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Abstract

Purpose of review—High-fat, low-carbohydrate ketogenic diets (KDs) have been used for 

almost a century for the treatment of epilepsy. Used traditionally for the treatment of refractory 

pediatric epilepsies, in recent years the use of KDs has experienced a revival to include the 

treatment of adulthood epilepsies as well as conditions ranging from autism to chronic pain and 

cancer. Despite the ability of KD therapy to suppress seizures refractory to antiepileptic drugs and 

reports of lasting seizure freedom, the underlying mechanisms are poorly understood. This review 

explores new insights into mechanisms mobilized by KD therapies.

Recent findings—KDs act through a combination of mechanisms, which are linked to the 

effects of ketones and glucose restriction, and to interactions with receptors, channels, and 

metabolic enzymes. Decanoic acid, a component of medium chain triclycerides, contributes to 

seizure control through direct AMPA receptor inhibition, whereas drugs targeting lactate 

dehydrogenase reduce seizures through inhibition of a metabolic pathway. KD therapy also affects 

DNA methylation, a novel epigenetic mechanism of the diet.

Summary—KD therapy combines several beneficial mechanisms that provide broad benefits for 

the treatment of epilepsy with the potential to not only suppress seizures but also to modify the 

course of the epilepsy.
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Introduction

Since ancient times it was known that sustained fasting or a ‘water diet’ can be used to 

control seizures in epilepsy. In the 1920s it was found that a diet composed mostly of fats, 

i.e. a high-fat low-carbohydrate ‘ketogenic diet’, could replicate the effects of fasting, and 

those beneficial effects were ascribed to the production of ketones, such as β-

hydroxybutyrate (BHB), acetoacetate, and acetone in the liver [1]. Despite early successes of 

KD therapies, the advent of antiepileptic drugs (AEDs) in the 1940s pushed KD therapy to 
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the sidelines. However, the clinical use of KD therapies received increased attention in the 

1990s, and KD therapy is now an established therapy for difficult-to-treat epilepsies in 

addition to a wider use in a variety of neurological disorders [2]. Seizure freedom during KD 

treatment is a clinical reality with one study reporting a 24% rate of seizure freedom, 

however there is still a risk of breakthrough seizures [3]. Core mechanisms of the diet have 

been covered in excellent recent reviews [4–6]. This review focuses on new mechanistic 

findings, which support the concept that the broad success of KD therapy is based on a 

combination of multiple beneficial mechanisms. The purpose of this review is not to provide 

a comprehensive overview of all potential mechanisms, but to guide the reader to areas of 

current research interest.

Clinical associations

Clinical studies can be used to associate metabolites or neurotransmitters/modulators 

mobilized by KD therapy with treatment success and to identify predictors for successful 

therapeutic outcomes. For example, it is well known that high blood BHB levels correlate 

with positive treatment outcome. Similarly, an increase in cholecystokinin-8, a peptide with 

antiepileptic properties, and a decrease in leptin associated with seizure suppression in 

patients with refractory epilepsy [7]. On the amino acid level it was found that changes in 

cerebrospinal fluid (CSF) lysine and arginine associated with >50% seizure reduction in a 

study involving 60 children [8]. On the genomic level single nucleotide polymorphisms 

(SNPs) can be used to associate gene variants with treatment success. However, variants in 

KCNJ11 and Bcl-2-associated death promoter (BAD), two key metabolic regulators, were 

recently shown to not predict response to KD therapy [9].

Ketosis and ketone bodies

Ketone bodies, such as BHB, and their derivatives have received most attention as mediators 

of the anti-seizure, neuroprotective, and anti-inflammatory effects of KD therapy [1,10,11]. 

In neurons BHB can compete with glucose for energy generation by inhibiting glycolytic 

flux upstream of pyruvate kinase [12•]. KDs can thereby shunt ketones into oxidative 

metabolism in the brain, which also enhances the capacity to produce amino acids such as 

GABA [13]. BHB levels in plasma are generally taken as indicator for ketosis but 

interactions with conventional antiepileptic drugs may exist [14]. Traditionally, BHB has 

been considered as the main effector of the therapeutic benefits of KD therapy. BHB in turn 

appears to have pleiotropic effects. In one mechanistic study BHB was shown to support 

synaptic vesicle recycling with a net effect of endocytosis exceeding exocytosis, a 

mechanism with possible anticonvulsant outcome [15]. BHB can also have direct effects by 

acting as endogenous ligand of the hydroxyl-carboxylic acid receptor 2 (HCA2) [11]. 

Activation of HCA2 on a subset of macrophages induces a neuroprotective phenotype 

depending on prostaglandin D2 production, whereas the genetic ablation of HCA2 abolished 

BHB-induced neuroprotection in a murine stroke model [11]. One therapeutic goal is to 

replace the KD, and its strict requirements for adherence, with dietary supplements that can 

produce sustained ketosis. Ketone esters, such as R,S-1,3-butanediol acetoacetate diester 

(BD-AcAc2) are currently considered as a substitute to KD therapy in efforts to develop a 

‘ketogenic diet in a pill’. In support of therapeutic efficacy BD-AcAc2 was shown to 
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increase the thresholds for pentylenetetrazole induced seizures in the rat [16] and to 

ameliorate seizures in a mouse model of Angelman syndrome [17].

Medium-chain fatty acids

The medium chain triglyceride (MCT) KD is commonly used for the treatment of refractory 

childhood epilepsy. Importantly, one on one comparisons of a variety of medium chain fatty 

acids with valproic acid (VPA), a conventional AED, showed enhanced anti-seizure efficacy 

of medium chain fatty acids with reduced toxicities compared to VPA in a panel of in vitro 
and in vivo assays [18]. Medium chain fatty acids, such as heptanoic acid, octanoic acid, or 

decanoic acid, exert pleiotropic anti-seizure effects and have therefore been considered as 

add-ons to KDs or to regular non-KDs. Heptanoic acid can supply the tricarboxylic acid 

cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish the cycle. 

It has been shown that heptanoic acid can lead to increased levels of glutamine in the brains 

of glucose transporter I deficient mice suggesting a role for glial metabolism of heptanoate 

[19]. A small scale open-label case series tested the effects of triheptanoin-supplemented 

diets in 14 patients with inborn glucose transporter type I deficiency. The authors of this 

study reported a modest improvement in ictal events, but the underlying mechanisms were 

not further evaluated [20]. Branched octanoic acid compounds have been generated that 

show promising antiseizure activity in in vitro and in vivo seizure models, without affecting 

histone deacetylase activity [21]. Chronic feeding of diet with 35% of the calories derived 

from tridecanoin but not from trioctanoin was anticonvulsant in two mouse models in the 

absence of increased plasma and brain BHB [22•]. Only tridecanoin but not trioctanoin 

improved mitochondrial metabolic functions and antioxidant capacity [22]. Specifically, 

decanoic acid but not octanoic acid improved mitochondrial biogenesis as well as 

mitochondrial numbers through a PPARγ-mediated mechanism in neuronal cell culture 

systems [23,24]; decanoic acid led to an increase in the transcription of genes related to fatty 

acid metabolism, while downregulating genes involved in glucose metabolism [23]. Using 

single-cell imaging in pluripotent stem cell-derived human astrocytes and neurons it was 

found that decanoic acid promoted astrocytic but not neuronal glycolysis and lactate 

formation, whereas octanoic acid did not affect glycolysis but increased astroglial 

ketogenesis [25]. The authors of this study concluded that medium chain fatty acids 

modulate astrocyte metabolism by providing lactate and ketones as fuel for neighboring 

neurons via the glial/neuronal shuttle system [25•]. Medium chain fatty acids were also 

shown to affect amino acid metabolism, with an increase of tryptophan in the brain 

associated with reduced hippocampal excitability [26]. Finally, a recent seminal study from 

Chang et al., identified an exciting novel mechanism, by which decanoic acid directly 

reduces neuronal excitability by inhibition of AMPA receptor activity; importantly, it was 

shown that decanoic acid, acts as a non-competetive AMPA receptor antagonist binding to a 

site that is distinct from the perampanel binding site of the receptor [27••]. These findings 

suggest the existence of a powerful anticonvulsant mechanism of medium chain triglyceride 

ketogenic diets, which is based on the direct inhibition of excitatory neurotransmission by 

decanoic acid.
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Polyunsaturated fatty acids (PUFAs)

A classic KD consists mostly of long-chain saturated triglycerides; however, polyunsaturated 

fatty acids (PUFAs) may also decrease neuronal excitation and provide neuroprotection by 

inducing the opening of voltage-gated potassium channels through binding to a newly 

identified PUFA binding site in the open state of the channel [28]. However, a recent study 

suggests that a PUFA diet, or a KD supplemented with PUFA did not reduce spontaneous 

recurrent seizures (SRS) in a kainic acid (KA)-induced rat model of epileptogenesis 

compared to control diet or KD, respectively [29•].

PPARs and inflammatory pathways

Inflammatory pathways and oxidative stress play a major role in the pathophysiology of 

epilepsy. Of interest, KD therapy exerts a major inherent anti-inflammatory activity, which 

appears to be independent of PUFA’s [30•]. The metabolically regulated transcription factors 

of the family of peroxisome proliferator activated receptors (PPAR) are involved in 

mitochondrial biogenesis and the control of genes involved in anti-inflammatory and anti-

oxidant pathways. PPARα is activated by X-box binding protein 1 (XBP1), which is 

activated by hepatic serine/threonine-protein kinase/endoribonuclease inositol-requiring 

enzyme 1 (IRE1), which in turn functions as a nutrient sensor that regulates metabolic 

adaptation to fasting [31]. PPARγ is activated by fatty acids, such as decanoic acid, and 

might therefore mediate anti-inflammatory and anti-oxidant properties of the KD. A PPARγ 
antagonist abrogated KD-induced seizure protection in Kv1.1 knockout mice, a 

spontaneously epileptic mouse strain responsive to KD therapy [32], whereas an PPARγ 
agonist conferred seizure protection; in line with these findings KD therapy was ineffective 

in preventing seizures in PPARγ knockout mice [33•]. Since seizure suppression was 

associated with a PPARγ induced increase in PPARγ2 expression, the authors of this study 

concluded that PPARγ2 contributes to the anti-seizure effects of KD therapy.

KATP Channels

The ATP-sensitive potassium (KATP) channel is a sensor for the energy state of the cell and 

acts as a feedback system to restrict neuronal firing, when energy levels are low. KATP 

activity is determined by phosphoregulation of BAD, a protein with dual functions in 

apoptosis and glucose metabolism. Genetic manipulation of BAD designed to reduce 

glucose metabolism produced an increase in the activity of neuronal KATP channels and 

resistance to seizures in vivo [34]. In line with those findings, pharmacological inhibition or 

genetic manipulation of KATP function abrogated or attenuated ketone-induced 

neuroprotection and seizure resistance [34,35•]. In the substantia nigra KATP channels are 

activated under conditions that favor decreased mitochondrial respiration [36]. Together 

these findings suggest a tight mechanistic link between metabolism, BAD, KATP channel 

function and the control of neuronal excitation.
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Neurotrophic factors

The neurotrophin brain derived neurotrophic factor (BDNF) is linked to both AMP kinase 

(AMPK) and mammalian target of rapamycin (mTOR signaling) and thought to be 

implicated in epileptogenesis. A KD, but not a high fat or a low fat diet, led to a circadian 

shift in the expression of brain and liver BDNF, suggesting that a KD might impact (i) 
circadian activities, and (ii) the expression of BDNF [37]. However, the significance of 

neurotrophic factors as possible mediators of KD therapy are not yet clear, because in 

healthy rats a KD reduced BDNF levels in striatum, but not hippocampus, whereas the 

astrocyte neurotrophic cytokine S100β was not affected in the brain [38].

Increased mitochondrial function and biogenesis

Mitochondrial function is crucial for brain function and several inborn metabolic disorders 

compromise mitochondrial function and trigger complex clinical phenotypes with seizures. 

KD therapy is known to improve mitochondrial function and is therefore considered for the 

treatment of metabolic seizure disorders. One of those conditions is brain aspartate-

glutamate carrier (AGC1) deficiency, which affects a transporter that shuttles aspartate from 

mitochondria to the cytosol and indirectly promotes the transfer of nicotinamide adenine 

dinucleotide (NADH)-reducing equivalents into mitochondria, and which causes hypotonia, 

impaired psychomotor development, and seizures. A recent case report demonstrated that 

KD treatment was able to compensate for the metabolic defects with major improvement of 

clinical symptoms [39•]. Glucose and mitochondrial hypometabolism contributes to the 

pathology a Dravet Syndrome (DS), a catastrophic form of childhood epilepsy. A KD 

formulation rescued mitochondrial respiration and restored glucose metabolism in a 

zebrafish model of DS [40•]. The underlying molecular mechanism through which a KD in 

general, and ketone bodies in particular, improve mitochondrial function has been unraveled 

in a recent study that investigated the effects of ketone bodies on acutely isolated brain 

mitochondria from Kcna1 knockout mice [41••]. The authors of this study demonstrated that 

ketone bodies alone suppressed seizures in spontaneously epileptic Kcna1-null mice, 

restored impaired hippocampal long-term potentiation and learning in those mutants, and 

raised the threshold for calcium-induced mitochondrial permeability transition (mPT). 

Importantly, the targeted deletion of the cyclophilin D subunit of the mPT complex 

uncoupled the effects of ketone bodies on mPT, while mPT was directly related to the 

antiseizure effects of ketone bodies; therefore, the direct link between ketone bodies, mPT, 

and seizure control indicates a mechanistic explanation for the antiseizure effects of KD 

therapy [41].

Oxidative stress

Among a multitude of detrimental downstream pathways, oxidative stress leads to the 

formation of reactive lipid fragments that can further aggravate tissue damage. Isotope 

labelling experiments have shown that KD therapy induces cytochrome P450 4A-dependent 

ω- and ω-1-hydroxylation of reactive lipid species, a novel mechanism that might contribute 

to the anti-inflammatory properties of KD therapy [42].
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Protein restriction

It needs to be kept in mind that a strict KD regimen not only restricts the supply of 

carbohydrates, but also of proteins. Protein restriction itself has been shown to enhance the 

production of the endocrine signal fibroblast growth factor 21 (FGF21) in the liver [43]. 

FGF21 in turn can increase glucose uptake by adipocytes and reduce blood glucose levels, 

an additional beneficial effect that might be attributable to low protein content in certain 

KDs.

Lactate dehydrogenase

The astrocyte to neuron lactate shuttle is a major component of a metabolic route that 

supplies the neuron with alternate sources of energy. Lactate dehydrogenase (LDH) is a 

metabolic enzyme mediating this lactate shuttle and needed to supply neurons with glucose-

derived energy (via lactate). In a seminal landmark study Tsuyoshi Inoue’s group 

demonstrated that the inhibition of LDH hyperpolarizes neurons and suppresses seizures 

[44••]. Remarkably, this enzyme was also found to be a molecular target of stiripentol, a 

clinically-used antiepileptic drug for Dravet syndrome [44••]. These findings are remarkable 

and suggest that inhibition of this metabolic pathway can mimic the effects of KD therapy, 

and might lead to the development of a ‘KD in a pill’.

Disease modifying and epigenetic mechanisms

A series of recent data suggests that KD therapy exerts disease modifying effects in epilepsy 

and that epigenetic mechanisms might be involved. Strikingly, KD therapy was found to 

postpone disease progression, delay the onset of severe seizures and to increase the lifespan 

of Kcna1-null mice, a model of progressive epilepsy and sudden unexpected death in 

epilepsy (SUDEP) [45••]. A disease modifying epigenetic mechanism of KD therapy is 

supported by findings that a predominant increase of DNA methylation is associated with 

chronic epilepsy in the rat and that KD therapy attenuated seizure progression and 

ameliorated DNA methylation mediated changes in gene expression [46]. A subsequent 

study showed that a transient KD therapy restored normal adenosine levels and global DNA 

methylation levels in epileptic rats that were otherwise adenosine deficient and 

hypermethylated; importantly, transient KD therapy reduced seizure activity long-term, even 

after diet reversal to control diet [47••]. Because KD therapy increases adenosine [47,48] and 

because adenosine blocks DNA methylation [49] it is likely that the KD exerts its disease 

modifying effects through an adenosine-dependent epigenetic mechanism.

Gut microbiome

The gut microbiome is increasingly recognized to play a major role for brain health. A 

recent study found that KD feeding in the BTBR mouse model of autism resulted in anti-

microbial effects and a compositional remodeling of the gut microbiome [50••]. Although 

the underlying mechanisms remain enigmatic, this is a significant finding suggesting a much 

broader systemic effect of KD therapy.
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Conclusion

The ketogenic diet combines several mechanisms that together reduce neuronal excitability. 

The identification of specific mechanisms may lead to the development of treatments in 

which a strict ketogenic diet might be replaced by dietary supplements. The identification of 

disease-modifying properties of KD therapy may offer hope for long-lasting therapeutic 

outcomes even after discontinuation of the diet.
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Key points

• The antiepileptic effects of ketogenic diet therapy are based on a combination 

of multiple beneficial mechanisms.

• Certain lipids, such as medium chain fatty acids, have their own independent 

anticonvulsant effects that may boost the efficacy of KD therapy, or that may 

lead to replacement therapies.

• Decanoic acid controls seizures through direct AMPA receptor inhibition.

• Drugs targeting lactate dehydrogenase reduce seizures through inhibition of a 

metabolic pathway.

• KD therapy exerts disease modifying, antiepileptogenic effects that are based 

on an epigenetic mechanism.
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