13 in this paper for convenience.1

1Nes13 was developed originally to deal with nonsmooth composite convex functions with a line-search scheme [10, Section 4], 
whereas the algorithm shown here is a simplified version of [10, Section 4] for unconstrained smooth convex minimization (M) 
without a line-search.
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The only difference between OGM2′ and Nes13 is the gradient used for the update of zi. 

While both algorithms achieve same bound (19), Nes13 is less attractive in practice since it 

requires computing gradients at two different points xi and yi+1 at each ith iteration.

Similar to Proposition 4.1, the following proposition shows that the bound (19) is 

asymptotically tight for Nes13.

Proposition 4.3 For the function f1,OGM′ (x; N) (21) in ℱL(ℝd), the iterate yN generated by 

Nes13 achieves the lower bound (22).

Proof See the proof of Proposition 4.1.

5 Two Worst-case Functions for an Optimal Fixed-step GM and OGM

This section discusses two algorithms, an optimal fixed-step GM and OGM, in class FO that 

have a piecewise affine-quadratic function and a quadratic function as two worst-case 

functions. Considering that OGM is optimal among first-order methods (for d ≥ N +1), it is 

interesting that OGM has two different types of worst-case functions, because this property 

resembles the (numerical) analysis of the optimal fixed-step GM in [9] (reviewed below).

5.1 Two Worst-case Functions for an Optimal Fixed-step GM

The following is GM with a constant step size h.

For GM with 0 < h < 2, both [9] and [2] conjecture the following tight convergence bound:
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(28)

The proof of the bound (28) for 0 < h ≤ 1 is given in [2], while the proof for 1 < h < 2 is still 

unknown but strong numerical evidence is given in [9]. In other words, at least one of the 

two functions specified below is conjectured to be a worst-case for GM with a constant step 

size 0 < h < 2. Such functions are a piecewise affine-quadratic function

(29)

and a quadratic function f2(x) (25), where f1,GM(x; h, N) and f2(x) contribute to the factors 

 and (1−h)2N respectively in (28). Here, f1,GM(x; h, N) is a worst-case function 

where the GM iterates approach the optimum slowly, whereas f2(x) is a worst-case function 

where the iterates overshoot the optimum. (See Fig. 1.)

Assuming that the above conjecture for a fixed-step GM holds, Taylor et al. [9] searched 

(numerically) for the optimal fixed-step size 0 < hopt(N) < 2 for given N that minimizes the 

bound (28):

(30)

GM with the step hopt(N) has two worst-case functions f1,GM(x; h, N) and f2(x), and must 

compromise between two extreme cases. On the other hand, the case 0 < h < hopt(N) has 

only f1,GM(x; h, N) as the worst-case and the case hopt(N) < h < 2 has only f2(x) as the 

worst-case. We believe this compromise is inherent to optimizing the worst-case 

performance of FO methods. The next section shows that the optimal OGM also has this 

desirable property.

For the special case of N = 1, the optimal OGM reduces to GM with a fixed-step h = 1.5, 

and this confirms the conjecture in [9] that the step hopt(1) = 1.5 (30) is optimal for a fixed-

step GM with N = 1. However, proving the optimality of hopt(N) (30) for the fixed-step GM 

for N > 1 is left as future work.

Fig. 1 visualizes the worst-case performance of GM with the optimal fixed-step hopt(N) for 

N = 2 and N = 5. As discussed, for the two worst-case function in Fig. 1, the final iterates 

reach the same cost function value, where the iterates approach the optimum slowly for 

f1,GM(x; h, N), and overshoot for f2(x).

Kim and Fessler Page 17

J Optim Theory Appl. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.2 Two Worst-case Functions for the Last Iterate xN of OGM

[1, Theorem 3] showed that f1,OGM(x; N) (7) is a worst-case function for the last iterate xN 

of OGM. The following theorem shows that a quadratic function f2(x) (25) is also a worst-

case function for the last iterate of OGM.

Theorem 5.1 For the quadratic function  (25) in ℱL(ℝd), both OGM1 

and OGM2 exactly achieve the convergence bound (5), i.e.,

Proof We use induction to show that the following iterates:

correspond to the iterates of OGM1 and OGM2 applied to f2(x).

Starting from x0 = Rν, where ν is a unit vector, and assuming that (31) holds for i < N , we 
have

where the second and third equalities use (1) and (10). Therefore, we have

after N iterations of OGM1 and OGM2, exactly matching the bound (5).

Thus the last iterate xN of OGM has two worst case functions: f1,OGM(x; N) and f2(x), 

similar to an optimal fixed-step GM in Section 5.1. Fig. 2 illustrates behavior of OGM for N 
= 2 and N = 5, where OGM reaches same worst-case cost function value for two different 

functions f1,OGM(x; N) and f2(x) after N iterations.

In [9, Conjecture 4] and Section 4.2, the primary sequence of OGM is conjectured to have 

f1,OGM′ (x; N) as a worst-case function, whereas the quadratic function f2(x) becomes the 

best-case as the first primary iterate of OGM reaches the optimum just in one step. On the 

other hand, Section 4.4 conjectured that f2(x) is a worst-case function for the secondary 
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sequence of OGM prior to the last iterate. Apparently the primary and secondary sequences 

of OGM have two extremely different worst-case analyses, whereas the last iterate xN of 

OGM compromises between the two worst-case behaviors, making the worst-case behavior 

of the optimal OGM interesting.

6 Conclusions

We provided an analytical convergence bound for the primary sequence of OGM1 and 

OGM2, augmenting the bounds of the last iterate of the secondary sequence of OGM in [1]. 

The corresponding convergence bound is twice as small as that of Nesterov’s FGM, showing 

that the primary sequence of OGM is faster than FGM. However, interestingly the 

intermediate iterates of the secondary sequence of OGM were found to be slower than FGM 

in the worstcase.

We proposed two new formulations of OGM, called OGM1′ and OGM2′ that are related 

closely to Nesterov’s accelerated first-order methods in [10] (originally developed for 

nonsmooth composite convex functions and differing from FGM in [3, 7]). For smooth 

problems, OGM and OGM′ provide faster convergence speed than [10] considering the 

number of gradient computations required per iteration.

We showed that the last iterate of the secondary sequence of OGM has two types of worst-

case functions, a piecewise affine-quadratic function and a quadratic function. In light of the 

optimality of OGM (for d ≥ N + 1) in [4], it is interesting that OGM has these two types of 

worst-case functions. Because the optimal fixed-step GM also appears to have two such 

worst-case functions, one might conjecture that this behavior is a general characteristic of 

optimal fixed-step first-order methods.

In addition to the optimality of fixed-step first-order methods for the cost function value, 

studying the optimality for an alternative criteria such as the gradient (||∇f (xN )||) is an 

interesting research direction. Just as Nesterov’s FGM was extended for solving nonsmooth 

composite convex functions [10, 15], it would be interesting to extend OGM to such 

problems; recently this was numerically studied by Taylor et al. [13]. Incorporating a line-

search scheme in [10, 15] to OGM would be also worth investigating, since computing the 

Lipschitz constant L is sometimes expensive in practice.
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Fig. 1. 

The worst-case performance of the sequence  of GM with an optimal fixed-step 

hopt(N) for N = 2, 5 and d = L = R = 1. The numerically optimized fixed-step sizes for N = 

2, 5 are hopt(2) = 1.6058 and hopt(5) = 1.7471 [9].
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Fig. 2. 

The worst-case performance of the secondary sequence  of OGM for N = 2, 5 and d 
= L = R = 1.
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Table 1

Exact numerical cost function bound  of the last primary iterate yN and the last secondary 

iterate xN of FGM, OGM and OGM′

N FGM(prim.) FGM(sec.) OGM(prim.) OGM(sec.) OGM′(sec)

1 1/6.00 1/6.00 1/6.00 1/8.00 1/5.24

2 1/10.00 1/11.13 1/12.47 1/16.16 1/9.62

3 1/15.13 1/17.35 1/21.25 1/26.53 1/15.12

4 1/21.35 1/24.66 1/32.25 1/39.09 1/21.71

5 1/28.66 1/33.03 1/45.42 1/53.80 1/29.38

10 1/81.07 1/90.69 1/143.23 1/159.07 1/83.54

20 1/263.65 1/283.55 1/494.68 1/525.09 1/269.56

40 1/934.89 1/975.10 1/1810.08 1/1869.22 1/947.55

80 1/3490.22 1/3570.75 1/6866.93 1/6983.13 1/3516.00
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