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Abstract
The intra-islet microvasculature is a critical interface 
between the blood and islet endocrine cells governing 
a number of cellular and pathophysiological processes 
associated with the pancreatic tissue. A growing body 
of evidence indicates a strong functional and physical 
interdependency of βcells with endothelial cells (ECs), 
the building blocks of islet microvasculature. Intra-islet 
ECs, actively regulate vascular permeability and appear 
to play a role in fine-tuning blood glucose sensing 
and regulation. These cells also tend to behave as 
“guardians”, controlling the expression and movement 
of a number of important immune mediators, thereby 
strongly contributing to the physiology of islets. This 
review will focus on the molecular signalling and 
crosstalk between the intraislet ECs and βcells and 
how their relationship can be a potential target for 
intervention strategies in islet pathology and islet 
transplantation.

Key words: Islets; Endothelial cells; Islet cell trans-
plantation; Beta-cells; Microvasculature; Paracrine 
signalling

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: This review article summarizes recent 
developments in the crosstalk relationship between 
intraislet endothelial cells and beta cells. The molecules 
involved in the signalling pathways can be potential 
targets for therapeutic strategies and islet transplantation. 
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INTRODUCTION
Pancreatic islets represent endocrine “island” cell 
clusters, embedded and scattered throughout the 
pancreas within large amounts of exocrine acinar 
tissue[1]. Islets are perfused by a dense, specialized 
microcirculation and receive 10% of the pancreatic 
blood flow despite comprising only 1%-2% of the 
overall tissue mass[2]. Most islets are irregularly shaped 
spheroids with a size distribution ranging from 50-500 
μm, each composed of 800-3000 individual cells. 
The islet microcirculation is characterized by pre islet 
arterioles that rapidly arcade to a dense population of 
capillaries[3].

The cellular components of the islet include 
β-cells, other endocrine cells, as well as endothelium, 
perivascular, and support cells such as pericytes[4-9]. 
The cellular composition of islets is not uniform across 
species. Rodent and rabbit islets are primarily composed 
of a β-cell core with other cell types in the periphery 
whereas human and primate islets exhibit endocrine cell 
types intermingled with each other[4,10,11]. Beta cells, the 
central regulator of glucose homeostasis, are the largest 
cellular component of islets in most species[9,10].

Studies using vascular corrosion casts have demon-
strated that 1-3 arterioles feed larger islets[12]. The 
capillary network within islets is about five times denser 
in comparison with exocrine tissue[3]. The capillary wall is 
composed of a permeable layer of ECs and contains ten 
times more fenestrae than ECs present in the exocrine 
pancreas[13,14]. The islet endothelial fenestra are highly 
specialized and contain a diaphragm that regulates 
solute transport[15,16]. Typically, a microvessel consists of 
ECs arranged into a tube formation wrapped by one or 
more layers of perivascular cells. Vascular ECs represent 
a major cell type present in islets and these cells are 
organized into a highly regulated and morphologically 
unique microcirculation. In culture, islet ECs express 
the classic endothelial markers such as von Willebrand 
factor, CD31, CD105, CD146, uptake of acetylated LDL, 
expression of leucocyte adhesion molecules, contain 
Weibel-Palade bodies in the cytoplasm, and form 
tight junctions[17,18]. Other markers expressed within 
islet ECs include α-1 antitrypsin, a major proteinase 
inhibitor[17,19,20]; nephrin, a highly specific barrier pro-
tein[16]; platelet-activating factor receptor[21], and genes 
expressing angiogenic (vascular endothelial growth 
factor, VEGF) and angiostatic (endostatin, pigment 
epithelial-derived factor) molecules[22]. 

Islet ECs have a significant relationship with islet 
function. For example, islets grafts, when co-trans-
planted[23] with ECs in diabetes induced rats or coated[24] 
with ECs in diabetes induced mice, have better engraft-
ment capacity and improved islet function. Donor islet 
ECs, immediately after transplantation, participate 
in neovascularization by increasing β-cell survival[25] 
and promote both pancreatic stem cell proliferation 
and islet regeneration after β-cell injury[26]. Research 
performed over the last two decades has evaluated the 
link between islets and the ECs, demonstrating how the 
molecular interplay between these two cell types can 
regulate many critical physiological processes associated 
with the islet.

THE SIGNALS FROM β-CELL TO ECS
In vitro studies demonstrate that conditioned medium 
derived from cultured rat islets induces liver and islet-
derived EC proliferation and migration[27], suggesting 
presence and secretion of paracrine pro-angiogenic 
factors (Figure 1) which promote islet vascularization[28]. 
As a major soluble β-cell secreted product, insulin 
promotes β-cell survival. In addition, insulin causes the 
upregulation of endothelial nitric oxide synthase in ECs 
promoting intra-islet blood flow[29]. Post-natal beta mass 
is dynamic and can increase in function and mass to 
compensate for additional physiological requirements[30].

VEGFs
The family of VEGF ligands and their receptors are 
critical as they regulate a number of developmental 
processes and play major roles in wound healing and 
vessel homeostasis in adult organisms[31,32]. VEGF 
secretion is stimulated by tumor, hypoxia, low pH and 
many other factors. Beta-cells secrete large amounts 
of VEGF-A early in development and throughout adult 
life[33]. The VEGF binds to its receptor (VEGFR) located 
on the blood vessel ECs, which activates multiple 
signalling cascades eventually resulting in the production 
of enzymes and other specific molecules required for EC 
growth and proliferation. Other activation effects include 
mobilization of endothelial progenitor cells from bone 
marrow, increased vascular permeability and tissue 
factor induction[34]. The VEGF family comprises seven 
secreted glycoproteins that are designated VEGF-A, 
VEGF-B, VEGF-C, VEGF-D, VEGF-E, placental growth 
factor and VEGF-F[35-37]. VEGF family members interact 
with three main receptors, VEGFR-1 (FLt-1), VEGFR-2 
(KDR in humans and Flk-1 in mice) and VEGFR-3 
(Flt4), all tyrosine kinase receptors and members of the 
PGDF receptor family. VEGFR-2 appears to be the main 
receptor responsible for mediating the proangiogenic 
effects of VEGF-A[35,38,39]. The consequence of this specific 
ligand-receptor interaction facilitates EC proliferation 
via the PKC-Ras pathway (by inducing MAPK/ERK 
pathways)[40,41]; promotes cytoskeletal reorganization 
and cell migration via p38 and focal adhesion kinase 
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differentiation, maturation, and survival[83-85]. Other BM 
components such as fibronectin and heparin sulfate also 
play roles in β-cell migration, growth, differentiation and 
survival[1,86-88].

Connective tissue growth factor
The β-cell proliferative factor, connective tissue growth 
factor (CTGF/CCN2), is a member of the CCN family of 
secreted ECM-associated proteins[89,90] and is expressed 
in ECs during development[90,91]. It induces expression 
of platelet derived growth factor B (PDGF-B) in ECs, 
required for pericyte recruitment and retention[91]. 
CTGF promotes β-cell regeneration[92], proliferation[93], 
and modulates the response to high glucose[94]. Its 
inactivation results in defects in islet cell lineage allocation 
and β-cell proliferation during embryogenesis[95].

Hepatocyte growth factor
Islet ECs release the hepatocyte growth factor (HGF)[13] 
which induces β-cell proliferation and differentiation in 
embryonic and postnatal pancreas[47,75,95-98]. HGF plays 
a positive role in β-cell mitogenesis, differentiation, 
glucose sensing, and transplant survival[99,100]. In 
vitro, VEGF-A and insulin are islet-derived factors that 
induce the HGF secretion within purified islet ECs. In 
vivo, utilizing of pregnant rat pancreas, where a high 
physiological proliferation of β cells occur, resulted in a 
prominent expression of HGF, coinciding with the peak 
of β-cell proliferation[74].

Thrombospondins
Thrombospondins are matricellular glycoproteins 
that participate in a regulating cell proliferation, 
migration, and apoptosis, and have been implicated in 
angiogenesis, tumour invasion, and metastasis[101,102]. 
Thrombospondin-1 (TSP-1) is almost exclusively 
expressed by the intra-islet endothelium[71,103,104] and 
is not downregulated by hypoxia[105]. TSP-1 is mainly 
known for its antiangiogenic properties[106] but also may 
alter the morphology of pancreatic islets and function 
as a major activator of transforming growth factor 
TGFβ-1[107]. Animals deficient of this glycoprotein are 
characterized by hypervascular islets[107] and the EC-
derived TSP-1 is important to maintain β-cell function 
postnatally[71].

Endothelins
Endothelin is a vasoconstrictive protein. Endothelin-1 
(ET-1) predominantly is found to have strong effects 
on native islet blood vessels[108] while ET-1 and ET-3 
may directly stimulate β-cell insulin secretion and 
release[73,109]. The gene expression of ET-1 in both ECs 
and islet endocrine cells is regulated by hypoxia[110,111]. 
Insulin can also stimulate the expression and secretion 
of ET-1 from bovine ECs[112] and endogenous insulin can 
regulate circulating ET-1 concentrations in humans[113]. 
ET-1 also upregulates the expression of the FOXO1 gene 

suggest that Eph-ephrin interaction between exocrine 
and endocrine cells contributes to pancreatic function[64]. 
Ephrin-A and its receptor EphA play a role in β-cell to 
β-cell communication; specifically, ephrin subtype A5 is 
required for glucose stimulated insulin secretion and the 
EphA-ephrin-A mediated interaction between β-cells is 
bidirectional[65]. The blood vessel ECs within pancreatic 
islets express Eph subtype A4 receptors[66] but how 
these ligands and receptors play a role between EC and 
β-cell crosstalk is subject to investigation.

Extracellular vesicles
Recent reports establish extracellular vesicles (EVs) as 
a novel player in cell-to-cell communication[67,68] and 
have been characterized both in human islets[69] and in 
experimental models of human islet xenotransplanta-
tion in SCID mice[70]. Studies exploring the functional 
contribution of β-cell EVs on islet ECs demonstrate 
that islet-derived EVs have the capacity to affect the 
surrounding ECs, which are then able to internalize the 
islet EVs in a dose dependent manner[69]. Furthermore, 
internalization of islet EVs results in transfer of multiple 
RNAs, including insulin mRNA and various microRNAs. 
Uptake of islet EVs conferred endothelial cell resistance 
to apoptosis and up-regulated expression of numerous 
proangiogenic factors[69]. In a different study, endothelial 
progenitor cell EVs, when internalized by islet α-, β- 
and ECs resulted in improved glucose-stimulated  
proliferation and angiogenesis[70].

THE ENDOCRINE EFFECT OF ISLET ECS 
ON β-CELLS
Islet ECs, apart from their pivotal role in angiogenesis, 
also possess endocrine function. They produce multiple 
factors (Figure 1) that govern proliferation, survival, and 
gene expression, which contribute to the physiology and 
function of the β-cell[71-75].

Basement membrane
ECM proteins provide biochemical cues interpreted by 
cell surface receptors and initiate signalling cascades 
controlling morphogenesis, cell survival, proliferation, 
differentiation, and stem cell state[76-78]. Islets are 
surrounded by a peri-islet basement membrane (BM) 
and an associated interstitial matrix containing multiple 
components such as collagen, laminin, fibronectin, 
perlecans, nidogens, and heparin sulphate[79,80]. Beta-
cells depend on intra-islet ECs to synthesize their ECM 
components[75]. It has been reported that collagen IV, 
secreted by islet endothelium, can potentiate insulin 
secretion via interaction with its receptor integrin α1β1 
on β-cells[81] similar to other BM components such as 
laminins and fibronectin which have been reported 
to act as endothelial signals promoting insulin gene 
expression and proliferation in β-cells[75,82]. Interaction of 
collagen IV with its receptors also contributes to β-cell 
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(encoding a transcription factor) on ECs contributing to 
its survival[114].

Endoglin
Endoglin (Eng) is a homodimeric transmembrane glycol 
protein within the TGF-β superfamily and is expressed 
by vascular ECs[115-118]. Studies have identified two 
distinct Eng positive cell types within human and mouse 
islets: The ECs and the mesenchymal stromal cells[119]. 
EC-specific endoglin expression in islets is sensitive 
to VEGF playing partial roles in driving islet vascular 
development[120].

IMPLICATIONS OF β-CELL AND 
ENDOTHELIAL CROSSTALK ON ISLET 
TRANSPLANTATION
Islet transplantation and revascularization
The human islet isolation technique completely severs 
the islet vasculature[121,122]. During the enzymatic 
digestion step, islets undergo a number of cellular 
assaults such as ischemia, mechanical stress, loss 
of basement proteins, and partial disruption of intra-
islet ECs[123-125] resulting in a substantial loss of viability 
before transplantation. Other than being devoid of ECs 
to support rapid revascularization, cytotoxic damage and 
cell death account for a loss of up to 80% of transplanted 
islets[126,127]. Rapid and adequate revascularization 
is critical for survival and function of transplanted 
islets[121,128,129]. Transplanted islet grafts initially have a 
significant reduction in vascular supply and low oxygen 
tension in comparison to normal islets[130-132]. The return 
of islet function depends on re-establishment of new 
vessels within islet grafts to derive blood flow from the 
host vascular system[123,133]. Islet engraftment is a slow 
process, while the islet blood flow re-establishment 
requires about two weeks, vessel maturation is likely to 
take a much longer period. Using immunosuppressive 
drugs such as rapamycin further affect this process by 
exerting antiangiogenic activities on mouse and human 
islet endothelium[134]. 

Though transplanted islets are considered avascular, 
freshly isolated islets retain angiogenic capacity as they 
contain intra-islet ECs. These cells can be triggered 
by various inducers such as VEGF to form vessels via 
angiogenic sprouting[33,135,136]. Revascularization is an 
important process for adequate engraftment of islets. 
Prevascularizing islets prior to transplantation could 
potentially improve islet survivability and function 
by aiding islet-to-host inosculation[25]. The intra-islet 
vasculature can also act as a barrier against infiltrating 
insults of autoreactive cells in type 1 diabetes (T1D) 
thereby implicating ECs as an important target in type 2 
diabetes (T2D)[137-139]. 

Studies involving cell and tissue engineering ap-
proaches have considered factors such as pancreatic 
islet size-dependency[140], use of stem cells[141-144], 

creating engineered vascular beds and hydrogels[145-147], 
endothelial progenitor cell derived microvesicles[70], 
and repurposed biological scaffolds[148] to improve islet 
revascularization potential. The angiogenic capacity 
of islet ECs has been previously determined[136]. A 
number of factors which may potentially improve islet 
transplantation involve ECs. For example, vascular 
ECs of the embryonic aorta induce the development of 
endocrine cells from pancreatic epithelium in mice[149,150] 
and the overexpression of VEGF-A in transplanted 
mouse islets improves insulin secretion and blood 
glucose regulation in recipient mice[33,53]. Identifying 
novel factors and understanding nature of mechanisms 
that underlie bidirectional communication between β-cells 
and ECs should be of immense relevance for improved 
human islet transplantation or preventing pancreas 
associated diseases such as pancreatitis and diabetes. 

ECs and β-cell crosstalk: Islet pathophysiology, current 
perspectives and future directions
Evaluation of factors contributing to mechanisms 
responsible for regulating the interaction between β-cells 
and intra-islet ECs would broaden our understanding 
of pancreatic tissue function, growth, and disease. In 
this context, VEGF-A has been the most well studied 
molecule[51,53]; however, reports have suggested the 
detrimental effects of VEGF on islets. Continued β-cell 
overexpression of VEGF-A impairs islet morphology and 
function by eliciting an inflammatory response[57,151]. 
Elevated levels of serum VEGF, Ang-2, and soluble 
Tie-2 have also been associated with T2D and vascular 
dysfunction[152-154]. Achieving an optimal VEGF-A dose 
to potentiate islet vascularization is subject to further 
investigation. The HGF production is increased during 
pregnancy in adult rats[74] and helps balance high 
glucose levels in diabetes induced mice[155]. HGF gene 
therapy has been suggested as a potential approach for 
improving islet transplantation rates and treatment of 
diabetes[156,157].

The dense pancreatic vasculature along with its 
associated ECM plays a key role in the physiology and 
disease associated with pancreatic islets. The islet is an 
ideal “tissue” model because of its heterogeneous cell 
population embedded within the ECM. Understanding 
the nature of how these cells communicate with each 
other and with their underlying BM is crucial for normal 
islet physiology and pathology. The β-cells rely on 
intra-islet ECs to synthesise their ECM components[75]. 
This dependency may potentially be compromised 
in chronic inflammatory pancreatic diseases such as 
chronic pancreatitis which is characterized by a number 
of alterations within ECM formation and composition 
resulting in destruction of acinar and islet cells, and 
subsequent replacement by connective tissue[158,159]. This 
connective tissue appears to result from an increased 
deposition and disorganization of the ECM proteins 
including collagens, fibronectins, and laminins[160-163]. 
Moreover, reports also suggest that one of the most 

Narayanan S et al . Intra-islet endothelial cell and βcell crosstalk



122 April 24, 2017|Volume 7|Issue 2|WJT|www.wjgnet.com

enriched groups of over-expressed proteins in pancreatitis 
(mild and severe) and pancreatic ductal adenocarcinoma 
include those involved in the ECM structure and 
organization[164,165]. In addition, glycoproteins, especially 
those with N-linked glycosylation sites, are significantly 
enriched among the over-expressed proteins in mild 
and chronic pancreatitis[164]. Collagen, proteoglycans, 
and other ECM specialized glycoproteins such as fibrillin, 
fibronectin, and laminin, all part of the peri-islet BM, 
contain various degrees of glycosylation[166]. 

The connection between ECs and β-cells has been 
previously evaluated[28,51,57,167,168], particularly where 
different approaches have been utilized to increase β-cell 
mass and thereby insulin production. New factors have 
also been identified which may potentially contribute 
in further understanding islet cell communication and 
function. For example, R-spondins-1, an intestinal 
growth factor containing a thrombospondin domain, 
has been identified as a novel β-cell growth factor and 
insulin secretagogue[169]. It has potential to enhance 
β-cell growth and function in patients with T2D, and 
enhance of β-cell mass[170]. Connexins, ephrins, and 
cadherins, members of the transmembrane family 
of proteins are expressed in pancreatic islets. The 
major β-cell connexin is Cx36[171], Cx43, and Cx45 are 
specifically expressed on intra-islet ECs[172] whereas 
Cx30.2, recently identified, is expressed at cell-cell 
junctions in both cell types[173]. 

A number of studies have demonstrated that ECs 
play a very critical role within the islet microenvironment. 
A dysfunctional intra-islet vascular endothelium may 
contribute to the severity or progression of pancreatic 
disease etiologies. A deeper knowledge of islet endo-
thelial phenotype and function will help identify specific 
targets and strategies for T1D prevention and successful 
outcomes for islet transplantation. Identifying and 
validating the potential therapeutic benefits of novel 
factors which either maintain the integrity of EC and β-cell 
communication or reinstate and balance the disrupted 
crosstalk is likely to benefit patients with diabetes and 
other pancreatic disorders. 
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