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When radioactive tracer techniques began to be
used in studies on translocation in plants, experiments
of a hitherto unparalleled degree of precision and in-
cisiveness became possible. Many of the results ob-
tained to date with isotopic techniques have merely
been a confirmation, in a much more elegant way, of
phenomena that had already been rather well estab-
lished by other methods. But, data from tracer
studies have lately been appearing in the literature
which permit a much more quantitative evaluation of
the translocation process than had previously been
possible. The main feature of these data is that there
is generally a more or less linear relationship between
the logarithm of the radioactivity at any place in the
stem and its distance from the region of application
(1, 2, 3). In this paper the consequences of a number
of simple theories of translocation have been derived
mathematically, in order to see which of these theories
are plausible and conform to experimental observa-
tions. In addition it is hoped that these analyses may
make more clear the kinds of experiments necessary
to define the character of the translocation process.

1. FLow THROUGH A PIPE WITH IRREVERSIBLE Loss
THRoUGH THE WALLs: At least two extant theories
of translocation involve the movement “en masse” of
all or a portion of the fluid contained in the sieve
tube. These are the theories of protoplasmic stream-
ing in which the movement is actuated by living
protoplasm, and pressure flow in which osmotic pres-
sure supplies the motive force (4). The latter theory
will be dealt with in more detail in a later section.
For the purposes of this model, translocation is visual-
ized simply as involving unidirectional mass flow of
the fluid contents of a pipe (the sieve tube column)
regardless of the actuating mechanism. The presence
of sieve plates will provide an additional obstacle to
flow in the pipe, and may be of importance in de-
ciding what actuating mechanism operates, but need
not invalidate the use of a pipe as a model for the
sieve tube column. Solute may diffuse through the
walls of the pipe, but no net transfer of water occurs
between the inside and outside of the pipe. Further-
more, although the flow is laminar, as is shown in ap-
pendix 1, there is assumed to be sufficient mixing so
that concentrations within the pipe are essentially
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uniform throughout its cross section. In addition, at-
tenuation of concentration at the front of flow of a
solute, continuously injected into the pipe at some
point, is assumed to be unimportant. Sufficient mix-
ing might be obtained by diffusion and as a result of
the interference to flow presented by the sieve plates.
In order to explain the experimentally observed
distribution of radioactivity in short term transloca-
tion experiments, we consider the following situation.
Suppose that for a distance h somewhere along the
pipe, it is surrounded by a steady state concentration
C, of the radioactive material X, and that K is a first
order constant characterizing the rate of transfer of X
through the pipe wall in the region h. If the velocity
of flow of the fluid in the pipe is v and the pipe cross
sectional area is A, then the concentration of X in
the pipe at the outflow edge of the region h is
_KEh
Co = Ci(1 — e 4wv), 1

In order to account for X after it leaves the region
h, we use the following additional symbols:

x = distance along the pipe from the region h in
the direction of flow.

t = time.
C, = concentration of X in the pipe at any dis-
tance Xx.

C, = concentration of X in the tissue surrounding
the pipe at any distance x.

k = constant for diffusion of X through the pipe
wall or a first order chemical reaction rate
constant for removal of X from the flowing
stream into a bound form.

A, = cross sectional area of tissue surrounding the

pipe.

If there is neither diffusion of X out of the pipe
nor net diffusion of water into the pipe, then there
will be no attenuation of X concentration in the stem
with distance away from the source region h. This
obviously does not conform to experimental observa-
tions with P32, C14, and K%2 (1, 2, 3).

However, if X may diffuse out of the pipe and is
thereupon chemically bound into a species unable to
diffuse back, then C, will be subject to the following
relation: L4

dc,
dx

(2)
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Integrated, this gives:
kix

Cp =Cee V. 3)

The concentration, C,, in the pipe, therefore, is
not time dependent, and fulfills equation 3 from the
end of region h to the front of flow of X. Beyond
that it is zero.

Therefore, the concentration, C; (which is in a
bound form), in the tissue surrounding the pipe at a
distance x, anywhere from region h to the front of
flow of X, is given by:

kix
E Coe— v (t — )_(>
t V,

kix
— kCeo ¥ (t _ ’-‘) @)

Vv

Ct=

The total amount of X, then, at any level in the
stem from region h to the front of flow is

ax _kax
X = A,Cee v + AitksCoe ¥
kix
—Atgkgcoe v,o(5)

or
_kx X
X =Cee V {Ap—i—k(t—;)}’ (6)
and
loge X = log. Co + log. {Ap +k <t — 3)}
k1X
- D
The slope of the curve relating log, X and x is
d log. X k k
uX__ SE N

(o)

and for a given value of x, decreases with time at the
rate given by:

d?log. X _ k?
Ixdt M

)

The rate of increase of log, X with respect to time is

dlog. X k
dt X
A, +k(t=2
v

The rate of change of the slope with respect to dis-
tance and time in any region of the stem will decrease
as this region®falls farther behind the front of flow of
X (that is, as (t —x/v) increases).

That the formulations resulting from this analysis
give a good representation of experimental data can

(10)
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F1c. 1. Comparison of the radioactivity distributions
obtained with models 1 and 3. Abscissa is distance along
stem in millimeters. The ordinate is radioactivity per
mm of stem in units of logarithm to the base 10. The
curves through the crosses (X), referring to the right
hand ordinate, are for model 1 with immediate attain-
ment of the steady state in the source region h. They
are, respectively, for %, %, and 2 hours. The curves
through the circles (Q), referring to the left hand ordi-
nate, are for model 3, with a half time of 24 minutes for
attainment of the steady state in the source region h.
They are also, respectively, for %, %, and 2 hours. Other
parameters, applicable to all curves, are Ap,=0.1 mm?
k =2 mm?®/hr, and v = 500 mm/hr.

be seen from figure 1, where equation 6 is plotted on
semi-logarithmic coordinates. The following parame-
ters, reasonable for the bean plants used by Biddulph
and Cory (3), were assumed: A, = 0.1 mm?, and v = 500
mm/hr. With a value for k of 2 mm2/hr, curves re-
sult that are much like those obtained by Biddulph
and Cory (3) with P32, The steeper slopes for their
curves of P32 distribution at short times are partially
accounted for in equation 8 from which one would
predict a somewhat greater slope at short times. How-
ever, one would also expect greater slopes at short
times, due to the fact that X is only just beginning to
diffuse into the region h around the pipe, and C; and
therefore C, are still rising to their steady state values.

Swanson and Whitney (2) have made some inter-
esting observations on the simultaneous translocation
of two radioisotopes which can be interpreted in the
light of the formulation developed here. In all cases,
apparently, a plot of the logarithm of their radioac-
tivities against distance from the point of application
was linear. But whereas the slopes for Cs!37 and P32,
applied simultaneously, were different, those for K42
and P32 were the same. Equation 8 shows that the
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slope iz determined by the three parameters k, A,
and v. There is no need, therefore, to suppose, as
Swanson and Whitney apparently did, that a differ-
ence in slope necessarily implies a difference in the
rate of flow v, since differences in k or A, can ade-
quately account for it.

However, the data comparing K42 and P32 cannot
be resolved, in the present formulation, without assum-
ing completely different modes of transport for K42
and P32, ie., different A)’s or v’s or both different.
For although the slopes for these two substances re-
mained the same, the rates of increase of the loga-
rithms of their radioactivity with respect to time were
different. Therefore, according to equation 10 at least
one of the parameters, k, v, or A, must differ. But
since the slopes are the same, equation 8 demands
that at least two of these parameters must differ. So
either the v’s or the A.’s or both involved in the trans-
port of potassium and phosphorus must be different.

2. FLow THRoOUGH A PipE wiTH REVERSIBLE Loss
THrRoUGH THE WALLs: This situation is like that of
the preceding model except that X is not bound into
an inert form upon leaving the flowing stream, but is
available for reentry into it. Using the same symbols
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F1. 2. Distribution of radioactivity with distance

according to model 2. Abscissa is distance along stem
in millimeters. Ordinate is radioactivity per millimeter
along stem in arbitrary units on a logarithmic scale. The
curves are for 6, 8, and 10 hours respectively. The other
parameters, applicable to all curves, are ki=1 hr?, k.=1
hr?, and v =200 mm/hr.
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as before, this can be formulated mathematically in
the following way: For the contents of the pipe con-
tained within any element dx, conservation of matter
demands that

9C, _ _ 3G, _ k
at ax a4, G ¢
a
= — V% - kl(Cp —_ Ct). (11)

The first term on the right side accounts for change
in concentration due to flow of fluid in the pipe and
the second term for transfer between the inside and
outside of the pipe.

For the tissue surrounding the pipe and contained
within the element dx

aC k
T = 1 (o= C) = ka(C, — C). (12)

The integration of these equations is far more diffi-
cult than the ones for the model with irreversible loss.
Fortunately, an essentially similar problem has already
been solved for the case of heat transfer between a
fluid flowing in a pipe and the walls of the pipe (5).
Using these results and the following convenient arbi-
trary values for the parameters: k; =1 hr1 k,=1hr?,
and v = 200 mm/hr, the curves of figure 2 were drawn.
They show the distribution of X in the stem after 6,
8, and 10 hours and are obviously far different from
experimental curves.

The model with irreversible loss is essentially a
special limiting case of the model with reversible loss,
and the results of section I can also be obtained from
equations 11 and 12. In the case of irreversible loss,
they become

aC, aC, _
H v K = - lep (13)
and
aC
By introducing two new variables
_ k1X
y=- (15)
and
X
z = k2 <t -_ ;,)7 (16)
they simplify to
aC, _
F)T =—0C, 17
and
aC, _
Friie Cp. (18)

Equation 17 integrates to
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kix

Cp,=Cee V. (19)

By substituting this value for C,, in 18, one obtains

kix
- e (1= 2).
Vv,

Equations 19 and 20 are identical with 3 and 4 respec-
tively.

3. FLow THROUGH A P1PE WITH A TIME VARIABLE
Source oF Raproacrtivity: In the preceding models,
the concentration, C;, of the radioactive substance in
the source region h surrounding the pipe, was assumed
to be constant. Since this is obviously not always
true and a non-steady state in the source region at
short times was already invoked to explain certain
features of the behavior of P32, a quantitative treat-
ment of a non-steady state situation is given here.

The model treated is one that might be useful in
analyzing data, such as that of Vernon and Aronoff
(1), who illuminated a leaf completely enclosed in an
atmosphere containing C140, and followed the distri-
bution of the radioactive translocate. The following
symbols, in addition to those already defined, are used:

o =rate of photochemical fixation of CO, in the
source region h.
A = isotopic ratio of C410,.
K = constant for diffusion of C, from region h into
the pipe.
A, = average cross sectional area of the region h.
h =length of the pipe within the region h.

Distance is measured from the outflow end of the
region h and is positive in the direction of flow.

If we assume that the flowing fluid in the pipe
leaches X out of region h at such a slow relative rate
that C, is essentially constant over the whole length h
and that C; does not appreciably change in the time
h/v, then the following equation holds in the length h:

(20)

G, _ K _

ax Ay (Cy = Cp). (21)
Integration of equation 21 gives:

K
Cp = Cy(1 — e 3™
K;
=Gl —e vy (29
and at x=0
_Ky
Co=Ci(1 —e V). (23)

The rate of loss of X from region h into the pipe
is from equation 23:

K1
y = AvCo = AvCi(l — e vD).  (24)

Or, the rate of decrease in C; in the region h due to
loss to the pipe is:
K1
AvCy e-:h).

= 2V (g

Ve ALh (25)

(By expanding the exponential term in a Taylor's
series around zero, it is easily seen that, as should be
expected from the physical qualities of the system,
ve=> CiK/Ap as v > 0.)

The rate of change of C,, then, is given by

dC, A,vC By
at =0oN — Vo = o\ — Xhhl(l—e vo). (26)
Or, introducing the composite constants:
_ A
A= W 27)
and
_Ey
y=Av(l —e V), (28)
we get
dC
Ttl = g\ — ‘YCl. (29)
Integration of 29 gives
A
Ci = "7 1 — e, (30)

Upon substituting this value for C, in equation 23, we
get an expression describing how the supply of radio-
active material X, for translocation from the source
region h, varies with time:
Co= 22 (1 — ). 31)
Now suppose, as in the first model, that X, in the
course of flowing down the pipe, is lost irreversibly to
the surrounding tissue. Then, the concentration, Cp,
will be governed by equation 2, also as in the first
model. In the present case, however, there is a time
variable boundary condition, and integration of equa-
tion 2 gives

—y(t=% _kx
C,,={X—i‘,(1—e S v))}e v,

To calculate C; as a function of x and t integrate

(32)

dC k
d_tt = A—t Cp = k2C’pv (33)
getting
Ce(t) kix t
I 0’)\
[0 ng = kze A_V v (1
Y
e ) dr (34)
and
lﬂ’—‘ 0’)\ X
CQ = kge AV {(t - ;")
-1 7(+=3) }
(1 ) (35)
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The content of radioactivity at any level in the
stem, therefore, from region h to the front of flow is:

X = ApCp + Atct, (36)
or

X = {k (t _ 1‘) 41— (A,, _ 5)}
A Y
Av

(37)

Equation 6 of the first model is clearly a limiting case

of 37 when the arrival at the steady state is instan-

taneous, or when y=co. When there is no loss from
the pipe, i.e., when k =0, then 37 reduces to:

Apzho) (=
X = "—v" (1— "¢, (38)
The slope obtained from plotting equation 37 on
semi-logarithmic coordinates is

k ( Yot

e S

Ayv

The effect of the non-steady state situation on the
family of curves obtained at various times can be suc-
cinctly demonstrated by a consideration of the slope
at x= 0 and when the source region h has attained
half its steady state concentration. The time to reach
a half of the steady state concentration can be ob-
tained from equation 30 and is 0.693/y. Upon substi-
tuting these values of t and x in equation 39, and
simplifving, one obtains

d log. X
dx

/‘\
<:I><

(39)

k + A,
dlog. X\ v k
< dx >§:%“ = = 0.386k “ iy @0
Ty T

Thus during the time when the source region is ap-
proaching its steady state, the slope will be greater by
an amount that increases with y, the time constant for
approach. However, limits on the effect that y ecan
exert are imposed by itself, since a larger 4 will not
only increase the slope but will also decrease the dura-
tion of the increased slope by speeding up the ap-
proach to the steady state. As (t-x/v) increases,
i.e., as the region of the stem under consideration falls
farther behind the front of flow, equations 37 and 39
approach the same values as 6 and 8.

These considerations probably preclude an expla-
nation of the available data (1, 3), about attenuation
of radioactivity with distance (lo“n the stem, that is

based only on the non-steady state and does not make
use of loss from the pipe as well. For, assuming a
half time for attainment of the steady state of 24 min-
utes and a value of v equalling 500 mm/hr, one finds
from equation 38 that, in the first 160 mm of trans-
location path, the attenuation of radioactivity is mostly
well within one order of magnitude between 15 and 30
minutes and is rapidly decreasing. The experimentally
observed degree of attenuation, however, is commonly
around two to three orders of magnitude for P32 (3)
and C1% (1).

A comparison of the curves obtained with respec-
tive half times, for attainment of the steady state, of
24 minutes (y=1.73) and 0 (y =) is shown in fig-
ure 1. The following additional parameters used are
the same for the two curves: A, =0.1 mm?, v =500
mm/hr, k = 2. The non-steady state curve obtained
at ¥4 hour, where the front of flow is at 125 mm, is
very similar to some of the C14 curves obtained by
Vernon and Aronoff (1).

4. Osmoric Pressure Frow: The “pressure flow”
theory of translocation (4) accounts for flow in the
sieve tubes by the entrance of water into the translo-
cation system under a high osmotic pressure at the
end which supplies sugar, and its elimination under a
low osmotic pressure at the end which receives sugar.
The turgor pressure at the supplying end of the sys-
tem must, therefore, be sufficient to, at the least, over-
come viscous and other resistances through the length
of the translocation column, to cause any required
momentum increases of liquid in the pipe, and also to
squeeze water out of the column against a small os-
motic pressure at the receiving end. Although there
are several detailed qualitative treatments of the pres-
sure flow theory from a botanical point of view (4,
6, 7), there is no quantitative physical treatment. An
attempt in this direction is made in what follows, with
the hope that it may make clearer some of the factors
involved in the pressure flow theory and their inter-
action.

A simple model, shown in figure 3, is considered.
The left hand pipe, labelled S, contains an upper
region in which sugar is produced by photosynthesis,
an intermediate region analogous to the sieve tube col-
umn, and a lower consuming region in which sugar is
removed by respiration or is transformed to an os-
motically less active form. Adjacent to the pipe S
and separated from it by a rigid membrane, perme-
able to water but not sugar, is the pipe Z (analogous
to the xylem column), containing water, and con-
nected to a water supply that is assumed to be limit-
less. The walls of both pipes are rigid.

Sugar produced in the photosynthetic region causes
an osmotic influx of water which raises the pressure at
the head of the column and causes a flow of sugar
solution down the column, with water being squeezed
below from pipe S into pipe Z. If the photosynthetic
and sugar consuming rates are constant a steady state
distribution of sugar concentration, pressure, and veloc-
ity of flow will eventually be achieved in pipe S. An
approximate mathematical description of the steady
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F1c. 3. Simple model for the osmotic pressure flow
theory.

state system can perhaps be made in the following
way.

The same symbols as were used previously are used
here, and the distance x along the pipe is positive in
the downward direction. The equation of continuity
in pipe S, applicable outside the photosynthetic or
consuming regions, states that the number of mole-
cules of sugar passing any pipe cross section is con-
stant, and is written

d(AwCy) _
dx N

If, as in several of the previous models, sugar is re-
moved from solution in the pipe at a rate proportional
to its concentration, then this equation is modified to

d(A,vGCy)
dx -

In the event that sugar is removed from the pipe at a
rate independent of its concentration by an enzyme
limited reaction (as, for instance, may occur when the
phloem column passes alongside a uniformly active
layer of cambium) then the continuity equation be-
comes

0. (41)

—kC,. "(42)

d(A,vCy)
dx =¥

where y is a constant.

Since, in the model, the walls of the pipe are rigid
and the liquid is incompressible, any passage of water
into or out of pipe S must be accompanied by a corre-

(43)

sponding passage in the reverse direction somewhere.
Therefore, the velocity of flow changes in response to
entrance or exit of water. If we make the approxima-
tion that the density of sugar solution and water are
equal, then the following expression is probably a
reasonably good representation of the rate of entrance
or exit of water:

dv
Pdx
where a and g are constants and Pj is the pressure in
pipe S and P, is the pressure in pipe Z. This says
that water enters the pipe at a rate proportional to
sugar concentration in the pipe (in analogy to the ap-
proximate proportionality between sugar concentra-
tion and the equilibrium osmotic pressure) and leaves
it at a rate proportional to the pressure difference be-
tween pipe S and pipe Z.

The pressure gradients in pipes S or Z can be given,
at least approximately, by the following expression

dp

dx
where P is the pressure in the pipe and e is a con-
stant. The justification for the use of an expression
of this type in the present system and the significance
of ¢ are discussed in appendix 1.

By the use of any one of the three equations 41,
42, or 43, together with both 44 and 45 (applying to
both P, and P,), one has the basis for a mathematical
description of the system. However, these equations
implicitly involve assumptions which are only approxi-
mations of greater or lesser reliability. For instance,
it is taken for granted in equation 44 that, despite the
occurrence of laminar flow, there is good mixing
throughout the cross section of the pipe, and the possi-
bility of variation in sieve tube properties along its
length is completely ignored. Nevertheless, a further
discussion of the model may make some of the fea-
tures of osmotic pressure flow clearer.

Although it is designed to explain translocation in
the phloem, the osmotic pressure flow theory involves
a complete cycle of liquid transport down the phloem
column and up again through the xylem. The force
actuating this cycle is the turgor pressure of the
chlorenchyma of the leaf, which, in the simple theory,
must be sufficient to do the following: 1) push the
flowing liquid through the plasmodesmata, sieve tubes,
and sieve plates constituting the translocation column;
2) exert a turgor pressure on the inside of the mem-
branes of the sugar consuming cells sufficiently greater
than the equilibrium osmotic pressure of these cells so
that water is forced out against the osmotic gradient
at a rate necessary to account for the flow rate in the
phloem; 3) push an amount of water up through the
xylem equal to what has flowed down through the
phloem. This last requirement cannot simply be ac-
counted for as part of the ordinary rise of water in
the transpiration stream for the osmotic pressure flow
theory adds an extra transport burden to the xylem
beyvond that due to transpiration. One can explain

A an - B(Ps - Pz)y (44)

—ev, (45)
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the extra flow in the xylem as due either to the turgor
in the chlorenchyma forcing water through a complete
cvcle, or to an extra tension in the xylem water col-
umn. But these are equivalent since an extra tension
in the xylem means that the turgor of the leaf chloren-
chyma is correspondingly decreased.

In general one would expect from the simple pres-
sure flow theory that the rate of flow varies with dis-
tance along the pipe, according to equation 44. The
size of this effect, however, depends on the difference
between terms involving concentration in the phloem
and pressure. If the pressure dissipation down the pipe
is paralleled by a corresponding decline in concentra-
tion (as by loss to adjacent tissue), there may be only
a small variation in flow rate over long distances.

Crafts (10) has made the interesting suggestion
that flow through the sieve plates, under the influence
of osmotic pressure, does not occur through the micro-
scopically visible sieve plate perforations, but rather
through very small submicroscopic passages. He pro-
poses that these passages have a diameter of about
150 to 450 A. A quantitative evaluation of this pro-
posal, however, indicates that it makes unacceptably
large demands upon the osmotic pressure flow theory.
Carman (11) has summarized the physical aspects of
water flow through porous media which are used as
the theoretical basis for the following calculations.

From measurements on Cucurbita (7), the follow-
ing are used as reasonable dimensions: 0.05 em for
length of sieve tube element; 3 x10-3 ecm2 for cross
sectional area; 5x 10~ cm for depth of sieve plate.
Assume that submicroscopic pores of diameter 4 x 10-6
cm occupy 50 % of the cross sectional area of the
sieve plate, and an overall velocity of flow of 0.014
cm/sec (50 em/hr) (3). The velocity of flow through
the sieve plate, therefore, is 0.028 ecm/sec. One can
calculate the pressure drop through one sieve cell and
one sieve plate, under these conditions, simply by ap-
plying the Hagen-Poiseuille equation (equation 46 in
appendix 1). The flow through one sieve cell requires
a pressure drop of only about 10-3 atmospheres. How-
ever, the pressure drop across one sieve plate, where
the capillary ecross section is about 4 x 10712 7 em?2, is
one half an atmosphere. Even if the equation for
laminar flow between parallel plates (8) is used, the
pressure drop across a single sieve plate is still about
one fifth or one sixth of an atmosphere. With two
sieve plates every millimeter, it would be impossible
to expect even an available turgor pressure of 20 at-
mospheres (10) to cause flow through the transloca-
tion column.

5. CyLcosis— DIFFUsioN TRANSPORT AND AcCTI-
VATED DiFrusion: Although simple diffusion cannot
explain observed rates of translocation (4), it has been
suggested (4) that diffusion across cell walls and sieve
plates supplemented by rapid mixing within cells, due
to cyclosis, might offer an adequate mechanism. Con-
sider the sieve tube column as composed of sieve cells
separated from one another by the sieve plates which
are permeable to diffusion of the translocate, and sup-
pose that cyclosis within the sieve cells is sufficiently
rapid so that there is practically perfeet mixing within

each. An estimate of the extent of the increase in
transport rate afforded by cyelosis ean be obtained by
deriving Fick’s second law of diffusion (12) for these
circumstances.

First, simply consider diffusion across one sieve
plate. Distance across the sieve plate is measured
along the x axis. According to Fick’s first law of dif-
fusion (12), the rate of transfer through a plane of
unit area perpendicular to the x axis is approximately

- _pAG
F=-D Ax (54)
where D?! is the diffusion constant in the sieve plate,
AC, is the increase in concentration of translocate
across one sieve plate, and Ax is the distance across
one sieve plate. When there is a sieve cell adjacent to
each sieve plate, equation 54 still expresses the rate of
transfer across one sieve plate. However, this rate is
also the rate of transfer across one sieve plate plus its
adjacent sieve cell, since transfer of translocate across
the sieve cell is assumed to be essentially instantane-
ous. The analogue of Fick’s first law for transfer
down the column composed of alternate sieve plates
and =ieve cells, then, is approximately

AC,
AXx

F=—(w+1)D! ) (55)
where o is the ratio of the length of the sieve cell to
the length of the sieve plate, and Ax is now the dis-
tance across one sieve plate plus one sieve cell.

Now the difference between the rate of transfer
into and out of an element of the sieve tube column
is proportional to the rate of change in concentration

in the element. So
1 w - 9C,
w+1(n+1+l>A“ at '

where 7 is the ratio of the volume of the sieve cell
that does not contain translocate to the volume that
does contain translocate. (Thus, if the sieve cell con-
tained a large inert vacuole and cyeclosis only occurred
in a thin peripheral layer of cytoplasm, insulated by
a membrane from the vacuole, then 5 would be the
ratio of vacuolar to cytoplasmic volume.) Rearrange-
ment of 56 gives

AF = — (56)

C, _ _ e+l AF (57)
at ( © 1) Ax
7+ 1
From equation 55 one gets
AF = — (o + 1)D! %, (58)
which when substituted in 57 gives
aC, _ (w + 1)2 D AC, (59)

at » (Ax)?
(n Fi7 1)
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And if we may pass to the limit, we obtain as the ana-
logue of Fick’s second law of diffusion in the sieve
tube column,

9C, _ @+ ,#C,

at " ) ax?
(n+1Jrl

If y=w—-1 and if we assume that »=100 (7), then
the diffusion constant is effectively increased by a fac-
tor of about 5,000; if =10, then the diffusion con-
stant is effectively increased by about 9,000 times.3

The mechanism just discussed depends on ordinary
diffusion processes subject to Fick’s laws (12). How-
ever, if use is made of a system that preferentially
allows diffusion in one direction, then even further in-
creases in the rate of transfer can be imagined. This
might be considered as an expression of the frequently
mentioned theory of activated diffusion (13, 14). A
theoretical model for such a system has been given
(15), but, with it, analyses based simply on Fick’s
laws are probably no longer valid.

For the model where Fick’s laws are applicable,
one can make use of well known solutions of the dif-
fusion equation. They will show how closely these
models conform to actual data on the distribution of
radioactive translocates. If a large amount of a radio-
active translocate is applied to a region h surrounding
the sieve tube column and it travels down the column
by a diffusion mechanism without any of it leaving the
column, then we want a solution of the equation

(60)

2
9?9% - aa(xjﬁp’ (61)
subject to the conditions
C, =G x=0 t>0 (62)
and
C,=0 x>0 t=0 (63)

The =olution to this problem (12) is

%: 1 —1/2\/56_72(:17
™

Co .
=1_¢< X ) (64)
2v It

15 the error function of which exten-

2/Dt
sive tables are available. The kind of distribution
given by equation 64 is shown by the curve with the
open circles in figure 4. It obviously does not con-
form to the known data (1, 2, 3).
Another possibility of interest is that, at the same
time as the translocate is diffusing down the sieve
tube column, it is also leaving the column at a rate

X
where ¢ <—

3 An analysis of a similar type may prove of value in
helping to understand the movement of growth sub-
stances through parenchyma tissue.
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Fic. 4. Distribution of radioactivity with distance

and time for two diffusion models. Abscissa is distance
along stem in arbitrary units from a constant source of
radioactivity. Ordinate is the ratio of concentration of
radioactivity in the sieve tube column to that in the
constant source in units of logarithm to the base 10.
The curve through the open circles is for the model with
no loss from the sieve tube column after 9 arbitrary
time units. The curves through the closed circles are for
the model with loss from the sieve tube column gov-
erned by k;=0.09 and at 9 and 100 arbitrary time units.
The diffusion constant, D, is unity in all cases.

proportional to its concentration in the column. The
differential equation in this case becomes (12, p. 124)

aCy _ . 0°C,
5 - P o

with the boundary conditions 62 and 63. Crank (12,
p- 130) gives the solution of this problem, and the dis-
tributions obtained at two times are shown by the
curves through the closed circles in figure 4. With in-
creasing time the curves approach that at t =100 and
then do not change. These curves, of course, only
account for the radioactivity in the phloem tube and
not for that which has been lost irreversibly to the
surrounding tissue. Assuming, however, that the
shapes of these curves give an approximate represen-
tation of the shapes of the curves for total radio-
activity (this assumption is certainly valid for longer
times), then one can observe some striking similarities
between the properties of this model and experimental
data (1, 2, 3). At short times the rate of attenuation
of radioactivity with distance is greater than it be-
comes later. At longer times, when C, approaches its
steady state value, the plots of the logarithms of total
radioactivity versus distance are straight lines of con-
stant slope and whose ordinate intercepts increase
with time. This model, therefore, acts much like the

- kG, (65)
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very first model considered in this paper, of irreversi-
ble loss from liquid flowing in a pipe, but at short
times probably gives curves departing considerably
from a linear relationship between the logarithm of
total radioactivity and distance.

6. Surrace Frow: A surface active substance ac-
cumulating at an interface causes a decrease in the sur-
face tension. If the interface is mobile and only part
of it is covered with surface active agent, then there
will be a surface pressure difference between the cov-
ered and uncovered portion of the interface (equalling
the surface tension difference between these parts) and
surface flow will occur down the pressure gradient.
Van den Honert (16) speculated about this phenome-
non as a possible mechanism of translocation and per-
formed some interesting experiments demonstrating
transport at a liquid-liquid interface at rates that far
exceeded diffusion rates. In order to approach a
mathematical analysis of this mode of transport, one
can make use of the observations of Crisp (17). He
found that the velocity of transport is given by

dx o1l

dt K. ax’
where K is a constant depending on the properties of
the surface active agent, the bulk phases, and the
geometry of the system, II is the surface pressure, and
X is distance in the direction of flow. However, the
rate of transfer through a line of unit length on the
surface and perpendicular to the x axis is

dx
= dt’

where C, is surface concentration of the transported
material X. Then, from 66 we get

(66)

F=C (67)

oIl
F = —-K,C, I (68)
If we suppose that the substance X behaves on the
surface in a manner analogous to an ideal gas (as
many surface active substances do under some ecir-
cumstances (18)), then

= Ck'T, (69)
where k! is a constant and T is the absolute tempera-
ture. Also

om _ . .. dC,
ox x| (70)

and upon substituting 70 in 68 we obtain an expres-
sion like Fick'’s first law of diffusion for the case where
the diffusion constant is proportional to concentration:
. aC
F = —k'TK.C, a—s (71)
An analogue of Fick’s second law (equation 61) is,
then,

9C, _ _ oF _ aC, ac}
5 5 = KTK. {( ) + C, (72)

For the problem of transport in the phloem, this
equation might apply under similar conditions as
equation 61, where there is no loss from the phloem
column to surrounding tissue. If substance X is lost to
surrounding tissue irreversibly, however, then the fol-
lowing modification (analogous to equation 65) might

apply:
) +C. "C} — KuC,. (73)

aC, .
Frale k'TK, {(

The steady state solution of equation 63, describ-
ing diffusion down the sieve tube column at the same
time as translocate is being lost irreversibly to the
surrounding tissue, gives a result according well with
experimental observations (2, 3). It is, therefore, of
interest to see how well the steady state modification
of 73, the analogous equation for surface flow, con-
forms to these data. An equation more amenable to
analysis than 73 is obtained in appendix 2 and is

dc., 9KIC, ¢ ;
ax ~ \/.‘sleKs +or (79)

where ¢; is a constant determined by the boundary
conditions. However, the experimental data generally
show a relationship between radioactivity and dis-
tance that can be described approximately by the
relationship

dcC
dx

where C is radioactivity per unit length and a is a
constant. This is quite different from 79, and, there-
fore, the simple model using surface flow does not
appear to be a useful one for explaining translocation
data.

= — aC, (80)

Discussiox

The characteristics of three main categories of
mechanisms have been considered in this paper. They
are 1), translocation by a continuous “en masse” flow
through the length of the phloem column as is dis-
cussed in models 1, 2, 3, and 4; 2), cyclosis-diffusion
transport discussed in model 5; and 3), surface flow
as discussed in model 6. Under the assumption that
translocate is absorbed irreversibly from the phloem
column at a rate proportional to its concentration
therein, one can nicely reproduce many important fea-
tures of the experimental data by the use of flow type
models and the cyclosis-diffusion model. The surface
flow model is not so successful in this respect.

The valid use of a mathematical model is to help
organize and interpret experimental data and to per-
haps help direct the course of further investigation.
Good quantitative data on translocation is relatively
scarce and the models presented here are, therefore,
not subject to comparison with a sufficiently broad
range of experimental data to allow them to be ac-
cepted or rejected. Although the characteristics of
much of the experimental data with radioisotopes can
be reproduced by some of the models, there can arise
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serious doubts about the “actuality” of the models
studied. The mathematical analysis of models fre-
quently involves gross simplification of the biological
facts, and the types of models considered may be dic-
tated largely by their simplicity and the mathematical
skill of the author. In the present paper there are
numerous simplifications and approximations, and a
number of plausible models have not even been con-
sidered. For instance, the analysis of bidirectional
flow within a single phloem strand was abandoned be-
cause of mathematical difficulties, and the cyclosis-dif-
fusion model with a time variable source has not been
presented.

It is possible to distinguish at least two markedly
different possible mechanisms actuating “en masse”
flow through the length of the phloem column (4).
These are a) flow, such as that in osmotic pressure
flow, and b) flow, like the flow in eytoplasmic stream-
ing, that is actuated by the living protoplasm. Some
possible modes of experimentally distinguishing the
two may lie in these differences:

1) Pressure flow demands that there be a hydro-
static pressure gradient down the phloem column,
while streaming flow does not require such a gradient.

2) In general, one would expect a flow velocity
gradient along the phloem column in*an osmotic pres-
sure flow system, while streaming flow does not require
this.

3) Osmotic pressure flow demands that there be a
circulation of water in the xylem complementary to
that in the phloem, while circulation by cytoplasmic
streaming could occur completely in one phloem
strand or from strand to strand. Clements (14) has
criticized the osmotic pressure flow theory because of
his failure to observe sufficient water movement in the
xylem, though Crafts (9) believes these arguments
have been adequately answered.

4) Streaming flow is dependent on a metabolic
energy source, and, therefore, one might expect it to
be more susceptible than pressure flow to interference
with metabolism. However, pressure flow is depend-
ent on the maintenance of a semi-permeable mem-
brane, and this may also be dependent on normal
metabolic activity. (In addition, it is possible that
the pressure developed in a plant cell may be, at least
in part, due to an active metabolic process (19, 20).)

5) Osmotic pressure flow precludes two way flow
within a single phloem strand and perhaps also even
within the stem taken as a whole. There is no such
limitation with streaming flow.

6) Streaming flow demands that streaming occur
in the phloem and apparently this has never been un-
equivocally observed (9, 21).

7) Streaming is known to be a phenomenon sensi-
tive to even slight disturbances such as mechanical
shocks, while pressure flow should be more resistant.

SUMMARY

A number of models to explain the short term
translocation patterns of isotopically labeled materials
are analyzed mathematically:

1. “En masse” flow of translocate solution through
a pipe with irreversible loss of translocate to the sur-
rounding tissue.

2. Like model 1, except translocate is lost reversibly.

3. Like model 1, but the approach to the steady
state in the region of isotope application is considered.

4. Osmotic pressure flow model.

5. Cyeclosis-diffusion model.

6. Surface flow model.

Models 1 and 3 predict distributions of isotope
that conform well with certain experimental results.
Models 2 and 6 do not seem so successful in this re-
spect. Model 4 is the most difficult to analyze, but
the results indicate that, in general, one should expect
both a velocity gradient and a hydrostatic pressure
gradient along the translocation column. Analysis of
model 5 indicates how much one may expect cyclosis
to speed up the transport of solutes, and the predicted
distributions of isotope from this model are close to
certain experimental results; a possible contribution
of an “activated diffusion” to this model is also men-
tioned.

ArpPENDIX 1, Derivation of an Expression for the
Pressure Gradient for the Pressure Flow Theory: A
number of writers (7, 9) on the pressure flow theory
have made quantitative or qualitative use of the
Hagen-Poiseuille equation to express the pressure
gradient in the translocation pipe:

dP _ _ 8ruv

dx A,
where p is the viscosity of the flowing liquid. This
equation is strictly applicable only in the case of lami-
nar, non-accelerated flow in a circular tube of uniform
cross section. Some justification, therefore, ought to
be offered for its application to the sieve tube column
where there is frequent interference to flow by the
sieve plates and where, according to equation 44,
there is acceleration of the flow due to entrance or exit
of water through the pipe walls. In what follows the
particular form of equation 46 is discarded, but it is
concluded, nevertheless, that the pressure gradient
can be reasonably accurately represented by an equa-
tion of the form

, (46)

dP _
dx
where ¢ is a constant.

In order to obtain an estimate of the magnitude of
the Reynold’s number for flow of a 10 % sucrose solu-
tion through the sieve tube column, use was made of
sieve tube dimensions given by Crafts (7) for Cucur-
bita and translocation velocities given by Biddulph
and Cory (3). Using 1.04 grams/cm3 for density,
0.014 cm/sec (50 ecm/hr) for velocity, 0.0050 ecm for
diameter, and 0.015 poise for viscosity gives a value
of 4.8 x 10-3 for the Reynold’s number in flow through
the sieve tube lumen, and using 0.35 cm/sec for veloc-
ity and 0.00015 cm for diameter gives a Reynold’s
number of 3.6 x 10-3 for flow through the sieve plate

— ev, (45)
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pores, assuming they are open and available for flow.
These values are very far below the lower critical
Reynold’s number (8) and, therefore, flow in the sieve
tube column is certainly laminar.

As a matter of fact these Reynold’s numbers are
so small that effects of viscosity should far outweigh
accelerative effects. Experimental data given by
Rouse (8, figures 85 and 129) indicate that at such
low Reynold’s numbers, the Euler number, determin-
ing the characteristics of flow under specific boundary
conditions, is proportional to the square root of the
Reynold’s number. From the definition of the Euler
and Reynold’s numbers, therefore, one can deduce
that even when the sieve tube pipe undergoes marked
changes in form, as at the sieve plate, the dissipation
of pressure is still proportional to the first power of
the average flow velocity.

The contribution of the inertial effects, due to en-
trance or exit of water through the pipe walls, to the
pressure gradient can, as a first approximation, be
estimated by deriving a modified Bernoulli equation.
First note, referring to figure 3, that gravitational
force need not be a consideration since the flow is
essentially no more than an eddy within a liquid, of
uniform density, which is stationary as a whole. The
distance, x, along the pipe S is positive downwards.
The force acting on the element dx due to the pres-
sure gradient is — A,dP. From the considerations of
the preceding paragraph, the viscous resistance is
—Apevdx, where ¢ is a constant proportional to vis-
cosity and v is the average rate of flow.

The momentum changes occurring in the element
dx are due to acceleration from v to v+ dv of liquid
entering dx from the adjoining element above it, and
also to acceleration from zero to v + dv of liquid enter-
ing dx by diffusion through the pipe walls. Since, for
constant cross sectional area, the increase in velocity,
dv, can be attributed entirely to influx of water
through the walls, that fraction of the total liquid
leaving dx which entered dx from the adjoining seg-
ment is v/(v+dv). Therefore, the mass of water
leaving dx in time dt which had to be accelerated
from v to v+dv is

v

V"——dV pAp(V + dV) dt = VpAp dt, (47)

and the force necessary for the required acceleration is
vohp dt &Y = pavay, (48)

where p is the density of the liquid.
The other part of the liquid leaving dx has a mass

dv

v+

and the rate at which mass is added to the flowing
liquid is, therefore,

dm

dt

T dv pA,(v 4+ dv) dt = dvpA,dt (49)

= pA, dv. (50)

The force necessary to cause the corresponding rate

of change of momentum is

dm

dt
The relation between the four forces considered is

the modified Bernoulli equation:

v = pA,vdv. (51)

—A,dP — Ajevdx = 2pA,vdv (52)
or
((11—‘1; = —ev — 2oV %’( (53)

However, if one approximates the viscous resistance
term on the right hand side by using the Hagen-
Poiseuille equation and compares it to values of the
second term calculated from known rates of translo-
cation (3), then it is seen that only the viscous resist-
ance term is important. Therefore, equation 45 should
be a reasonable representation of the pressure gradient.

APPENDIX 2, A Simplification of the Steady State
Modification of Equation 73: Equation 73, in the
steady state, becomes

dC,
1 1 — uC =
kTKCsdz-l—kTK (dx) ki1C, =0 (74
) _dCq d*Cy _dy _
If we let 4= I then & S ax - Tacs C and equation

74 can be put in the form

K'TKCsn 5~ dC + K'TKgp* = kUG, (75)
or
1 d(r?) 1 2 _ o1l
k'TK,C, ac + 2k'TKn* = 2k1C,.  (76)
Multiply through by C,dC,/k!TK, and get
2k?
C2d(n*) + 2Cem? dC, = ITK, C, dc, (7)
or
dCe) = 2K cede (78)
° k'TK, o
Integration of 78 then gives as the acceptable result
dC, / 2k1C,
T~ TR, t oY (79

where ¢, is the integration constant.

SyMmBoLs USED

h: The distance along which the source region h, con-
taining the reservoir of applied radioactive ma-
terial, extends adjacent to the phloem tube.

C;: The concentration of radioactive tracer in region h.

X: The name of the radioactive material.
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K: The first order constant characterizing the rate of
transfer of X from the region h into the phloem
tube.

v: The velocity of flow of fluid in the phloem tube.

Co: The concentration of X in the phloem tube at
the outflowing edge of region h (at x=0).

Ap: The cross sectional area of the phloem tube.

x: Distance along the pipe measured from the out-
flowing edge of region h and going in the positive
direction away from region h.

t: Time.

Cp: Concentration of X in phloem tube at any dis-
tance x.

C,: Concentration of X in the tissue surrounding the
phloem tube at any distance x.

k: The first order constant characterizing the rate
of loss of X from the phloem tube to the sur-
rounding tissue.

A¢: The cross sectional area of the tissue surrounding
the phloem tube.

ky: k/A,.

kg: k/ At'

e: Base of natural logarithm.

o: Rate of photochemical fixation of CO, in the
region h.

A: Isotopic ratio of C10,.

A,: Average cross sectional area of the region h.

X,: K/A,.

v: Rate of loss of X from region h into the phloem
tube.

Vel v/hAh.

A: Ap/bA,.

—&h . . .y e

v: Av(l —e v ), is the time constant describing
the approach to the steady state concentration
of X in the region h.

¥: A zero order rate constant for loss of X from the
phloem pipe.

a: Proportionality constant between rate of osmotic
flow of water and concentration difference across
the semi-permeable membrane.

B: Proportionality constant between rate of flow of
water through the semi-permeable membrane
and hydrostatic pressure difference across the
membrane.

P: Hydrostatic pressure in the xylem or phloem.
P,: Hydrostatic pressure in pipe S (analogous to the
phloem) in the osmotic pressure flow model.

P,: Hydrostatic pressure in pipe Z (analogous to the
xylem) in the osmotic pressure flow model.

e: A constant, proportional to viscosity, that de-
scribes the relationship between the hydrostatic
pressure gradient and velocity of flow.

a: Proportionality constant between circumference
and diameter of a circle.

w: Viscosity.

p: Density of liquid flowing in the xylem or phloem.

m: Mass.

Dt: Ordinary diffusion constant.
F: Diffusion or surface flow flux.
o: Ratio of sieve cell length to sieve plate length.

: Ratio of vacuolar volume to cytoplasmic volume
in the sieve cell.

Diffusion constant in the eyclosis-diffusion model.
Proportionality constant between surface flow
velocity and surface pressure gradient.

: Surface pressure.

: Surface concentration at any distance x.

: Proportionality constant relating surface pres-
sure, concentration, and temperature.

Absolute temperature.

k!1: The first order constant characterizing the rate
of loss of X from the phloem tube to the sur-
rounding tissue in the surface flow model.
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EFFECTS OF INDOLEACETIC ACID ON THE UTILIZATION OF
ACETATE-1-C* BY PEA STEM SLICES?

JAMES F. NANCE
DEPARTMENT OF Borany, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS

Studies on the utilization and evolution of ace-
taldehyde by plant tissues suggest that indoleacetic
acid (IAA) may influence the partition of pyruvate
and related products of glycolysis into various meta-
bolic pathways (5, 6). Boroughs and Bonner (1)
tested this possibility in their study of the effects of
IAA on the metabolism of acetate-1-C1¢ by Avena
coleoptiles. Except for a very appreciable stimula-
tion of incorporation of activity into the non-cellu-
losic polysaccharides by TAA, they found no notable
response to the auxin. It was demonstrated later that
in wheat roots IAA significantly affects incorporation
of activity from Cl4-labeled pyruvate and acetate
into organic acids, sugars, polyuronide hemicelluloses,
pectic substances, lipides and cellulose (7, 8). Studies
by Perlis (9), however, on the utilization of acetate-1-
C14 by pea stem slices revealed experimental effects
of doubtful significance.

Recent work in this laboratory indicates that ef-
fects of TAA on the metabolism of acetate by pea
stem tissue can be demonstrated conclusively in ex-
periments involving pre-treatment of the slices with
TAA followed by brief exposure to the labeled sub-
strate (4). Experiments of this sort are described
below.

MATERIALS AND METHODS

Pea seedlings (var. Alaska) were grown in the
dark at 20° C on sphagnum saturated with 0.025 M
CaCl, and were used for the experiments 8 days after
the seeds were planted. Preliminary experiments had
shown that stem sections from peas grown in this
manner exhibit a more impressive growth response to
IAA than those from seedlings given a more complex
nutrient solution. Transverse slices, 2 mm in length,
were cut from a section of the stem extending from
about 2 to 12 mm below the epicotyl arch. The slices
were washed, then centrifuged in a perforated con-
tainer at a low speed to remove adhering water.

Acetate-1-C1* having a specific activity of 6.7
millicurie/millimole was the source of carbon 14. This
material was available as the potassium salt and was
used in this form for most of the experiments. For

1 Received August 6, 1957.

use in two experiments the salt was converted to the
calcium salt by passing a solution of it through a col-
umn containing the calcium form of Duolite C-3.
Most of the experiments of this study involve a pre-
treatment period during which the stem tissues were
incubated in various non-radioactive solutions. For
pre-treatment the solutions and tissues were placed
in Erlenmeyer flasks of one liter capacity and these
were placed on a shaker to effect aeration of the so-
lution. During the period of exposure to radioactive
acetate the slices and solutions were in closed con-
tainers (Pyrex gas washing bottles, no. 31760). A
short piece of capillary tubing replaced the fritted
glass aerator usually found in this assembly. The
outlet tube was attached to the inlet tube of a second
gas washing bottle. This bottle, containing 0.1 N
NaOH to trap CO,, was equipped with a fritted glass
aerator. Carbon dioxide-free air was supplied for the
aeration of the slices. Fresh weights of tissues used
in the experiments ranged from 3.25 to 7.0 g.

After exposure to radioactive acetate the washed
slices were extracted with boiling, 95 % ethanol and
then with an equal volume of boiling, 70 9% ethanol.
Three extractions with each solvent mixture were
made and a total volume of 250 ml of extractant was
used for each sample. This is the 1st step of a frac-
tionation procedure which is outlined in figures 1 and
2.

Fractionation of the ethanol extract (fig 1) in-
volved removal of the ethanol, after the solution was
adjusted to pH 9.0 with NaOH, by vacuum distilla-
tion, acidification and extraction of the aqueous resi-
due with ether for 72 hours by a method essentially
that described by Isaacs and Broyer (2) and separa-
tion of the lip¥es from the organic acids in the ether
extract by addition of water and titration of the
acids with NaOH to pH 8.5. The ethereal solutions
were dried down on a warm water bath and the resi-
due taken up in chloroform. Activity in the chloro-
form solution was determined by the technique of di-
rect plating, as were all other determinations of ac-
tivity reported here. Details of the counting proce-
dure are given below. The aqueous solution from the
ether extract was brought to dryness on a hot water



