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Abstract

Epilepsy is a complex disorder, which involves much more than seizures, encompassing a range of 

associated comorbid health conditions that can have significant health and quality-of-life 

implications. Of these comorbidities, cognitive impairment is one of the most common and 

distressing aspects of epilepsy. Clinical studies have demonstrated that refractory seizures, 

resistant to antiepileptic drugs, occurring early in life have significant adverse effects on cognitive 

function. Much of what has been learned about the neurobiological underpinnings of cognitive 

impairment following early-life seizures has come from animal models. While early-life seizures 

in rodents do not result in cell loss, seizures do result in changes in neurogenesis and 

synaptogenesis and alteration of excitatory/inhibitory balance, network connectivity and temporal 

coding. These morphological and physiological changes are accompanied by parallel impairment 

in cognitive skills. This increased understanding of the pathophysiological basis of seizure-

induced cognitive deficits should allow investigators to develop novel targets for therapeutic 

interventions.

Introduction

Although seizures are the most striking clinical manifestation of childhood epilepsy, 

children with epilepsy are at risk not only for seizures, but also for a myriad of co-morbid 

health problems that occur at a higher rate than would be expected by chance1. Among the 

co-morbidities associated with epilepsy in children, cognitive abnormalities are among the 

most common and troublesome2,3. The distribution of intelligence quotient (IQ) scores of 

children with epilepsy is skewed toward lower values4,5 and the number of children with 

epilepsy experiencing difficulties in school because of learning disabilities is greater than 

children without epilepsy6–11.

While most children with epilepsy maintain stable IQ scores, there is now strong evidence 

that some of them slow, or even regress, in their mental development5,12,13. In a community-

based cohort study. Berg et al14 assessed and prospectively followed 198 children (aged <8 

years) with new-onset epilepsy for 8–9 years. In this cohort refractoriness to antiepileptic 
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drugs (AEDs) was associated with an 11.4 point lower full scale IQ. There were substantial 

age-resistance to treatment interactions for IQ, indicating a lessening impact of recurrent 

seizures with increasing age. The authors appropriately concluded that uncontrolled seizures 

impair cognitive function with effects being most severe in infancy. Cognition is of 

particular concern in children with an epileptic encephalopathy15–17, a condition 

characterized by the slowing or regression of development due to seizures, abnormal 

interictal cortical and subcortical EEG activity, or both, rather than the underlying etiology 

of the epilepsy15.

Much of the cognitive impairment that occurs in people with epilepsy is related to its 

underlying etiology. Both acquired disorders such as trauma, hypoxic-ischemic insults, and 

mesial temporal sclerosis secondary to prolonged febrile seizures and genetic disorders, 

including tuberous sclerosis, fragile X, Rett, and Dravet syndromes, can lead to significant 

cognitive impairment in addition to causing epilepsy. While etiology of the epilepsy clearly 

plays a major role in cognitive development, there are indications that early-life seizures 

independent of etiology can lead to cognitive impairment18,19. For example, in a study of 

neuropsychological function in children with focal cortical dysplasia by Korman et al.19 it 

was found that age of onset of epilepsy and extent of the dysplasia each contributed 

independently to cognitive dysfunction indicating that early onset of epilepsy disrupted 

critical periods of development leading to poor cognitive outcomes.

In order to prevent, limit and reverse cognitive comorbidities, it is essential to understand the 

neurobiological basis of cognitive dysfunction of seizures in children. While studies have 

indicated that children with seizures occurring early in life, particularly when frequent and 

resistant to therapy, are at highest risk for cognitive deficits, it is difficult to ascertain the 

neurobiological disturbances that lead to cognitive impairment. In the clinic it is difficult to 

differentiate the effects of the number, duration and seizure type, EEG abnormalities and 

antiepileptic drug therapy from the etiology of the epilepsy (Fig. 1). For this reason, many of 

the advances in our understanding of the long-term effects of early-life seizures come from 

rodent studies in which the investigator has control over the etiology and treatment of the 

seizures.

Genetic Models

Animal models of early-life seizures include genetic and acquired models. The discovery of 

multiple genetic mutations associated with human epileptic encephalopathies and advances 

in genetic techniques have resulted in the generation of multiple models in animals carrying 

the human equivalent of these genes. Mutations in the gene coding for the type-1 alpha 

subunit of the Nav1.1 sodium channel in neurons, SCN1A, has been linked to the epileptic 

encephalopathies, especially Dravet syndrome and generalized epilepsy with febrile seizures 

plus (GEFS+). Models of Dravet syndrome have thermally-induced and spontaneous 

seizures that develop during the animal’s maturation20–23. Likewise, models of generalized 

epilepsy + (GEFS+) mimic the clinical features of the condition with increased susceptibility 

to thermally-induced seizures and generalized tonic-clonic seizures24–27.
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There is some evidence that the current Dravet syndrome models have social and spatial 

cognitive impairment when compared to control animals. Animals with some of them have 

performed poorly in a social recognition and social novelty task compared to controls28–30. 

Others, however, have shown similar performance to control animals31. Regarding animal 

models’ ability to mimic the cognitive decline seen in this disorder, few examples of 

behavioral testing specific for spatial memory have been reported. However, those that have 

had such testing have shown significant impairments. This includes Ohmori et al.’s work31 

showing impaired performance of mice on a Barnes maze, a cognitive task assessing spatial 

learning in rodents. Similar results have been repeated in at least one other animal model 

specific for the SCN1A mutations thought to underlie Dravet syndrome.30 Additional 

assessments of cognition have shown deficits in the memory requiring components of 

context-dependent fear conditioning.29,30 Behavioral tests in the GEFS+ model have been 

similar to those seen in the Dravet models, including hyperactivity, impaired social 

performance, and deficits in spatial memory32. In addition deficits in cued fear conditioning 

and risk assessment have also been reported in this model32.

Discerning if the cognitive impairments associated with genetic models of early-life seizures 

are a result of the seizures seen in the other models, or a result of the mutated protein itself 

and resultant physiologic changes is important. Bender et al.33 caused a similar decrease in 

the expression of Nav 1.1 protein seen in the genetic models of Dravet syndrome featuring 

SCN1A mutations, but through injection of specific small interfering RNA (siRNA) into the 

medial septum and diagonal band of Broca (MSDB), a brain region important for spatial 

cognition through its regulation of theta oscillations in the hippocampus, of adult Sprague-

Dawley rats. This allowed for an evaluation of the effect of less SCN1A expression on 

cognition without affecting development of the rats or inducing the spontaneous seizures 

seen in the Dravet syndrome models. Rats with siRNA-induced firing of interneurons had 

spatial memory impairment compared to controls indicated by a comparative behavioral lack 

of response to a change in object location during a reaction-to-novelty task. This specific 

finding would suggest that the mechanistic changes underlying Dravet syndrome may also 

play a role in the cognitive impairment seen in the disorder that could be compounded by the 

effect of the associated developmental seizures.

In general, there has been limited work on the cognitive effects of seizures in the genetic 

disorders. In addition, the genetic models currently used only affect one specific gene/

protein, when multiple genetic changes likely underlie the pathophysiology of many of the 

epileptic encephalopathies. Finally, while many advances have been made regarding the 

generation of models of specific syndromes such as West syndrome, Dravet syndrome or 

GEFS+, there remain few models that exhibit most qualities of the other encephalopathies, 

like Ohtahara syndrome, beyond the early repetitive seizure models. There are also no 

animal models that consistently exhibit the characteristics that match some of the syndromes 

like Lennox-Gastaux syndrome, indicating that further work must be done in order to fully 

understand the processes behind such disorders.
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Acquired Models

Acquired models of early-life seizures have been more extensively studied than the genetic 

models. With acquired models the investigator has control of age of seizure onset and 

seizure frequency in normal developing rats and thus can distinguish the effects of seizures 

from etiology of the seizures. Far more work on the cognitive effects of seizures on the 

developing brain have been done in the acquired models rather than the genetic models. For 

that reason, this review deals primarily with the two models of early-life seizures (ELS), 

experimental febrile status epilepticus34–38 and recurrent flurothyl-induced seizures.

In the febrile status model rat pups are placed in a glass container and their core temperature, 

which is highly correlated with brain temperature, increased to approximately 40.5°C as a 

simulation of high fever. Manifested as a set of characteristic behaviors, hyperthermic 

seizure onset is heralded by sudden freezing, followed by oral automatisms and forelimb 

clonus. Seizures progress to body flexion and one or more tonic-clonic seizures. To 

accurately model prolonged febrile seizures in humans, hyperthermia (maximum 

temperature: 41.5–42.9°C) is maintained for approximately 40 minutes, which results in 

seizures lasting 36–40 minutes.37 In the repeated flurothyl-induced seizure model, a 10% 

flurothyl solution (Bis(2,2,2-trifluoroethyl) ether), an inhaled convulsive agent, is delivered 

to the pups, which are placed in a plastic container located in an airflow hood39–41. Flurothyl 

(0.1 ml) is injected slowly onto filter paper placed on the inside of the container where it 

evaporates. Although the behavioral features of the seizures are age-related, the typical 

sequence of the seizures consists of myoclonic jerks followed by forelimb clonus, wild 

running, loss of posture and severe tonic posturing.

Effects of Seizures on the Developing Brain

Using the flurothyl model of recurrent ELS in rat pups to human mimic neonatal seizures, 

we have shown cognitive impairment when the animals are tested during adolescence or 

adulthood39,42–47. Cognitive deficits seen following ELS include deficits of spatial cognition 

in the water maze43,48, non-match to sample task40, impaired auditory discrimination49 and 

reduced behavioral flexibility42. While ELS do not result in cell death46,50, there is evidence 

for synaptic reorganization as evidenced by sprouting in CA351,52 and reduced 

neurogenesis53. Functionally, we have demonstrated that ELS lead to persistent decreases in 

GABA currents in the hippocampus54 and neocortex55,56, enhanced excitation in the 

neocortex56, impairment in spike frequency adaptation57, marked reductions in after 

hyperpolarizing potentials following spike trains57 and alterations in short-term58 and long-

term plasticity39,59.

One of the major difficulties in deciphering the complex issue of cognitive outcomes 

following ELS in children is the gulf between the behavioral/mental spheres in which these 

deficits are substantiated and the underlying physiological/developmental domains that are 

both the cause of these deficits and the most likely domain for therapy and intervention. 

While these descriptive studies have added to the body of work describing the effects of ELS 

on the neurophysiology of the developing brain, there remains a major gap in determining 

how these myriad of morphological and functional changes result in cognitive impairment.
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To understand the electrophysiological basis of early-life seizures, investigators have used in 
vivo electrophysiological techniques to record local field potentials (LFPs) and single cell 

activity in animals actively engaged in behavioral testing. One of the strongest techniques is 

the recording of place cells, which fire action potentials (APs), also called units, based on 

where the animal is within its environment.60,61 (Fig. 2) Specifically, these hippocampal 

pyramidal neurons selectively discharge (rate coding) when the animal enters certain 

locations of the environment, called the cells’ firing fields. Field location, size and shape are 

specific to each cell and each environment and fields tend to cover the surface of the 

environment homogeneously when a large number of neurons are being recorded 

simultaneously. Since there is a relationship between place cell activity and the ongoing 

spatial behavior of rats62,63, such signals provide the animal with a spatial representation in 

order to navigate efficiently within the environment. Adult rats that experienced status 

epilepticus (SE) and have impaired learning in the water maze have defective place 

cells64,65, with imprecise and stable firing fields65. Likewise, flurothyl-induced seizures 

during the first weeks of life cause impairment in spatial cognition with poor performance in 

the water maze and radial-arm water maze and have substantial deficits in AP firing with 

impaired place cell precision and reduced place cell stability43. In the febrile status 

epilepticus model, rats have spatial cognition deficits and impaired place cell firing field34, 

indicating that rate coding can be impaired in multiple models of ELS. Furthermore, these 

findings suggest that abnormalities in single cell firing contribute to impaired spatial 

cognition.

Network oscillations underlie the temporal binding of spatially distributed neuronal 

populations, enabling information processing for cognition66,67. Theta frequency (5–12 Hz), 

the largest amplitude oscillation in the hippocampus, is associated with exploratory behavior 

and has been found to be necessary for spatial memory performance68,69. Gamma 

oscillations (30–90 Hz) have been hypothesized to “route” information flow in CA170 with 

slow gamma (20–50 Hz) coupled to CA3 and believed to be essential for memory storage71. 

There is a slowing of hippocampal CA1 theta in animals with spatial cognition deficits in 

both the flurothyl50 and hyperthermia34 induced seizures model.

Oscillations are dynamic events that can be modulated by experience. In a study measuring 

oscillatory activity in the hippocampus and medial prefrontal cortex of adult rats that had 

experienced flurothyl-induced seizures in the first weeks of life, and were remedially trained 

on a delayed-nonmatch-to-sample memory task, power was increased among ELS rats42. 

This enhancement appeared after the first memory-training steps using short delays and 

plateaued at the most difficult steps, which included both short and long delays. Further, 

ELS rats showed enhanced CA1-Prefrontal Cortex (PFC) theta coherence in correct trials 

compared with incorrect trials when long delays were imposed, suggesting hippocampal-

PFC enhancements for the task in this group when memory demand was high. ELS rats also 

showed heightened gamma power and coherence among all three structures during the trials. 

These results provided the first evidence that training of rats after ELS can dynamically alter 

oscillatory activity of hippocampal-PFC circuitry.
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Effects of Interictal Spikes on the Developing Brain

In addition to seizures, interictal spikes (IIS) can result in cognitive impairment in both rats 

and humans. Following intrahippocampal pilocarpine infusion, rats develop IIS that result in 

transient impairment in the delayed-match-to-sample test, a hippocampal-dependent operant 

behavior task72. Hippocampal IIS that occur during memory retrieval strongly impairs 

performance. However, IIS that happen during memory encoding or memory maintenance 

do not affect performance. In a similar study of people with temporal lobe epilepsy (TLE) 

who have bilateral depth electrodes implanted into their hippocampi for preoperative seizure 

localization, IIS cause transient memory impairment73,74. Hippocampal IIS occurring during 

the memory retrieval period decrease the likelihood of a correct response on a short-term 

memory test, the Sternberg task, when they arise bilaterally in both temporal lobes or in the 

temporal lobe contralateral to the seizure focus73. Because patients with TLE often have 

impaired memory in the epileptic hippocampus and require the non-epileptic hippocampus 

for memory, IIS arising from the damaged epileptic hippocampus have little effect on 

memory while IIS involving the intact non-epileptic hippocampus interfere with memory 

retrieval. As with rodents with TLE, patients with TLE and IIS have specific deficits in 

retrieval of memory while sparing other forms of memory.

IIS in rodents, similar to seizures, result in a sustained reduction of action potentials (APs) in 

the hippocampus for up to two seconds following IIS75. Furthermore, when occurring in 

flurries, defined as four or more IIS occurring within 10 sec, IIS can reduce APs firing for 

up to six seconds. The widespread inhibitory wave immediately following IIS can also 

reduce the power of gamma (>30 Hz) oscillations and other oscillatory signals in the 

hippocampus76. As will be discussed further, since gamma oscillations are closely coupled 

with ongoing learning and memory function, disruption in oscillations may contribute to 

cognitive deficits.

In adults with IIS, the cognitive effects are typically transient and may have little long-term 

consequences in cognitive function, unless they occur very frequently. However, in the 

immature brain, the effects of IIS also have long-term adverse effects on developing neural 

circuits. In interesting studies from the 1980’s, IIS were elicited by either penicillin77 or 

bicuculline78 through focal application on the striate cortex of the occipital lobe of immature 

rabbits. IIS occurred for 6–12 hours following each drug application which was given daily 

starting from postnatal day 8–9 and continued for 3–4 weeks. None of the rabbits had 

behavioral or electrographic seizures. In single-unit recordings from the lateral geniculate 

nucleus, superior colliculus and occipital cortex ipsilateral to the occipital lobe with the IIS, 

an abnormal distribution of receptive field types was seen, whereas normal recording was 

present in the contralateral hemisphere. Remarkably, this finding is age-dependent. Adult 

rabbits with similarly induced IIS have a normal distribution of receptive field types, 

highlighting the vulnerability of critical developmental periods to cumulative IIS effects over 

time. Likewise, focally-induced IIS by stereotaxic injections of bicuculline in the prefrontal 

cortex (PFC) in rat pups for several days result in long-standing increases in short term 

plasticity in the PFC and marked inattentiveness during a spatial memory task, when the rats 

are tested as79.
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To further study the effect of recurrent multifocal IIS during development, rat pups were 

given a low dose of flurothyl for four hours for 10 days during continuous EEG 

monitoring80. Rats developed IIS without seizures while age-matched controls under similar 

testing conditions had few IIS. When the rats were tested as adults, there was impairment in 

reference memory in the Morris water maze, working memory impairment in the four-trial 

radial-arm water maze and impaired long-term potentiation. Early-life IIS resulted in 

impaired new cell formation and decreased cell counts in the hippocampus but did not cause 

an increase in apoptosis. This study, for the first time, demonstrates that IIS in rat pups 

without seizures can result in long-standing spatial cognitive impairment. These findings 

suggest that suppressing IIS may be as important as treating seizures during brain 

development.

Conclusions

In summary, while etiology of the seizures is the primary factor in cognitive outcome, rodent 

models of childhood epilepsy have shown that both seizures and IIS can be detrimental to 

brain development. With further refinement of our knowledge of the pathophysiological 

underpinnings of seizure-related cognitive deficits it is hoped that future therapies will target 

cognition as much as seizures. While not covered in this review, AEDs can also contribute to 

cognitive impairment in both children and animals. While suppressing seizures and IIS is an 

important goal, clinicians should be cognizant of the potentially detriment effects of AEDs 

on the developing brain when making treatment decisions.
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Fig. 1. 
There are many factors that determine cognitive outcome with early-life seizures. Etiology is 

the primary determinant of cognitive outcome. For example, channelopathies, such as occur 

in Dravet syndrome, may have major effects on cognition. Likewise, seizures, antiepileptic 

drugs and interictal spikes contribute to cognitive impairment.
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Fig. 2. 
Place cell recordings. The recording cylinder with cue card is shown in A. Examples of 

place cells (B,D) and an interneuron (C) are shown. The place cell in B is at approximately 5 

o’clock while the place cell in D is at approximately 7 o’clock but is closer to the center of 

the cylinder than the cell depicted in B. Firing frequency is color coded. Yellow shows areas 

of the cylinder in which the cell did not fire while the green, blue and purple colors show 

high firing rates in the place firing field. Wavefroms from the tetrodes are shown next to the 

color coded firing rates. The neuron recorded in C is an interneuron which shows a higher 

firing rate but no clear place preference.
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