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The Rab family of small GTPases functions in multiple
aspects of cellular membrane trafficking. Proteins bearing a dif-
ferentially expressed in normal and neoplastic cells (DENN)
domain have emerged as the largest family of Rab-activating
guanine nucleotide exchange factors (GEFs). Rab12 functions in
the initiation of starvation-induced autophagy, and our previ-
ous work revealed that its activator, DENN domain-containing
protein 3 (DENND3), is phosphorylated and activated upon
starvation. However, how the GEF activity of DENND3 toward
Rab12 is regulated at the molecular level is still not understood.
Here, we combine size-exclusion chromatography, Förster res-
onance energy transfer, pulldown, and in vitro GEF assays to
demonstrate that regulation of GEF activity is achieved through
an intramolecular interaction that is controlled by a key residue
in DENND3, tyrosine 940. Our study sheds light on the regu-
lation of Rab12 activation and lays the groundwork for char-
acterizing the regulation of other DENN domain-containing
proteins.

The Rab family of small GTPases functions in all aspects of
cellular membrane trafficking ranging from vesicle budding to
transport along the cytoskeleton and fusion with acceptor
membranes. Rabs switch between an inactive GDP-bound form
and an active GTP-bound form that interacts with effectors to
mediate trafficking functions. Guanine nucleotide exchange
factors (GEFs)3 activate Rabs by facilitating the exchange of
GDP for GTP (1). There are at least four families of GEFs for
Rabs: TRAPP, Rabin8/Sec2, Vps9 domain-containing proteins,
and DENN domain-containing proteins (2). With 26 distinct
members, DENN domain-containing proteins are the largest

family of Rab GEFs (3– 8). They are involved in diverse
biological functions (4), and mutations in several DENN
domain-bearing proteins are linked to human diseases, includ-
ing the tumor suppressor folliculin associated with Birt-Hogg-
Dubé syndrome (9), C9orf72 linked to familial frontotemporal
dementia and amyotrophic lateral sclerosis (10, 11), and
DENND1B associated with childhood asthma (12).

We recently demonstrated that DENN domain-containing
protein 3 (DENND3) functions in starvation-induced mac-
roautophagy (13, 14). Macroautophagy, which we will hereafter
refer to as autophagy, is a conserved cellular process in which
various physiological signals, including nutrient starvation,
lead to the recruitment of organelles or cytosolic proteins
into double membrane vesicles called autophagosomes. The
autophagosomes eventually fuse with lysosomes for degrada-
tion of the internalized cargo. The resulting building blocks,
such as amino acids, are then released back to the cytosol for
reuse, helping cells survive starvation. Unc-51-like kinase
(ULK) is the most upstream kinase for autophagy initiation
(15). Upon starvation, ULK phosphorylates DENND3 at Ser-
554 and Ser-572, recruiting the adapter protein 14-3-3, and this
process leads to up-regulation of DENND3 GEF activity toward
its substrate Rab12. Rab12 on recycling endosomes (16) then
incorporates into forming autophagosomes and facilitates
autophagosome trafficking (13, 14). Although starvation-medi-
ated phosphorylation of DENND3 regulates its GEF activity
toward Rab12, the mechanism underlying this regulation is
unknown.

Here, we report an intramolecular interaction accounting for
the regulation of the GEF activity of DENND3. We demon-
strate that phosphorylation of a specific tyrosine residue in
DENND3 regulates this intramolecular interaction, suggesting
that a signaling pathway involving a tyrosine kinase impinges
upon the intramolecular interaction to regulate DENND3 GEF
activity toward Rab12.

Results and discussion

Characterization of an intramolecular interaction within
DENND3

DENND3 is composed of an uncharacterized N-terminal
region of 79 amino acids followed by a DENN domain, an �50-
kDa linker region, and a C-terminal WD40 repeat domain (Fig.
1A). We demonstrated that signals stimulating autophagy up-
regulate DENND3-mediated activation of Rab12 (13, 14). In
many cases, activation of GEFs is mediated by release of auto-
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inhibition (17–21). We thus hypothesized that DENND3 forms
an intramolecular interaction that regulates the GEF activity
and that this interaction involves the linker region, which con-
tains the ULK phosphorylation sites.

To explore this hypothesis, we first tested for an intramolec-
ular interaction. We generated GST fusion proteins from
amino acids 538 – 611 (partial linker), covering the N terminus
of the linker around the ULK phosphorylation sites, and amino
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Figure 1. Characterization of an intramolecular interaction within DENND3. A, domain diagram of DENND3. Note the DENN domain between amino acids
80 and 520 and the N-terminal extension between amino acids 1 and 79. B, HEK-293T cells were transfected with FLAG-DENN domain and the N-terminal
extension of DENND3 or FLAG-WD40 repeats, and lysates were incubated with GST, GST-partial linker (amino acids 538 – 611), or GST-linker (538 –973) coupled
to glutathione-Sepharose beads. Proteins specifically bound to the beads were processed for Western blotting with anti-FLAG antibody. An aliquot of the
lysate (starting material; SM) equal to 10% of that added to the beads was analyzed in parallel. C and D, HEK-293T cells were transfected with FLAG-DENN
domain with its N-terminal extension (C) or FLAG full-length DENND3 (D). Lysates were incubated with GST or GST-linker constructs coupled to glutathione-
Sepharose beads and processed as described in B. E, HEK-293T cells were transfected with FLAG-DENN domain with its N-terminal extension (top panel) or
FLAG-DENN domain alone (bottom panel). Lysates were incubated with GST or GST-linker coupled to glutathione-Sepharose beads and processed as described
in B. F, HEK-293T cells were transfected with FLAG N-terminal extension, and lysates were incubated with GST or GST-linker coupled to glutathione-Sepharose
beads (top panel), or HEK-293T cells were transfected with FLAG-linker, and lysates were incubated with GST or GST N-terminal extension coupled to glutathi-
one-Sepharose beads (bottom panel) and processed as described in B. G, HEK-293T cells were transfected with FLAG-Ext-DENN with a series of deletions within
the N-terminal extension. Lysates were incubated with GST or GST-linker coupled to glutathione-Sepharose beads and processed as described in B. H, summary
table for the deletion constructs used in G. I, intramolecular interaction occurs between the C-terminal region of the linker and the Ext-DENN.
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acids 538 –973 (linker), covering the full linker region, and we
performed pulldown experiments with cell lysates expressing
the FLAG-tagged DENN domain with the N-terminal exten-
sion (hereafter called the extension and DENN or Ext-DENN)
(Fig. 1A). These experiments were based on the rationale that
because the DENN domain encodes the catalytic GEF activity,
if there is autoinhibition mediated by the intramolecular inter-
action, it would most likely involve an interaction with the
DENN domain. Interestingly, the GST-linker fusion protein
bound robustly to Ext-DENN, although the partial linker had
little or no binding (Fig. 1B, top panel). There was no binding of
either construct to the WD40 domain (Fig. 1B, bottom panel).
Thus, DENND3 has an intramolecular interaction involving
Ext-DENN and a site on the linker between residues 612 and
973.

We next sought to map the intramolecular interaction site in
the linker. We generated a series of GST-linker fusion proteins
with increasing C-terminal deletions, which we used in pull-
down assays with cell lysates expressing FLAG-tagged Ext-
DENN. Binding between the linker and Ext-DENN was lost
after truncating 38 amino acids from the C terminus of the
GST-linker (Fig. 1C). When we used the same set of GST
fusions for pulldown with full-length DENND3, there was no
detectable binding, even for the full linker (Fig. 1D). Thus, the
intramolecular interaction within full-length DENND3 is suffi-
ciently robust as to prevent binding to the fusion protein.

We next sought to map the interaction site on Ext-DENN.
Surprisingly, whereas the linker fusion protein binds strongly to
FLAG-tagged Ext-DENN, it does not bind the DENN domain
alone (Fig. 1E), indicating that the N-terminal extension is nec-
essary for the intramolecular interaction. However, there was
no binding of the GST-linker to the isolated N-terminal exten-
sion (Ext) tagged with FLAG nor was their binding of the GST-
Ext to the linker tagged with FLAG (Fig. 1F). Thus, both the Ext
and the DENN domain are required for the intramolecular
interaction with the linker. We next sought to map the site(s)
within Ext required for the intramolecular interaction. We gen-
erated a series of FLAG-tagged Ext-DENN constructs with dif-
ferent deletions within the N-terminal extension, which we
screened for interaction with the GST-linker. Interestingly, we
found two patches within Ext, residues 11–30 and 42–59, nec-
essary for interacting with the linker (Fig. 1, G and H). Thus,
there is an intramolecular interaction within DENND3 medi-
ated by the C-terminal region of the linker and the Ext-DENN,
which requires two patches within the N-terminal extension
(Fig. 1I).

Identification of Tyr-940 as a key residue involved in the
intramolecular interaction

We mapped the intramolecular interaction site in the linker
to a region between amino acids 935 and 973 (Fig. 1C). Phos-
phorylation regulates protein interactions in a fast and revers-
ible manner, and we hypothesized that a phosphorylation event
within this region could be involved in the intramolecular inter-
action. We aligned the sequence between 935 and 973 across
species to identify conserved Ser, Thr, and Tyr residues, and for
each we created Asp or Glu phosphomimetics as well as Ala or
Phe phosphorylation-defective mutants. Binding between the

linker and Ext-DENN was not altered with any of the Ser/Thr
phosphomimetic or phosphorylation-defective mutations
(Fig. 2A). Intriguingly, a Y940D mutation almost complete-
ly abolished the interaction, although a phosphorylation-
defective Y940F mutation continued to show strong binding
with Ext-DENN (Fig. 2B). These data indicate that Tyr-940 is a
key residue involved in the intramolecular interaction, and con-
sistently it was reported that Tyr-940 of DENND3 is phosphor-
ylated in rat brain (22). Because of the aromatic ring of tyrosine,
there is no natural amino acid substitute that creates an ideal
phosphomimetic mutant, but many examples do exist in which
mutation of Tyr to Asp or Glu has been used successfully to
mimic phosphorylated tyrosine (23–27). Theoretically, if the
effect of the phosphorylation is due primarily to the negative
charge of the phospho group, Asp or Glu should mimic phos-
phorylated tyrosine. Secondary structure predictions indicate
that the residues flanking Tyr-940 have no secondary structure
and are located between �-helices (supplemental Fig. S1). As
such, this region would be flexible, perhaps forming a loop.

SM 10
%

GST
T95

5A
T95

5E
T95

9A
T95

9D
S96

7A
S96

7E
GST-Linkers

W
T

67

45

31

97

67
Flag-
Ext-DENN

GST-Linker
WT/mutants

GST

A

45

31

67 Flag-
Ext-DENN

GST-Linker
WT/mutants

GST

SM 10
%

GST
W

T
Y94

0F
Y94

0D

GST-LinkersB

Stea
dy

 st
ate

Seru
m de

pri
va

tio
n

Add
ing

 ba
ck

 se
rum

Flag-Linker

pY of Flag-Linker

Flag-Linker
HA-Ext-DENN

IP Flag-Linker

SM

45

45

45

67

HA-Ext-DENN67

C
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Thus, loss of binding of the linker to Ext-DENN after introduc-
ing the Y940D mutation is unlikely to be caused by disruption of
a secondary or tertiary structure in the linker.

Because the GST-linker binds to the isolated Ext-DENN, but
not the full-length DENND3 (Fig. 1, C and D), we wondered
whether full-length DENND3 with the Y940D mutation would
disrupt the cis interaction allowing for an interaction in trans.
However, as shown in supplemental Fig. S2, Y940D does not
have better binding to the linker as compared with wild-type or
Y940F. We think it likely that when the Ext-DENN and the
linker are within full-length DENND3, although the Y940D
mutation abolishes the binding between the Ext-DENN and the
linker, somehow steric hindrance of the linker or the WD40
repeats in cis blocks access of linker in trans to the Ext-DENN.

Tyrosine phosphorylation events are often mediated by tyro-
sine kinase receptors activated by growth factors or hormones
in serum. To gain insight into the regulation of Tyr-940 phos-
phorylation, we expressed FLAG-tagged linker and HA-tagged
Ext-DENN in cells, and after depriving cells of serum, or adding
back serum following the deprivation, we performed immuno-
precipitation experiments to measure the tyrosine phosphory-
lation on the linker and the corresponding intramolecular
interaction. Interestingly, the interaction is stronger when the
cells are deprived of serum compared with cells at steady state
or those re-fed with serum (Fig. 2C). Moreover, as determined
by a phosphotyrosine antibody, the level of tyrosine phosphor-
ylation of the immunoprecipitated linker negatively correlated
with the binding intensity (Fig. 2C), indicating that the tyrosine
phosphorylation may be the cause of the suppression of the
intramolecular interaction. These data reveal that there is an
activity in serum, even at steady state, that evokes tyrosine phos-
phorylation on the linker of DENND3.

Because ULK-mediated DENND3 phosphorylation at Ser-
554 and Ser-572 increases DENND3 GEF activity (14), we won-
dered whether there is cross-talk between this event and Tyr-
940 phosphorylation. One potential model is that Tyr-940
phosphorylation opens the intramolecular interaction, allow-
ing easier access for either ULK-mediated phosphorylation or
14-3-3 binding to the phosphorylated Ser-554/Ser-572 resi-
dues. One way to test this model was to determine whether the
Y940D mutant that disrupts the intramolecular interaction
alters 14-3-3 binding. As shown in supplemental Fig. S3A, when
compared with wild type, the non-phosphorylatable DENND3
S554A mutant loses 14-3-3 binding, and GST-14-3-3 K50E, a
mutant of 14-3-3 that suppresses the interaction between
14-3-3 and its binding partners (28), does not bind to the phos-
phorylated substrate, which serves as a control for the 14-3-3
pulldown. 14-3-3 binding is unaltered when comparing the
Y940D mutant to wild type or the Y940F mutant. Thus, the
phosphorylation status of Tyr-940 does not lead to better access
of 14-3-3 to DENND3. Moreover, ULK phosphorylation on
DENND3 is equivalent when comparing wild-type protein to
the Y940D and Y940F mutants (supplemental Fig. S3B). In
summary, Tyr-940 is a key residue for regulating an intramo-
lecular interaction between the linker region and the Ext-
DENN region of DENND3. Phosphorylation of Tyr-940 is trig-
gered by an activity in serum, and it appears that Tyr-940

phosphorylation is a separate process from ULK-mediated
phosphorylation.

Phosphorylation of Tyr-940 in the linker alters DENND3
conformation

The Y940F and Y940D mutants of DENND3 provide useful
tools to test the hypothesis that Tyr-940 phosphorylation abol-
ishes the intramolecular interaction leading to a conformation
that is open to Rab12 (Fig. 3A). To test this concept, we first
performed size-exclusion chromatography, which separates
proteins and protein complexes by their native mass and hydro-
dynamic volume. As shown in Fig. 3B, wild-type DENND3
elutes with a peak at fraction 27 on a Superose 6 10/300 GL
column, the same as the globular marker ferritin, an �440-kDa
oligomer consisting of 24 subunits. This is surprising because
the molecular mass of DENND3 is �140 kDa, which is marked
by the elution peak of GAPDH. This suggests DENND3 exists
as an oligomer. Interestingly, the Y940D mutant peaked at an
earlier fraction (fraction 23) (Fig. 3C). This is consistent with an
open conformation providing a larger hydrodynamic radius
(Stokes radius), leading to an apparently larger size and earlier
elution than wild type (Fig. 3A). In contrast, the Y940F mutant
had a similar elution profile as wild-type DENND3, likely
reflecting the closed conformation (Fig. 3D).

To further examine whether Y940D leads to an open confor-
mation, we performed gradient centrifugation, which separates
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proteins based on protein mass and shape. As demonstrated in
supplemental Fig. S4, in which the fractions are collected from
the top of the gradient, wild-type DENND3 and Y940F mutant
emerged and peaked in fraction 10 (supplemental Fig. S4, A and C),
whereas Y940D emerged in fraction 8 (supplemental Fig. S4B).
This would indicate an open conformation with a larger frictional
coefficient. This further supports that the Tyr-940 phosphoryla-
tion alters DENND3 conformation.

DENND3 forms an oligomer

The data from size-exclusion chromatography and gradient
centrifugation suggest that DENND3 exists as an oligomer, and
consistently FLAG-tagged DENND3 robustly co-immunopre-
cipitates HA-tagged DENND3 (Fig. 4A). Because the linker
interacts with Ext-DENN of DENND3, we wondered whether
the intramolecular interaction is in fact an intermolecular
interaction, as demonstrated in the hypothetical model of
supplemental Fig. S5A. However, HA-tagged DENND3 Y940F
and Y940D co-immunoprecipitated with FLAG-tagged DENND3
Y940F and Y940D to an equal extent as the wild-type proteins
(supplemental Fig. S5B). These data demonstrate that the inter-
action between Tyr-940 in the linker and Ext-DENN, which
is the hallmark of the intramolecular interaction, is not
required for the oligomerization. We thus sought to map the
region responsible for the oligomerization of DENND3 using

co-immunoprecipitation of various domains of DENND3
tagged with FLAG and full-length DENND3 tagged with HA.
Ext-DENN co-immunoprecipitated efficiently with full-length
DENND3 (Fig. 4B), whereas neither the linker nor WD40
repeats co-immunoprecipitated (Fig. 4, C and D). Moreover,
GST-tagged Ext-DENN co-immunoprecipitated with FLAG-
tagged Ext-DENN (Fig. 4E), supporting that Ext-DENN is suf-
ficient to mediate the oligomerization, which is distinct from
the intramolecular interaction.

Size-exclusion chromatography further supports that Ext-
DENN is sufficient for the oligomerization. As shown in Fig. 4F,
Ext-DENN eluted at fractions corresponding to a molecular
mass greater than the size of monomer of Ext-DENN (�70
kDa).

Tyr-940 phosphorylation leads to an open conformation with
enhanced GEF activity

To further examine the role of Tyr-940 in the intramolecular
interaction of DENND3, we turned to Förster resonance energy
transfer (FRET) microscopy. We generated constructs of
DENND3 (minus the WD40 domain) with or without Tyr-940
mutations, flanked by fluorescent reporters Cerulean and
Venus at the N and C termini, respectively (Fig. 5A). We tran-
siently expressed these constructs and performed FRET imag-
ing experiments. As shown in Fig. 5, B and C, the FRET signal
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with the Y940D mutation was suppressed compared with wild-
type and the Y940F mutant, with the Y940F mutant displaying
the greatest FRET signal. These data further support that the
Tyr-940 phosphorylation suppresses the intramolecular inter-
action rendering DENND3 in an open conformation.

To test whether the open conformation has greater GEF
activity toward Rab12, we performed in vitro GEF assays. Over-
expressed DENND3 proteins (wild type, Y940D, and Y940F)
were immunoprecipitated from HEK-293T cells and added to
purified Rab12 (preloaded with GDP) in the presence of
[35S]GTP�S. As shown in Fig. 5D, the amount of GTP loaded on
Rab12 was greater when Rab12 is incubated with the Y940D
mutant compared with wild type. Moreover, the Y940F mutant
was not able to promote GEF activity (Fig. 5D). These data
indicate that the open conformation of DENND3 has greater
GEF activity.

We hypothesized that the increased GEF activity of the Tyr-
940 mutant results from enhanced accessibility of Rab12 for the
DENN domain when the intramolecular interaction is abol-
ished. To test this hypothesis, we took advantage of the fact that
binding with nucleotide-free Rab is a hallmark of GEF domains,
and we conducted a pulldown experiment using nucleotide-
free GST-Rab12. As shown in supplemental Fig. S6, Rab12
binds to both FLAG-tagged full-length Ext-DENN and FLAG-
Ext-DENN with deletion from residues 21 to 30, which does not
interact with the linker region due to the deletion. Interestingly,
addition of purified linker inhibited the binding of Rab12 to
Ext-DENN but not the Ext-DENN with deletion. This indi-
cates that the intramolecular interaction excludes Rab12
from accessing the DENN domain.

We next explored whether there is a difference in subcellular
localization between wild-type DENND3 and the Y940D muta-
tion. As shown in the immunofluorescence experiments (sup-
plemental Fig. S7A), expressed wild-type DENND3 has a cyto-
solic distribution, regardless of whether the FLAG tag is at the
N or C terminus of the protein. The Y940D and Y940F mutants
also display cytosolic localization, as does the S554A mutant,
which no longer binds to 14-3-3 (14). Considering that overex-
pression of the protein may contribute to the cytosolic pattern,
we limited the expression level by reducing the duration of
expression following transfection from 16 to 10 h. Under this
condition, the wild-type DENND3 and its mutants still kept the
cytosolic distribution, but a few fine puncta were observed
within the cytosolic pool (supplemental Fig. S7A), which sug-
gests some membrane-associated DENND3 was captured. Fur-
ther subcellular fractionation experiments were employed to
examine the membrane pool of DENND3. The post-nuclear
supernatant of cell lysates was centrifuged at 200,000 � g to
separate membrane fractions from cytosolic fractions. As
shown in supplemental Fig. S7B, whereas RME-8, a peripheral
membrane protein, and Na�K�-ATPase, an integral mem-
brane protein, were found in the pellet and GAPDH, a cytosolic
protein, was found in the supernatant, wild-type DENND3 is
found in both fractions, as are the Y940D and Y940F mutants.
This indicates that DENND3 has both membrane-associated
and cytosolic pools, but there is seemingly no difference in the
distributions of the wild type and mutants. Considering that
the cytosolic pool may mask the membrane-associated pool
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Figure 5. With Tyr-940 phosphorylation DENND3 assumes an open con-
formation with enhanced GEF activity. A, diagram showing the principle
underlying the test of the hypothesis of open/closed conformations through
FRET experiments. B, HeLa cells were transfected with a FRET construct of
DENND3 wild-type, Y940D, or Y940F mutant before FRET imaging. The color-
coded images indicate the measured FRET signal. Warm colors represent high
FRET signal; cool colors represent low FRET signal. The color scale bar repre-
sents the efficiency of the FRET signal. The mean values of FRET efficiency for
wild type, Y940D, and Y940F are 0.1397, 0.1109, and 0.1460, respectively.
Scale bar, 5 �m. C, FRET efficiency measurements from images as in B were
quantified from n � 180 cells for each group over three repeats. The data are
presented with box and whisker graphs. The box extends from the 25th to 75th
percentiles. The line inside the box is plotted at the median. The whiskers are
from the 10th to the 90th percentile. Statistical analysis employed one-way
analysis of variance followed by Tukey’s post-test. ****, p � 0.0001, *, p � 0.05.
D, FLAG-DENND3 wild-type, Y940D, or Y940F mutants were immunoprecipi-
tated from HEK-293T cells. Immunoprecipitations from mock-transfected
cells were used as mock for the GDP/GTP exchange assay. To measure
GEF activity, GDP-loaded Rab12 was incubated with immunoprecipitated
DENND3 wild type, mutant or mock in the presence of GTP�S and [35S]GTP�S.
At the time points indicated, an aliquot of the reaction was analyzed for nucle-
otide exchange. The enzymatic activity based on the amount of Rab12 loaded
with GTP�S over time is shown. The curves were fit with a nonlinear regres-
sion one-phase association. The points represent mean � S.E., n 	 3. Dupli-
cates of the immunoprecipitated DENND3 proteins were processed by SDS-
PAGE and stained with Coomassie Blue dye, showing that equal amounts of
DENND3 wild type and mutants were used for the GDP/GTP exchange assay
(right bottom panel). E, model summarizing under nutrient starvation ULK-
mediated phosphorylation and Tyr-940 phosphorylation on DENND3 and
their functional consequence.
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in the immunocytochemical experiments, we pre-permeabi-
lized the cells with saponin to release cytosolic DENND3 before
fixing the cells for immunofluorescence experiments. As shown
in supplemental Fig. S7C, after the pre-permeabilization the
fluorescent signal from wild-type DENND3 and its mutants
became faint. As a result, a few puncta emerged. However, the
wild type and the Y940D/Y940F mutants still display the same
pattern (supplemental Fig. S7C). Thus, based on the data of
supplemental Fig. S7, A–C, the Y940D mutation does not facil-
itate the translocation of DENND3 to the membrane where the
GEF activity is conducted. We consider that the recruitment of
DENND3 to the membrane for activating Rab12 is a transient
process.

We previously demonstrated that upon starvation ULK phos-
phorylates DENND3 at Ser-554 and Ser-572, increasing its GEF
activity toward Rab12, which promotes autophagy by facilitat-
ing autophagosome trafficking (13, 14). Here we investigated
the molecular mechanisms underlying the regulation of
DENND3. We found there is an intramolecular interaction
within DENND3 that impinges upon the GEF activity. Unex-
pectedly, instead of residues Ser-554 and Ser-572, Tyr-940 in
the linker of DENND3 is a key residue regulating the intramo-
lecular interaction.

Based on our mapping data, it seems that the ULK-mediated
phosphorylation is not involved in regulating the intramolecu-
lar interaction between the linker and Ext-DENN. Because the
phosphorylation by ULK recruits 14-3-3 proteins (14), perhaps
upon nutrient starvation the ULK-mediated phosphorylation
changes the GEF activity of DENND3 through translocating
DENND3 to a subcellular localization, such as recycling endo-
some, where it can meet and activate its substrate Rab12 (13,
14). Alternatively, the 14-3-3 binding to the DENND3 oligomer
may lead to a favorable conformation, which facilitates GEF
activity toward Rab12.

Our data suggest that an activity in serum phosphorylates
Tyr-940, suppressing the intramolecular interaction (Fig. 5E).
Phosphorylation of Tyr-940 is crucial for regulating the GEF
activity of DENND3 through impinging on the intermolecular
interaction. Considering the role of DENND3 in autophagy,
Tyr-940 phosphorylation at steady state, enabling DENND3
basal GEF activity, may be required for basal levels of autophagy
(14). One potential model is that under nutrient starvation a
stress signal triggers the release of a specific hormone or serum
factor that results in the up-regulated phosphorylation of Tyr-
940 and thus the open conformation of DENND3. Together
with ULK-mediated phosphorylation and the resulting 14-3-3
binding, there is an additive increase of DENND3 GEF activity
toward Rab12 (Fig. 5E).

It is interesting to note that some DENN domain-containing
proteins form hetero-oligomers, such as C9ORF72 and SMCR8
(29, 30) and folliculin and folliculin-interacting proteins (31).
Here we report for the first time that a DENN domain-contain-
ing protein also forms a homo-oligomer.

Our findings provide an example in which the GEF activity of
a DENN domain-containing protein is regulated by an intra-
molecular interaction. Because the interaction involves the
conserved DENN domain, the mechanism of the regulation we
report here may be shared among DENN domain proteins, the

vast majority of which remain to be characterized. Considering
the importance of Rab-activating GEFs in membrane traffick-
ing and the pathogenic role of mutations in DENN domain
proteins (9 –12, 32), further characterization of DENN domain
proteins will not only reveal fundamental membrane traffick-
ing processes but will also shed light on related pathological
pathways.

Experimental procedures

Antibodies and reagents

Mouse monoclonal and rabbit polyclonal FLAG antibodies
were from Sigma. Rabbit polyclonal antibody against GFP was
from Life Technologies, Inc. Mouse DENND3 cDNA was from
Imagenes. The coding sequence was amplified by PCR and
cloned into pCMV vector creating FLAG-DENND3. The
DENN domain with the N-terminal extension (amino acids
1–520) and the DENN domain (amino acids 79 –520) were
cloned into pCMV vector creating FLAG-Ext-DENN and
FLAG-DENN domain, respectively. Linker region constructs
were cloned into pGEX vector generating GST-linkers coding
different regions of the linker. GST-linker Y940F or Y940D,
FLAG-DENND3 Y940F or Y940D, and FLAG-Ext-DENN with
a series of deletions within the N-terminal extension were cre-
ated by the QuikChange site-directed mutagenesis kit from
Stratagene. The His-tagged Rab12 construct used for GDP/
GTP exchange assay was from Addgene (catalog no. 25512).
DENND3 constructs used for FRET microscopy were gener-
ated by inserting DENND3 coding sequence (11–953, with or
without Y940D/Y940F mutation) into MCS of C17V construct
(Addgene catalog no. 26395), which is between Cerulean and
Venus coding sequences. GST-14-3-3� wild-type and K50E
mutant constructs (rat coding sequence in pGEX-4T1) were
gifts from Dr. Philippe Roux, Université de Montréal.

Immunoprecipitation

Cells were collected in HEPES lysate buffer (20 mM HEPES,
pH 7.4, 10 mM sodium fluoride, 0.5 mM sodium orthovanadate,
60 nM okadaic acid, 100 mM sodium chloride, 1% Triton X-100,
0.5 �g/ml aprotinin, 0.5 �g/ml leupeptin, 0.83 mM benzami-
dine, and 0.23 mM phenylmethylsulfonyl fluoride). Following
10 min at 4 °C, lysates were spun at 200,000 � g for 15 min. The
supernatant was incubated for �3 h at 4 °C with antibodies
coupled to protein A- or G-Sepharose. Beads were subse-
quently washed three times with HEPES lysates buffer and ana-
lyzed by SDS-PAGE. Samples were then processed for Western
blotting.

Pulldown assay

Cell lysates prepared in the same way as described in immu-
noprecipitation were incubated for �3 h at 4 °C with GST or
GST fusion proteins coupled to glutathione-Sepharose. The
samples were subsequently washed and prepared for Western
blotting as described under “Immunoprecipitation.”

Size-exclusion chromatography

HEK-293T cells were transfected with FLAG-tagged
DENND3 wild-type or mutant construct. After 2 days the cells
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were collected in HEPES lysate buffer (20 mM HEPES, pH 7.4,
10 mM sodium fluoride, 0.5 mM sodium orthovanadate, 60 nM

okadaic acid, 100 mM sodium chloride, 0.5 �g/ml aprotinin, 0.5
�g/ml leupeptin, 0.83 mM benzamidine, and 0.23 mM phenyl-
methylsulfonyl fluoride). Following 10 min at 4 °C, lysates were
spun at 200,000 � g for 15 min. The supernatant was loaded on
Superose 6 10/300 GL column (GE Healthcare). The collected
fractions were analyzed by SDS-PAGE. Samples were then pro-
cessed for Western blotting.

Glycerol gradient centrifugation

Cells were transfected with FLAG-tagged DENND3, wild
type, or mutants. After 2 days the cells were washed in PBS and
collected in HEPES lysate buffer (20 mM HEPES, pH 7.4, 10 mM

sodium fluoride, 0.5 mM sodium orthovanadate, 60 nM okadaic
acid, 100 mM sodium chloride, 0.5 �g/ml aprotinin, 0.5 �g/ml
leupeptin, 0.83 mM benzamidine, and 0.23 mM phenylmethyl-
sulfonyl fluoride). Following snap freezing and thawing to fur-
ther lyse the cells, lysates were spun at 200,000 � g for 15 min.
The supernatant was loaded on glycerol gradients (10 –30%) in
the HEPES lysate buffer. Samples were then centrifuged in a
swinging-bucket rotor at 103,000 � g for 16 h at 4 °C. The frac-
tions were collected and processed by SDS-PAGE. Samples
were then analyzed by Western blotting.

Subcellular fractionation

HEK-293T cells were transfected with FLAG-tagged wild-
type DENND3, wild type, or mutants. After 1 day the cells were
washed in PBS and collected in HEPES buffer (20 mM HEPES,
pH 7.4, 0.5 �g/ml aprotinin, 0.5 �g/ml leupeptin, 0.83 mM ben-
zamidine, and 0.23 mM phenylmethylsulfonyl fluoride). After a
10-min incubation on ice, lysates were spun at 800 � g for 10
min. The supernatant was adjusted to 2 mg/ml and then sub-
jected to centrifugation at 200,000 � g for 30 min at 4 °C. The
resulting supernatant and pellet were processed for SDS-PAGE
and Western blotting.

GDP/GTP exchange assay

His-tagged Rab12 was purified by nickel-nitrilotriacetic acid-
agarose (Qiagen). The His tag was then removed by thrombin-
mediated cleavage between the tag and the Rab12. Purified 3.6
�M Rab12 was loaded with 20 �M GDP by incubation for 10 min
in loading buffer (20 mM Tris, pH 7.5, 100 mM NaCl, 5 mM

EDTA). MgCl2 (10 mM) was added and incubated for another
10 min to stabilize the loaded GDP. Exchange reactions were
carried out in 65-�l total volume containing 0.36 �M loaded
Rab12, 0.55 �M immunoprecipitated FLAG-tagged DENND3
wild type or mutant, 5 �M GTP�S, 0.2 mCi/mmol [35S]GTP�S,
and 0.5 mg/ml BSA in reaction buffer (20 mM Tris, pH 7.5, 100
mM NaCl, 30 mM MgCl2, 0.5 mM DTT). Following the indicated
incubation time, 13 �l of the reaction was removed, added to 1
ml of 4 °C wash buffer (20 mM Tris, pH 7.5, 100 mM NaCl, 30
mM MgCl2), and passed through nitrocellulose filters. The fil-
ters were washed with 5 ml of wash buffer and counted with a
scintillation counter.

Förster resonance energy transfer (FRET) microscopy

HeLa cells were plated on MatTek plates (MatTek Corp.).
When the cells reached 50% confluency, DENND3 FRET con-

structs and constructs expressing Cerulean/Venus alone were
transfected into HeLa cells by jetPRIME (Polyplus transfec-
tion). After �15 h, live cells were used for FRET microscopy.
The images were taken by Zeiss Observer.Z1 microscope, with
25% light intensity. Images from cells expressing Cerulean/Ve-
nus alone were used as control measurement for subtracting
bleed-through. All cells were imaged in the configurations of
cyan fluorescent protein, YFP, and FRET in which 50 ms of
exposure time was kept fixed for all groups. The FRET signal
was analyzed with AxioVision software. To subtract bleed-
through from cyan and yellow channels, the FRET Xia formula
was used (33).

Immunofluorescence

HeLa cells were plated on coverslips coated with poly-L-ly-
sine. Cells with/without pre-permeabilization for 1 min by
0.033% saponin were fixed with 4% paraformaldehyde in 37 °C
PBS for 10 min, followed by standard protocols of immuno-
fluorescence. Images were taken by Zeiss LSM 710 confocal
microscope.

Statistical evaluation

Experiments were repeated at least three times, from which
values, expressed as mean � S.E., were obtained if needed. Sta-
tistical analysis of the results was carried out by one-way anal-
ysis of variance, followed by Tukey’s multiple comparison test
when appropriate. p � 0.05 was considered significant. For
GDP/GTP exchange assays, data were plotted in GraphPad
Prism, and curves were fitted by a nonlinear regression one-
phase association.
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