
Bioimage informatics

Algorithm sensitivity analysis and parameter

tuning for tissue image segmentation pipelines

George Teodoro1,3,*, Tahsin M. Kurç3,4, Lu�ıs F. R. Taveira1,

Alba C. M. A. Melo1, Yi Gao3, Jun Kong2 and Joel H. Saltz3

1Department of Computer Science, University of Bras�ılia, Bras�ılia 70910-900, Brazil, 2Biomedical Informatics

Department, Emory University, Atlanta, GA 30322, USA, 3Biomedical Informatics Department, Stony Brook

University, Stony Brook, NY 11794-8322, USA and 4Scientific Data Group, Oak Ridge National Laboratory, Oak

Ridge, TN, USA

*To whom correspondence should be addressed.

Associate Editor: Robert Murphy

Received on June 28, 2016; revised on October 17, 2016; editorial decision on November 20, 2016; accepted on December 9, 2016

Abstract

Motivation: Sensitivity analysis and parameter tuning are important processes in large-scale

image analysis. They are very costly because the image analysis workflows are required to be exe-

cuted several times to systematically correlate output variations with parameter changes or to tune

parameters. An integrated solution with minimum user interaction that uses effective methodolo-

gies and high performance computing is required to scale these studies to large imaging datasets

and expensive analysis workflows.

Results: The experiments with two segmentation workflows show that the proposed approach can

(i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about

100 points) of the parameter search space with billions to trillions of points and improve the quality

of segmentation results (Dice and Jaccard metrics) by as much as 1.42� compared to the results

from the default parameters; (iii) attain good scalability on a high performance cluster with several

effective optimizations.

Conclusions: Our work demonstrates the feasibility of performing sensitivity analyses, parameter

studies and auto-tuning with large datasets. The proposed framework can enable the quantification

of error estimations and output variations in image segmentation pipelines.

Availability and Implementation: Source code: https://github.com/SBU-BMI/region-templates/.

Contact: teodoro@unb.br

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Whole slide tissue images (WSIs) obtained from tissue specimens

provide a means to study disease morphology at the sub-cellular

scale. Several algorithm, computation and data challenges, however,

have to be overcome in order to facilitate studies with large datasets

of WSIs. In this work we target challenges that stem from the fact

that most image analysis workflows are sensitive to variations in in-

put parameters. A workflow optimized for a group of images may

not perform well for another set of images. It is, therefore, import-

ant to (1) quantify the impact of input parameters on analysis output

and (2) adjust parameters to produce more accurate analysis results.

We call (1) and (2) collectively a parameter study. We refer to part

(1) as the algorithm sensitivity analysis (SA) process and define it as

the process of comparing results from multiple analyses of a dataset

using variations of an analysis workflow (e.g. different input param-

eters or different algorithms) and quantifying differences in the re-

sults. Part (2) is an extension of SA and we refer to it as the

parameter tuning process. We are interested in parameter auto-

tuning in which the parameter space of an analysis workflow is

searched automatically by generating analysis results from a set of

VC The Author 2016. Published by Oxford University Press. 1064

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 33(7), 2017, 1064–1072

doi: 10.1093/bioinformatics/btw749

Advance Access Publication Date: 30 December 2016

Original Paper

https://github.com/SBU-BMI/region-templates/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw749/-/DC1
Deleted Text: ,
Deleted Text: ,
http://www.oxfordjournals.org/

parameters, comparing the analysis results with ground truth, and

repeating the process to find a set of parameters that produces the

most accurate results as measured by a comparison metric.

A parameter study with a large set of WSIs can be a challenging

and computationally expensive task. Consider a workflow of nor-

malization and segmentation steps—this type of workflow is our

focus in this paper, because segmentation is a crucial step in extract-

ing salient morphology information from images and consists of sev-

eral complex and parameterized data transformation operations.

Processing a single WSI through this workflow can take hours on a

single CPU. In addition, SA may require the evaluation of hundreds

or thousands of parameter combinations because of the staggeringly

high number of possible parameter values. Table 1 shows the list of

parameters and their value ranges for the segmentation step in two

analysis workflows used in our experimental evaluation. The first

workflow uses a watershed based segmentation step (Kong et al.,

2013), while the other employs level set and mean shift clustering

methods (Gao et al., 2016). The large number of possible parameter

values can lead to a large number of runs and high volumes of data

to be handled and processed. For instance, one of our SA experi-

ments involved 2000 runs of the watershed segmentation pipeline

on 55 WSIs. The execution of the experiment on a distributed mem-

ory machine with 128 nodes took 42.9 h; and during the experi-

ment, a total of 820 Terabytes of data were produced and

processed. In studies at this scale it is imperative to utilize high per-

formance computing systems efficiently in order to speed up the par-

ameter study processes.

Approaches for parameter space search and parameter optimiza-

tion have been developed and successfully applied in several applica-

tion domains (Campolongo et al., 2007; Jones, 2001; Morris, 1991;

Rios and Sahinidis, 2013; Saltelli et al., 2004; Sareni and

Kr€ahenbühl, 1998; Snoek et al., 2012; Tabatabaee et al., 2005;

Weirs et al., 2012). One of the main contributions of this work is

the adaptation of these methods and demonstration of their utility

in the context of large-scale whole slide tissue image analysis. This is

accomplished by integrating the parameter search and auto-tuning

methods into a software framework that employs novel high-

performance computing (HPC) techniques to address the data and

computational challenges. Our contributions can be summarized as

follows.

• An approach for efficient execution of sensitivity analysis for

WSI segmentation workflows. Our approach implements a glo-

bal SA process, which examines output sensitivity from the per-

spective of a range of input parameter variations (Iooss and

Lemaitre, 2015). A key consideration is to reduce the number of

parameter evaluations and provide relevant information about

the impact of input parameters on analysis results. Our approach

adapts and incorporates two types of methods (Campolongo

et al., 2007; Morris, 1991; Sobol, 2001; Weirs et al., 2012) for

use in WSI analysis to accomplish this: (1) methods to efficiently

perform an initial and quick screening of non-influential input

parameters (i.e. those parameters that do not contribute signifi-

cantly to variations in output) and remove them from further

consideration; and (2) methods that compute measures of im-

portance or quantitative sensitivity indexes. The combination of

these methods enables the application of sensitivity analysis with

large datasets of WSIs and for segmentation workflows with

large parameter spaces.
• A systematic experimental evaluation of multiple optimization

algorithms for automatically tuning input parameters in segmen-

tation workflows. Previous work on automated parameter esti-

mation optimization in image segmentation has employed

techniques for specific segmentation models (Kumar and Hebert,

2003; McIntosh and Hamarneh, 2007; Schultz and Kindlmann,

2013; Szummer et al., 2008). The Tuner system (Torsney-Weir

et al., 2011) targets general segmentation algorithms and uses

statistical models from sampling runs to explore the parameter

space. In our work, we treat the segmentation algorithm as a

black-box and employ efficient optimization algorithms that can

Table 1. Parameters their value ranges for two example workflows

Parameter Description Range value

(a) Parameters of the Watershed based segmentation workflow. The parameter search space contains about 21 trillion parameter points

B/G/R Background detection thresholds [210, 220,. . ., 240]

T1/T2 Red blood cell thresholds [2.5, 3.0,. . ., 7.5]

G1/G2 Thresholds to identify [5, 10,. . ., 80]

candidate nuclei [2, 4,. . ., 40]

MinSize Area threshold of candidate nuclei [2, 4,. . ., 40]

MaxSize Area threshold of candidate nuclei [900,., 1500]

MinSizePl Area threshold before watershed [5, 10,. . ., 80]

MinSizeSeg Area threshold from final segmentation [2, 4,. . ., 40]

MaxSizeSeg Area threshold from final segmentation [900,., 1500]

FillHoles propagation neighborhood [4-conn, 8-conn]

MorphRecon propagation neighborhood [4-conn, 8-conn]

Watershed propagation neighborhood [4-conn, 8-conn]

(b) Parameters of the Level Set based segmentation workflow. The parameter search space contains about 2.8 billion parameter points

OTSU OTSU threshold value [0.3, 0.4,. . ., 1.3]

Curvature Weight Curvature weight (CW) for level-set [0.0, 0.05,. . ., 1.0]

MinSize Minimum object size [1, 2,. . ., 20]

MaxSize Maximum object size [50, 55,. . ., 400]

MsKernel Radius in Mean-Shift calculation [5, 6,. . ., 30]

LevetSetIt Number of iterations of [5, 6,. . ., 150]

the level set computation

Algorithm sensitivity analysis and parameter tuning 1065

Deleted Text: &hx2013;
Deleted Text: ,
Deleted Text: ours
Deleted Text: Tabatabaee <italic>et<?A3B2 show $146#?>al.</italic>, 2005; <xref ref-type=
Deleted Text: ; <xref ref-type=
Deleted Text: ; Campolongo <italic>et<?A3B2 show $146#?>al.</italic>, 2007; Weirs <italic>et<?A3B2 show $146#?>al.</italic>, 2012
Deleted Text: ,
Deleted Text: ; Szummer <italic>et<?A3B2 show $146#?>al.</italic>, 2008

quickly converge to desired results. Our results show that the

output of a segmentation workflow can be significantly improved

with the automated tuning approaches. In our experiments, the

quality of the segmentation results was improved, as measured

by the Dice (1945) and Jaccard metrics, by as much as 42% com-

pared with the results obtained with the default workflow

parameters.
• High performance computing methods to address the computa-

tion and data challenges in parameter studies. Our work provides

several runtime optimizations to accelerate parameter evaluation

runs on distributed-memory parallel machines. These methods

are integrated in a runtime system, called Region Templates, we

developed in an earlier work (Teodoro et al., 2014). The Region

Templates system is designed to address the processing and data

management challenges of image analysis pipelines on distrib-

uted memory systems with hybrid multi-core CPU and

co-processors. The work described in this paper adds new opti-

mizations for parameter studies: (1) efficient data movement and

staging, data-aware assignment of stages and operations in an

analysis workflow to optimize repeated workflow executions

with different parameters; and (2) simultaneous parameter evalu-

ation to eliminate common computations in the execution of an

analysis workflow with multiple parameter sets. The combined

use of these optimizations is crucial to enabling large-scale

studies.

2 Methods

Our parameter study framework is illustrated in Figure 1. An inves-

tigator specifies a set of input images, an image analysis workflow,

the value ranges of input parameters for the image analysis work-

flow, and the metric of interest (e.g. Dice) for comparison of analysis

results. The image analysis workflow is executed on a high perform-

ance machine, while the input parameters are systematically varied

by the framework.

The sensitivity analysis process is carried out in two phases.

During these phases, multiple runs of the image analysis workflow

are executed until the required set of parameters has been covered.

In the first phase, a set of runs are executed and screening methods

are called. The screening methods are used to determine which par-

ameters of an analysis workflow have little impact on output vari-

ability—such parameters are called non-influential parameters

(Section 2.1). The screening step is used as a filtering step with a

large number of parameter values, before the more costly second

phase is executed. At the end of the first phase, the investigator may

remove some of the parameters from further consideration and fix

their values in the second phase. The second phase computes import-

ance measures for selected parameters (Section 2.2). This phase

looks at the monotonicity and linearity of an analysis workflow’s

output and correlates variance in the output with the input param-

eters and their first-order and higher-order effects. The results from

the sensitivity analysis process are statistics that quantify variance in

the analysis results as well as measures such as sensitivity indices

that indicate the amount of variance in the analysis results that can

be attributed to individual parameters or combinations of param-

eters (Saltelli, 2002; Sobol, 2001).

The parameter auto-tuning process calibrates the input param-

eters to generate more accurate results and requires a reference data-

set (see Section 2.3). The reference dataset for tuning a segmentation

pipeline can be, for example, a set of segmentation results generated

by human experts. In the auto-tuning process, image analysis results

(i.e. sets of segmented objects in our case) generated from a set of in-

put parameter values are compared to the reference dataset. The

comparison step computes an error estimate based on a metric, such

as Dice, and feeds it to a search optimization method to generate an-

other set of parameter values. This iterative process continues until a

maximum number of iterations is reached or when the error esti-

mate is below a threshold.

2.1 Methods to screen input parameters
Our implementation employs a commonly used screening method,

called Morris One-At-A-Time (MOAT) design (Morris, 1991). This

screening method perturbs each input parameter in a discretized par-

ameter space while fixing the other input parameters. The k-dimen-

sional input space (for k parameters) is partitioned uniformly in p

levels, creating a grid with pk points in which evaluations take place.

Each perturbation of an input parameter xi creates a parameter elem-

entary effect (EE) computed as EEi ¼ yðx1 ;...;xiþ�i ;...;xkÞ�yðxÞ
�i

, where y(x)

is the application output before the perturbation. In our case, the out-

put refers to the metric of interest calculated by comparing the mask

generated by the segmentation method to a reference mask. The refer-

ence mask is generated using the default input parameters of the

image analysis workflow. To account for global SA, we use �i

¼ p
2ðp�1Þ that leads to steps slightly larger than half of the input range

for input parameters scaled between 0 and 1. The mean (l), modified

mean (l*—mean of absolute EE values) and standard deviation (r) of

EE are computed for each input parameter (Campolongo et al.,

2007). The mean and modified mean represent the effects of an input

parameter on the image analysis output, whereas the standard devi-

ation reveals nonlinear effects. MOAT requires n ¼ rðkþ 1Þ applica-

tion runs (or evaluations in the parameter space), with the typical

value of r being in the range of 5 to 15 (Iooss and Lemaitre, 2015).

2.2 Methods to compute importance measures
These methods calculate correlation coefficients between input par-

ameters and application output or between pairs of input param-

eters. The coefficients implemented in our framework include

Pearson’s correlation coefficient (CC), partial correlation coefficient

(PCC), Spearman’s rank correlation coefficient (RCC) and partial

Fig. 1. The parameter study framework. A parameter study process (SA or

auto-tuning) is selected by an investigator. The analysis workflow is executed

on a parallel machine multiple times while input parameters are systematic-

ally varied. The analysis results are compared to a set of reference results to

compute a new set of parameters. This iterative process continues until the

process has converged in the case of the parameter tuning process or col-

lected enough data in the case of the sensitivity analysis process (Color ver-

sion of this figure is available at Bioinformatics online.)

1066 G.Teodoro et al.

Deleted Text: ,
Deleted Text: &hx2013;
Deleted Text: ; <xref ref-type=
Deleted Text: ,
Deleted Text: S
Deleted Text: I
Deleted Text: P
Deleted Text: -
Deleted Text: ,
Deleted Text: C
Deleted Text: I
Deleted Text: M

rank correlation coefficient (PRCC) (Saltelli et al., 2004). The sim-

ple and partial correlation coefficients are similar, but the latter ex-

cludes effects from other input parameters. The Spearman’s differs

from the Pearson’s because the first uses ranked results. When input

parameters are orthogonal, the simple and partial correlations are

the same. The ranked correlations are helpful when relationships be-

tween parameters are non-linear (Saltelli et al., 2004).

The CC for x and y is calculated as:

Corrðx; yÞ ¼ rxy ¼
P

i
ðxi��xÞðyi��yÞffiP

i
ðxi��xÞ2

P
i
ðyi��yÞ2

p , where x and y are two par-

ameters or a parameter and analysis results. The computed value is a

comparison metric value as in the screening step. Points evaluated in

the input parameter space are selected from a probabilistic explor-

ation. The framework supports the commonly used Monte Carlo

sampling, Latin hypercube sampling (LHS) (McKay and Beckman,

1979), quasi-Monte Carlo sampling with Halton or Hammersley se-

quences, and a few other stochastic methods.

Variance-based Decomposition (VBD) sensitivity method (Weirs

et al., 2012) is also available in our framework. VBD splits output

uncertainty effects among individual parameters and can account

for non-linear relationships among them. VBD computes the ‘main

effect’ sensitivity index Si (Sobol, 2001) and the ‘total effects’ sensi-

tivity index STi
(Saltelli, 2002). The Si measures the amount of

variance in results that can be attributed to parameter i alone (first-

order effects). If the sum of the Si values is close to 1.0, most of the

output variance is explained by single parameter effects. The total

effect index STi
measures the first-order and higher-order effects due

to the interaction of parameter i with the other parameters. For k in-

put parameters and n samples, VBD requires nðkþ 2Þ application

runs, and n can be in the order of thousands (Weirs et al., 2012). It

is, thus, important to remove non-influential parameters before

VBD is applied.

2.3 Parameter auto-tuning algorithms
We have incorporated several parameter optimization methods in

our framework and evaluated them experimentally. The methods in-

clude Nelder-Mead simplex (NM), Parallel Rank Order (PRO)

(Tabatabaee et al., 2005), Genetic Algorithm (GA) (Sareni and

Kr€ahenbühl, 1998), GLCCLUSTER, GLCSOLVE (Jones, 2001) and

a Bayesian optimization algorithm (Snoek et al., 2012).

The NM method uses a simplex of kþ1 vertices in a k-dimen-

sional search space. The PRO is a variant of the NM method that

evaluates multiple points in the space concurrently. The Genetic

Algorithm (GA) maps each parameter to a gene of an individual.

The initial population is created randomly and evolved using cross-

over and mutation. The crossover uses a one-point crossover be-

tween pairs of individuals with a probability of C. The mutation in

each gene of occurs with an independent probability of M. The new

population is evaluated and the results are input back to the GA to

build another generation. The process continues until a preset num-

ber of generations (iterations) is reached. In our experiments, the

probabilities C and M were empirically selected as 0.5 and 0.3, re-

spectively, to maximize performance. We experimentally observed

that adding the application default parameters to the initial popula-

tion did not lead to improvements for our two use-case workflows.

The GLCCLUSTER and DIRECT methods are implemented in

the TOMLAB optimization toolkit (http://tomopt.com) and provide

a MATLAB interface. We implemented helper codes that wrap these

methods. The helper codes are called by the parameter optimization

methods with the set of parameter values (i.e. points in the param-

eter space) to be evaluated. The helper codes in turn invoke our

framework’s runtime system to evaluate the points. A recent study

has compared several optimization algorithms and showed that

GLCCLUSTER obtains very good results (Rios and Sahinidis,

2013), in particular when the number of function evaluations to be

performed is small. The Bayesian optimization algorithm (Snoek

et al., 2012) is available from the Spearmint software (https://

github.com/HIPS/Spearmint). This optimization algorithm builds

and explores a probabilistic model of the function being tuned to se-

lect points in the search space to be evaluated. The search decision

does not rely on local gradients or approximations only. This can

benefit optimization of the parameters of complex functions.

However, the cost of computing the next set of points to be eval-

uated can be very high with this method.

2.4 Efficient and scalable execution on parallel

machines
We have implemented the sensitivity analysis and parameter auto-

tuning processes as well as the analysis pipelines used in this paper

in the Region Templates (RT) runtime system (Teodoro et al., 2014)

for execution on HPC systems with co-processors. The RT runtime

system schedules application operations across multiple computa-

tion nodes and on co-processors (such as Intel Xeon Phi). The pro-

cessing structure of a region template application is expressed as a

hierarchical dataflow graph. That is, an operation itself can be com-

posed of lower-level operations organized into another dataflow.

Application workflows are decomposed into operations that con-

sume, transform and produce region template data objects (also

referred to as data regions) instead of reading/writing data directly

from/to other tasks or disk. In this way, the application itself does

not have to deal with communication of data structures across an

HPC platform. The region template data abstraction provides gen-

eric data region templates for common data structures, such as pix-

els, points, arrays (e.g. images or 3D volumes), segmented and

annotated objects and regions, which are defined in a spatial and

temporal domain. We refer the reader to our earlier publication for

more details (Teodoro et al., 2014). The next sections describe two

new optimizations in the RT system that address the requirements

of the sensitivity study and parameter auto-tuning processes.

2.4.1 Storage management and optimizations

The hierarchical data storage (HDS) is a distributed data manage-

ment infrastructure with an arbitrary number of storage levels

within a node and across a distributed memory machine. The stor-

age hierarchy is defined in a configuration file that includes the num-

ber of storage levels, the position of each level in the hierarchy and

the level description: type of storage devices (e.g. RAM, SSD, HDD,

etc.), capacity, etc. The HDS stores and retrieves data regions pro-

duced or requested by an application operation. Output data regions

are stored automatically by the runtime system, which iterates

through data regions of an operation and stores those marked as

output in the highest (i.e. the fastest) level of storage with enough

capacity. When a storage level is full, a cache replacement strategy

selects data regions to be moved to a lower storage level. Supported

data replacement policies are: First-In, First-Out (FIFO) and Least

Recently Used (LRU).

We have developed a data locality-aware scheduling (DLAS)

that considers the location of data when mapping analysis workflow

stages to computing nodes. When an analysis operation finishes, the

runtime takes into account the locality of the data produced by that

operation to determine the node in which analysis operations that

consume the data should be executed. DLAS calculates the amount

Algorithm sensitivity analysis and parameter tuning 1067

Deleted Text: M. D.
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: A
Deleted Text: A
Deleted Text: ,
http://tomopt.com
Deleted Text: ,
https://github.com/HIPS/Spearmint
https://github.com/HIPS/Spearmint
Deleted Text: S
Deleted Text: E
Deleted Text: P
Deleted Text: M
Deleted Text: ,
Deleted Text: ,
Deleted Text: M
Deleted Text: O
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,

of data reuse by those operations and inserts the operations into a

queue of preferred operations for the node where the data region

was produced. A queue of preferred operations is maintained for

each node in decreasing order of the amount data reuse. When a

node requests work, the runtime system assigns the operation with

the maximum data reuse to that node.

2.4.2 Optimized simultaneous parameter evaluation (SPE)

This optimization exploits the evaluation of multiple parameter sets

in sensitivity analysis and auto-tuning studies per iteration of each

process (Fig. 1). We have developed a strategy that merges and elim-

inates replicas of common computation paths, when multiple par-

ameter sets are executed. Figure 2 shows two schemes for

instantiating an application workflow in this scenario. The replica

based scheme instantiates and executes the entire application work-

flow for each parameter set used. The compact composition scheme

merges the instances of an application workflow into a single, com-

pact workflow graph to reuse common steps in the separate work-

flow instances. Two steps are common if they use the same input

data and parameter values.

The compact workflow graph representation draws from a data

structure called FP-Tree (Han et al., 2000). The FP-tree represents

sets of transactions in a structure in which common parts of transac-

tions are expressed in a single path on the structure. In our case, we

want to merge multiple workflows to create another workflow in

which common computations from multiple parameters are elimi-

nated. The complete algorithm to build the compact representation

is provided in the Supplementary Section S2. In summary, for each

parameter set to be executed, instead of creating a new independent

workflow, it searches in the existing workflows for common compu-

tation paths. If a common computation path is found, it is instanti-

ated once and its output is reused by the common path to

downstream operations that will consume the data.

3 Results

We have evaluated the parameter study framework using

Glioblastoma brain tumor tissue images obtained from The Cancer

Genome Atlas repository for use in brain cancer studies (Kong et al.,

2013). We divided the images into tiles, both because a WSI may

not fit in memory and in order to distribute the processing of the

WSI across multiple nodes and processors (multiple tiles are pro-

cessed concurrently during the execution of an analysis workflow).

We used two analysis workflows, which were made up of

normalization, segmentation and comparison steps, for experimen-

tal evaluation. The first workflow employed a Watershed based seg-

mentation step with 15 input parameters (Kong et al., 2013), while

the second one used a level set method and 7 input parameters (Gao

et al., 2016). Please see Table 1 for the list of parameters for each

workflow. The experiments were conducted on up to 256 nodes of a

distributed memory machine called Stampede (https://portal.xsede.

org/tacc-stampede), which is one of the machines supported by the

XSEDE consortium (https://www.xsede.org). Each node of the clus-

ter has a dual socket Intel Xeon E5-2680 processors, an Intel Xeon

Phi SE10P co-processor and 32 GB RAM. The nodes are inter-

connected via Mellanox FDR Infiniband switches.

3.1 Sensitivity analysis
We first employed MOAT to identify and filter out non-influential

parameters, before using more costly methods, which include correl-

ation coefficients and VBD. This first phase is referred to here as the

MOAT phase. The watershed and level set based workflows pro-

cessed, respectively, 55 WSIs (4276 4K�4K image tiles) and 1 WSI

(71 4K�4K tissue image tiles) in the experiments—the tile sets did

not have any background tiles with no tissue. A smaller dataset is

used with the level set workflow because it uses a much more com-

putationally expensive segmentation approach.

3.1.1 Finding important parameters with MOAT

The comparison metric in the experiments was computed as follows.

An exclusive-or (XOR) operation was performed between the bin-

ary mask generated by the parameters selected by the framework

and the binary mask generated by the default parameters of the

workflow. The number of pixels with value 1 in the resulting binary

mask was counted and used as the value of the comparison metric.

We used a parameter space partition with 20 levels for each of the k

parameters in Table 1, except for those that describe a propagation

neighborhood and accept 2 input values only. The number of runs

was calculated as n ¼ rðkþ 1Þ, for the values of r ranging from 5 to

15. The experiments used 128 nodes of the Stampede cluster. The

total execution times were 15 681s and 6825s, respectively, for the

watershed and level set workflows when r was 15.

The results for the watershed workflow are presented in Table 2

in which parameters 6, 7, 8 and 14 are shown the most relevant;

they have higher l* and r values (at least one component higher

than 109). Most of the parameters have non-linear interactions, be-

cause of the high values of r. Therefore, we decided to prune the list

of parameters conservatively during the MOAT phase. We selected

parameters T2, MaxSize, MinSizePl, MinSizeSeg in addition to G1,

G2, Recon and MinSize for the more detailed and costly second

phase. These parameters had at least one component (l* or r)

higher than 108. The other ones (the rows in color red) were dis-

carded from further analysis.

The MOAT phase of the level set workflow (shown in

Supplementary Table S1 in the supplementary material because of

space limitations) included a dummy parameter. This parameter was

not passed to the analysis workflow as input. It was used in the ex-

periments to quantify differences in the segmentation output due to

the stochastic nature of this analysis workflow. The de-clumping

phase of the level-set based segmentation approach is implemented

using a randomized clustering strategy and, as a consequence, seg-

mentation results from two runs with the same input parameter val-

ues may differ. The experimental results showed that variations in

the segmentation output due to the stochastic nature of the

Fig. 2. Evaluation of multiple parameter sets. The replica based composition

scheme executes independent instances of the same workflow, whereas the

compact composition scheme merges the multiple instances to eliminate du-

plicate computations and data storage

1068 G.Teodoro et al.

Deleted Text: S
Deleted Text: P
Deleted Text: E
Deleted Text: Figure
Deleted Text: sectionResults
Deleted Text: .
https://portal.xsede.org/tacc-stampede
https://portal.xsede.org/tacc-stampede
Deleted Text: ¹
https://www.xsede.org
Deleted Text: ²
Deleted Text: A
Deleted Text: ,
Deleted Text: &hx2013;
Deleted Text: I
Deleted Text: P
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw749/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw749/-/DC1

segmentation approach were smaller than variations due to the

other input parameters.

The OTSU ratio stood out as the most significant parameter for

this workflow. At the end of the MOAT phase, all the parameters

were selected for further analysis, because at least one component

(l* or r) of each parameter was above 108.

3.1.2 Importance measures

Pearson’s and Spearman’s Correlation Coefficients.

We computed the CC, PCC, RCC and PRCC coefficients by exe-

cuting each workflow 400 times with the same dataset with different

input parameter values. The runs took 27 078s and 22 696s, respect-

ively, for the watershed and level set workflows on 128 computing

nodes. The correlation coefficients between the input parameters

and the analysis results are presented in Supplementary Table S2 in

the supplementary material for both workflows.

For the watershed workflow, the CC values of most parameters

are small (about 0.1), with the exception of G2 (CC¼0.48). The

differences between the CC and PCC values are the evidence of inter

parameter correlation effects. These effects are higher for G1 and

agree with the findings in the MOAT phase. The RCC values of

some parameters are higher than their CC values, indicating that

those parameters have a monotonic, but not a linear, correlation.

This explains why some parameters assumed small CC values in the

experiments. The ranking of the parameters, for instance, using

RCC is similar to the ranking observed with MOAT. This confirms

the MOAT results, but does not facilitate an additional parameter

pruning opportunity before VBD is executed.

In the level set workflow, the OTSU was highlighted again as the

most important parameter. Its CC and PCC values were almost the

same, indicating its effects are orthogonal to those of the other par-

ameters. Although only OTSU appears to be important when the

CC is considered, the PCC values showed that the effect of

Curvature Weight (CW) increases significantly, after excluding ef-

fects from the other parameters. The ranked correlation values

(RCC and PRCC) also were higher for OTSU and CW. The same

trend was observed between the simple and partial correlations. The

MaxSize parameter had low correlation values and was excluded

from further analysis.

Variance-Based Decomposition (VBD). The Sobol’s indices are

presented in Table 3 for k¼8 and k¼5 parameters (for the water-

shed and level set workflows, respectively) that were not filtered out

in the MOAT and Correlation Coefficients phases. We used Saltteli’s

approach (Saltelli, 2002) with Monte Carlo sampling. Each experi-

ment required N¼n(kþ2) runs. Because of the high computation

costs, we limited the value of n to 200—this was sufficient because of

small variations in the Si indices as n increased from 100 to 200. The

experiments with n¼200 and the watershed workflow required 2000

analysis runs with 55 WSIs. They took 150 890 s on 128 nodes, dur-

ing which 820 TB of data were produced and consumed. The execu-

tion with the level set took 211 912 s on 128 nodes.

The results in Table 3 for the watershed workflow show that G2

has substantially more impact on output variability than the other

parameters do. The sum of the Si indices (0.74 with n¼200) is con-

siderably smaller than 1.0, making this a non-additive model. Thus,

a large fraction of the output variance cannot be attributed to a sin-

gle input parameter for this workflow. The higher-order effects

(STi
� Si) due to parameter interactions are important and cannot be

ignored even if Si is small. This is the case with Recon that has a

large STi value and a small Si. The parameters with higher effect val-

ues (G1, G2, Recon) are used in the candidate object identification

sub-step of the watershed workflow, highlighting the importance of

this sub-step to the overall analysis results.

The sum of main effects is very close to 1.0 for the level set work-

flow; hence, the model is considered additive. The OTSU parameter

explains alone most of the variability in the analysis results

(Si¼0.92 with n¼200). This parameter is also used in the candidate

object identification substep in the level set workflow. The second

most important parameter is the CW parameter, which is used to

adapt the smoothness of the boundaries of nuclei. Our experiments

show that the other parameters are less important. To validate our

findings, we created a panel of segmentation results by varying the

values of the two most important parameters and the value of the

least important parameter for each segmentation workflow. The

panel (see Supplementary Fig. S2 in the supplementary material)

shows that the amount of variation in the analysis output agrees

with the VBD values computed in the experiments.

In Table 4 we present a summary of the execution times of the

sensitivity analysis methods. Even though the number of parameters

Table 2. MOAT analysis for the watershed workflow with r values of 5, 10 and 15

We classify in green, yellow and red, respectively, those parameters having high, medium and low effect on the output. (Color version of this table is available

at Bioinformatics online.)

Algorithm sensitivity analysis and parameter tuning 1069

Deleted Text: M
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw749/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw749/-/DC1
Deleted Text: &hx2013;
Deleted Text: ,
Deleted Text: ,
Deleted Text: seconds
Deleted Text: ,
Deleted Text: seconds
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw749/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw749/-/DC1

is pruned through the MOAT, Correlation Coefficients and VBD

phases, the execution times increase. This is because the per param-

eter sample size grows more rapidly than reduction in the set of par-

ameters due to pruning. In the VBD analysis of the watershed

workflow, for instance, about half of the original parameters are

used, but the execution time of VBD is about 10� higher than

MOAT because of the larger sample size. The execution time of

MOAT could be used to estimate the execution times of the other

more expensive phases by using difference in the sample sizes as a

reference. This simple approach, however, tends to be less accurate

when the execution time of an analysis workflow varies significantly

when input parameters are changed. This is the case with the level

set workflow. The ratio of sample sizes of any two phases (MOAT,

Correlation Coefficients and VBD) does not reflect accurately vari-

ation in the execution time. This is less so with the watershed work-

flow, because the execution time of this workflow is less sensitive to

the input parameters.

3.2 Parameter auto-tuning
This section evaluates the auto-tuning algorithms with the goal of

maximizing the Dice and Jaccard metrics. These experiments were

executed using 15 images manually segmented by a pathologist. First,

we tuned the workflows for each image individually to evaluate the

results generated by the automatically selected parameters. Second,

we carried a random cross validation experiment, separating images

into the training and test sets. In this experiment, the entire test set

was analyzed using a single parameter set for each workflow.

The parameters of the analysis workflows were varied within

the value ranges shown in Table 1. The average values of the Dice

and Jaccard metrics for all 15 images are presented in Table 5. The

results for each image are provided for reference in Table S3 in the

supplementary material. The auto-tuning algorithms were config-

ured to perform a maximum of 100 function evaluations. It is also

important to notice that the execution time spent by the optimiza-

tion algorithm to choose the next parameter set to be evaluated

varies among algorithms. It was measured to be about 77s for the

Spearmint and less than 10ms for other algorithms. Even though

the difference is significant, this cost it is amortized in our analysis

because the application execution time to evaluate a parameter is

far more expensive.

The results presented in Table 5 show that the auto-tuning algo-

rithms significantly improved the quality of the results compared

with the results generated by the default input parameters. In the

watershed based workflow, the average Dice and Jaccard values

were, respectively, 1.14� and 1.19� higher than the values from the

default input parameters, whereas they were about 1.41� and

1.58� higher in the level set workflow. Improvements in the Dice

and Jaccard values reached 22.2� and 40� depending on the image

used, indicating that the results generated by the default input par-

ameters were very poor for some images. Even though the auto-

tuning algorithms improved the analysis output quality in most of

the cases, an analysis of gains per image shows that no single algo-

rithm is able to produce the best result for all the images in any of

the experiments (see Supplementary Table S3 in the supplementary

material). The results suggest that an ensemble of tuning algorithms

should be used in order to achieve the best results instead of using a

single auto-tuning algorithm. A panel with two images is presented

in Figure 3 to show the improvement in segmentation output gener-

ated by the tuned versus default input parameters.

We also carried out a cross validation experiment in which we

used 3 randomly selected images to train the parameter values with

the GA method and the remaining 12 images to test the learned par-

ameters. For the watershed workflow, the learned parameters im-

proved the results compared to those from the default parameters on

the testing data by 1.10� and 1.13� on average for the Dice and

Jaccard metrics, respectively. The standard deviation was smaller

Table 3. VBD results (Main (Si) and Total (STi
) effects)

(a) Results for the watershed based segmentation workflow

Parameters n¼ 50 n¼ 100 n¼ 200

Si STi Si STi Si STi

T2 �1.25e-05 1.32e-07 2.86e-05 6.36e-08 1.67e-03 2.81e-04

G1 3.52e-02 7.57e-02 �1.88e-03 1.44e-01 5.95e-02 9.07e-02

G2 7.80e-01 9.46e-01 5.28e-01 7.57e-01 5.39e-01 8.67e-01

MinSize 1.73e-02 3.92e-02 1.67e-02 4.13e-02 1.34e-02 1.58e-02

MaxSize 4.76e-03 2.80e-04 1.65e-03 1.70e-03 1.29e-04 5.39e-04

MinSizePl �5.48e-04 4.80e-02 2.31e-02 2.67e-02 1.39e-02 1.99e-02

MinSizeSeg 1.69e-01 1.95e-01 1.38e-01 1.08e-01 8.99e-02 9.37e-02

Recon �2.24e-02 2.22e-01 �2.70e-02 3.21e-01 2.16e-02 2.06e-01

Sum 1.0 0.73 0.74

(b) Results for the level set based segmentation workflow

OTSU 8.91e-01 8.97e-01 9.23e-01 9.42e-01 9.25e-01 9.32e-01

CW 7.33e-02 7.53e-02 1.05e-02 1.48e-02 5.31e-02 5.51e-02

MinSize 1.29e-03 2.84e-03 1.84e-03 2.61e-03 9.51e-04 9.46e-04

MsKernel 3.15e-02 2.56e-02 3.09e-02 3.11e-02 1.71e-02 1.95e-02

LevelSetIt 4.88e-03 5.05e-03 1.03e-03 1.05e-03 2.90e-03 2.12e-04

Sum 1.0 0.96 0.99

Table 4. Sensitivity analysis execution times (secs) using 128 com-

puting nodes

Application Method (Sample Size)

MOAT (240) Importance Measures (400) VBD (2000)

Watershed 15 681 27 078 150 890

Level Set 6,825 22 696 211 912

1070 G.Teodoro et al.

Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: ,
Deleted Text: A
Deleted Text: T
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw749/-/DC1
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw749/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw749/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw749/-/DC1
Deleted Text: &hx2009;
Deleted Text: &hx2009;

than 1%. For the level set based workflow, the results were even bet-

ter. The average improvement amounts were 1.29� and 1.42�. The

results show that the auto-tuning algorithms could significantly im-

prove segmentation results. In addition, the auto-tuning algorithms

were able to find a good set of input parameters by examining only

up to 100 parameter combinations out of billions possible.

3.3 Efficient execution of sensitivity analysis
We experimentally evaluated scalability of our framework as the

configuration of hierarchical storage is varied. The experiments

included storage configurations with 1 level (1L: file system—FS)

and 2 levels (2L: RAMþFS) with FCFS and LRU replacement poli-

cies. We also analyzed performance of the data locality-aware

coarse-grained scheduling (DLAS) as compared to using the FCFS

strategy. A dataset containing 6113 4K�4K image tiles was used

with the watershed based workflow in these analyses because of

space constrains. The benefits of the performance optimizations for

the level set workflow are similar.

The results presented in Figure 4 show that the analysis work-

flow attained good scalability on a distributed memory machine.

The performance of the configuration with a single storage level is

faster than the ‘2L FIFO - FCFS’ due to the overhead of maintaining

an extra storage level with very low data access hit rate (about

1.5%) in the RAM. However, the ‘2L - FIFO - DLAS’ configuration

is better than the single level because of the higher data access hit

rate (up to 72%) in the first level storage (RAM) as a result of DLAS

scheduling. Moreover, the ‘2L LRU - DLAS’ resulted in the best per-

formance with 1.17� speedup on the 1L configuration due to the

improved hit rate (87%). The cooperative use of CPU and Intel Phi

improved performance by another 1.95�. The SPE optimization

achieved an additional 1.6� speedup.

4 Conclusions

Image analysis pipelines are sensitive to input parameters, and more

effective application in research of image analysis with large datasets

requires better quantification of algorithm sensitivity and tuning of

image analysis parameters to produce more accurate and robust re-

sults. In this work, we demonstrate that (i) the cost of sensitivity

analysis can be reduced by applying a series of optimization phases

to identify and filter parameters with small impact on output vari-

ability and (ii) the cost of parameter space search can be reduced by

intelligently search the space and simultaneously evaluating multiple

parameter values on a cluster system while eliminating duplicate

computations. We evaluate our approach on a cancer image analysis

application using a large-scale cluster system. Our results show that

the proposed approach can enable systematic, comparative study of

analysis pipelines and improve analysis results when large datasets

need to be analyzed. As a future work, we intend to integrate our

framework with visual parameter optimization tools and interfaces

(Pretorius et al., 2015) for a better visual analysis of results from

sensitivity analysis and auto-tuning runs.

Funding

This work was supported in part by 1U24CA180924-01A1 from the NCI,

R01LM011119-01 and R01LM009239 from the NLM, CNPq and NIH

K25CA181503. This research used resources of the XSEDE Science Gateways

program under grant TG-ASC130023.

Conflict of Interest: none declared.

References

Campolongo,F. et al. (2007) An effective screening design for sensitivity ana-

lysis of large models. Environ. Modell. Softw., 22, 1509–1518. Modelling,

Table 5. Results (avg of the metric over the 15 images) using application default parameters and those selected by the tuning algorithms

Workflow Dice Jaccard

Default NM PRO GA GLCCLUSTER DIRECT Spearmint Default NM PRO GA GLCCLUSTER DIRECT Spearmint

Watershed 0.71 0.80 0.80 0.80 0.78 0.81 0.80 0.57 0.67 0.67 0.67 0.64 0.68 0.68

Level Set 0.61 0.75 0.74 0.82 0.61 0.75 0.86 0.50 0.71 0.65 0.70 0.47 0.63 0.79

The best result for each pair segmentation algorithm and metric of interest is highlighted in bold.

Fig. 3. Two image patches are presented with human segmentation and the

level set workflow segmentation using default and tuned parameter values.

The first image (Image 04) has 0.34 and 0.92 dice values, respectively, with

default and tuned parameters. For the second image (Image 08), the dice with

default parameter is 0.77 and it is 0.86 after tuning (Color version of this figure

is available at Bioinformatics online.)

Fig. 4. Scalability and performance with different optimizations

Algorithm sensitivity analysis and parameter tuning 1071

Deleted Text: &hx2009;
Deleted Text: E
Deleted Text: S
Deleted Text: A
Deleted Text: -
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: 1
Deleted Text: 2
Deleted Text: ,

computer-assisted simulations, and mapping of dangerous phenomena for

hazard assessment.

Dice,L.R. (1945) Measures of the amount of ecologic association between spe-

cies. Ecology, 26, 297–302.

Gao,Y. et al. (2016) Hierarchical nucleus segmentation in digital pathology

images. Proc. SPIE, 9791, 979117–979117–6.

Han,J. et al. (2000) Mining Frequent Patterns Without Candidate Generation.

In: Proc. of the 2000 ACM SIGMOD Int. Conf. on Management of Data,

SIGMOD ’00.

Iooss,B. and Lemaitre,P. (2015) A review on global sensitivity analysis

methods. In Dellino,G. and Meloni,C. (eds.) Uncertainty Management

in Simulation-Optimization of Complex Systems, Volume 59 of

Operations Research/Computer Science Interfaces Series, pp. 101–122.

Springer US.

Jones,D.R. (2001) Direct Global Optimization Algorithm, Encyclopedia of

Optimization. pp. 431–440. Springer US, Boston, MA.

Kong,J. et al. (2013) Machine-based morphologic analysis of glioblastoma

using whole-slide pathology images uncovers clinically relevant molecular

correlates. PLoS ONE, 8, 1–11.

Kumar,S. and Hebert,M. (2003) Discriminative random fields: a discrimina-

tive framework for contextual interaction in classification. In: Proc. 9th

IEEE International Conference on Computer Vision, pp. 1150–1157.

McKay,M.D. and Beckman,R.J. W. J. C. (1979) A comparison of three meth-

ods for selecting values of input variables in the analysis of output from a

computer code. Technometrics, 21, 239–245.

McIntosh,C. and Hamarneh,G. (2007) Is a single energy functional sufficient?

Adaptive energy functionals and automatic initialization. In: Lecture Notes

in Computer Science, Medical Image Computing and Computer-Assisted

Intervention (MICCAI), vol. 4792, pp. 503–510.

Morris,M.D. (1991) Factorial sampling plans for preliminary computational

experiments. Technometrics, 33, 161–174.

Pretorius,A. et al. (2015) Visual parameter optimisation for biomedical image

processing. BMC Bioinformatics, 16, 1–13.

Rios,L.M. and Sahinidis,N.V. (2013) Derivative-free optimization: a review of

algorithms and comparison of software implementations. J. Global Optim.,

56, 1247–1293.

Saltelli,A. (2002) Making best use of model evaluations to compute sensitivity

indices. Comput. Phys. Commun., 145, 280– 297.

Saltelli,A. et al. (2004) Sensitivity Analysis in Practice: A Guide to Assessing

Scientific Models. Wiley.

Sareni,B. and Kr€ahenbühl,L. (1998) Fitness sharing and niching methods re-

visited. IEEE Trans. Evol. Comput., 2, 97–106.

Schultz,T. and Kindlmann,G.L. (2013) Open-box spectral clustering: applications

to medical image analysis. IEEE Trans. Vis. Comput. Graph, 19, 2100–2108.

Snoek,J. et al. (2012) Practical bayesian optimization of machine learning al-

gorithms. In: Pereira,F. et al. (eds.) Advances in Neural Information

Processing Systems 25, pp. 2951–2959. Curran Associates, Inc.

Sobol,I. (2001) Global sensitivity indices for nonlinear mathematical models

and their Monte Carlo estimates. Math. Comput. Simul., 55, 271– 280.

Szummer,M. et al. (2008) Learning CRFs using graph cuts. In; Proceedings of

the 10th European Conference on Computer Vision: Part II, ECCV ’08, pp.

582–595. Springer-Verlag, Berlin, Heidelberg.

Tabatabaee,V. et al. (2005) Parallel parameter tuning for applications with

performance variability. In: Proc. of the 2005 ACM/IEEE Conf. on

Supercomputing.

Teodoro,G. et al. (2014) Region templates: Data representation and manage-

ment for high-throughput image analysis. Parallel Comput., 40, 589–610.

Torsney-Weir,T. et al. (2011) Tuner: principled parameter finding for image

segmentation algorithms using visual response surface exploration. IEEE

Trans. Vis. Comput. Graph., 17, 1892–1901.

Weirs,V.G. et al. (2012) Sensitivity analysis techniques applied to a system of

hyperbolic conservation laws. Reliab. Eng. Syst. Saf., 107, 157–170.

1072 G.Teodoro et al.

	btw749-TF1
	btw749-TF2

