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Abstract

The view of enzymes as punctilious catalysts has been shifting as examples of their promiscuous 

behavior increase. However, unlike a number of cases where the physiological relevance of 

breached substrate specificity is questionable, the very synthesis of H2S relies on substrate and 

reaction promiscuity, which presents the enzymes with a multitude of substrate and reaction 

choices. The transsulfuration pathway, a major source of H2S, is inherently substrate-ambiguous. 

A heme-regulated switch embedded in the first enzyme in the pathway can help avert the 

stochastic production of cysteine versus H2S and control switching between metabolic tracks to 

meet cellular needs. This review discusses the dominant role of enzyme promiscuity in pathways 

that double as sulfur catabolic and H2S synthetic tracks.

Graphical Abstract

Enzymes can exhibit considerable laxity in both substrate and reaction specificity, 

contributing to the growing view that promiscuity and fidelity coexist in biocatalysts [1]. An 

evolutionary advantage of a specificity cushion is that it affords a latent functional repertoire 
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that is broader than the genome encoding it, and provides an adaptive advantage under 

pressure for the emergence of new catalytic functions as seen in both natural and laboratory 

settings [2–4]. Enzymes can exhibit promiscuous behavior toward xenobiotic substrates or 

towards naturally occurring metabolites. The term “underground metabolism” was coined to 

refer to the stream of secondary metabolic activity with endogenous substrates that is 

generally invisible due to low flux but might be phenotypic under certain conditions [5]. At 

one extreme of the specificity spectrum are enzymes involved in DNA replication, which 

operate with low albeit nonzero error rates, their ability to slip up and introduce mutations 

being advantageous from an evolutionary perspective. At the other end of the spectrum, are 

enzymes involved in some amino acid metabolism pathways such as the ones shared for 

cysteine and H2S synthesis as discussed in this review.

It is posited that ancient enzymes were generalists with broad specificity and that metabolic 

pathways were inherently leaky [6]. Enzyme promiscuity and underground metabolism play 

a surprisingly prominent role in multiple facets of H2S synthesis [7–9]. The enzymes 

involved in H2S biogenesis are distinct from the highly specific nitric oxide synthases and 

heme oxygenases, dedicated to synthesizing the other two gaseous signaling molecules, NO 

and CO, respectively. Also in striking contrast to NO and CO synthesis, three unrelated 

enzymes support H2S synthesis of which two, serve alternative metabolic functions (Fig. 

1A). Cystathionine β-synthase (CBS) and γ-cystathionase (CSE) comprise the cytoplasmic 

transsulfuration pathway that functions to direct homocysteine derived from methionine to 

cysteine synthesis, particularly under conditions of sulfur excess [10]. The third enzyme, β-

mercaptopyruvate sulfurtransferase (MST) resides in the cysteine catabolic branch of the 

sulfur network and is both cytoplasmic and mitochondrial [11]. The reactions catalyzed by 

these H2S synthesizing enzymes and their regulation, are discussed in this review.

H2S Synthesis via the Transsulfuration Pathway

Parallel tracks within the transsulfuration pathway lead to cysteine synthesis from serine and 

homocysteine and to H2S synthesis from cysteine and homocysteine (Fig. 1A). The first 

enzyme in the pathway, cystathionine β-synthase (CBS) catalyzes the β-replacement of 

serine and homocysteine eliminating water and forming cystathionine. The latter is a 

substrate for γ-cystathionase (CSE), which catalyzes its α-γ eliminination to cysteine, α-

ketobutyrate and ammonia. In this configuration of the transsulfuration pathway, sulfur is 

fated for transfer from homocysteine to cysteine. However, CBS [12] and CSE [13] exhibit 

both substrate and reaction ambiguity (Fig. 2A, B). Thus, CBS can swap cysteine for serine 

eliminating H2S while still forming cystathionine in the presence of homocysteine (Fig. 1A). 

It can also generate H2S from one or two moles of cysteine (Fig. 2A). Of the three routes for 

CBS-catalyzed H2S-production, the dominant one is β-replacement of cysteine by 

homocysteine [12].

CSE, the second enzyme in the transsulfuration pathway, exhibits even greater promiscuity 

than CBS. In addition to the three H2S generating reactions that it catalyzes in common with 

CBS, it also produces H2S from one or two moles of homocysteine (Fig. 2B). The major 

routes for CSE-catalyzed H2S generation are via α-β elimination of cysteine to form 

pyruvate and ammonia and by α-γ elimination of homocysteine forming α-ketobutyrate and 
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ammonia. The former reaction is favored at physiologically relevant substrate concentrations 

[12]. In addition to H2S, the transsulfuration enzymes catalyze the synthesis of persulfides 

from homocystine (CSE only) and cystine (CBS and CSE), the oxidized forms of the 

respective amino acids (Fig. 2A, B) [14–16]. In the reducing intracellular milieu, cystine and 

homocystine concentrations are low and the persulfide-generating reactions are predicted to 

be quantitatively insignificant [15]. However, under oxidizing conditions, these reactions 

might become significant.

The first step in the CBS and CSE catalyzed reactions involves formation of an external 

aldimine with the incoming amino acid. While CBS forms a Schiff base with serine or 

cysteine, CSE can also accommodate homocysteine, with an extra methylene group at this 

position (Fig. 1B), explaining the wider range of reactions that it catalyzes [12]. H2S 

synthesis by CSE is responsive to the grade of homocystinuria [13], a metabolic disorder 

characterized by elevated homocysteine [17]. The physiological relevance of homocysteine-

derived H2S is supported by elevated homolanthionine in homocystinuric patients [18,19]. 

Homolanthionine is a side product of H2S-generation via condensation of two moles of 

homocysteine (Fig. 2B).

Human CBS does not discriminate between serine and cysteine at the level of the respective 

specificity constants, which are virtually identical (kcat/Km(Cys) = 2.9×103 M−1s−1 versus 

kcat/Km(Ser) = 2.7×103 M−1s−1 at pH 7.4 and 37 °C) [12]. However, the Kd for serine is ~7-

fold lower than for cysteine [12]. Human CSE exhibits a preference for cystathionine (kcat/

Km(Cyst) = 8×103 M−1s−1) over cysteine (kcat/Km(Cys) = 0.3×103 M−1s−1) or homocysteine 

(kcat/Km(Hcy) = 0.4×103 M−1s−1) [13]. Both CBS and CSE exhibit high Km values for 

cysteine and homocysteine (2–7 mM) that are 10–100 fold higher than the intracellular 

concentrations of these substrates in most tissues [12,13]. The corresponding enzymes in 

other organisms also exhibit high Km values for their substrates [20]. It is not known if small 

molecule modulators or supramolecular organization of pathway enzymes as seen in 

purinosomes [21] influence the affinity of the transsulfuration enzymes for their substrates 

or their kinetic efficiencies in vivo.

H2S Synthesis via Cysteine Catabolism

The conversion of cysteine to H2S via the cysteine catabolic pathway occurs in two steps 

catalyzed by a transaminase and by MST (Fig. 1A) [22,23]. Aspartate aminotransferase 

(AAT) is a notoriously promiscuous pyridoxal phosphate-dependent enzyme that catalyzes 

the transamination reaction between pairs of amino and keto acids (Fig. 2C). It catalyzes a 

cysteine aminotransferase (CAT) reaction in which aspartate is substituted with cysteine 

forming 3-mercaptopyruvate. The promiscuity of CAT/AAT is further demonstrated by its 

~10-fold higher activity under Vmax conditions with cysteine sulfinic acid (Fig. 2C) than 

with aspartate [24]. Cysteine sulfinic acid is the product of cysteine dioxygenase, which is 

also involved in cysteine catabolism [10].

In the absence of a known mechanism for regulating substrate selectivity, the reaction choice 

for CAT/AAT is presumably determined by a combination of substrate concentrations and 

the relevant specificity constants (kcat/Km). Mitochondrial and cytoplasmic isoenzymes of 
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AAT/CAT exist and despite the wealth of structural and mechanistic information on them, 

direct comparison of the kinetic parameters for the competing reactions at physiologically 

relevant pH, are not readily available. The Km values for the mitochondrial rat liver 

CAT/AAT are 22 mM for cysteine and 0.5–1.6 mM for aspartate at pH 9.7 [23] and the 

specificity constants are estimated to be 1.4×104 M−1 s−1 (aspartate) and 1.4 × 102 M−1 s−1 

(cysteine) at pH 9.7 and 37 °C [25]. At pH 7, the CAT activity is ~10-fold lower than at its 

optimal pH of 9.7 [25]. The CAT activity is potently inhibited by aspartate [23,25], which is 

more abundant than cysteine in most tissues. Despite the kinetic parameters favoring AAT 

over CAT activity, the physiological relevance of the CAT reaction is borne out by the 

accumulation of mercaptolactate disulfide in individuals with a genetic deficiency of MST 

[26]. Mercaptolactate is the product of lactate dehydrogenase-catalyzed reduction of 

mercaptopyruvate.

An alternative route to 3-mercaptopyruvate is via the oxidative deamination of D-cysteine 

catalyzed by the flavoprotein, D-amino acid oxidase, which is yet another promiscuous 

enzyme [27,28]. While its “physiological” substrate is presumed to be D-serine, it exhibits 

substantial or even higher activity with other D-amino acids [29]. For the human enzyme, 

the kcat/Km for D-serine is 0.4 × 103 M−1 s−1 at pH 8.5 and 25 °C [30] while the 

corresponding value for D-cysteine is not known. D-amino acid oxidase is a peroxisomal 

enzyme while MST is predominantly mitochondrial. Hence, the contribution of this pair of 

enzymes to H2S generation in intact cells and the source of D-cysteine are not known.

MST also exhibits promiscuity utilizing either 3-mercaptopyruvate or thiosulfate as substrate 

(equations 1,2). MST catalyzes a sulfurtransferase reaction forming an enzyme-bound 

persulfide intermediate, which subsequently donates the sulfane sulfur atom to an acceptor 

e.g. cyanide (equation 3). The physiological sulfur acceptor is predicted to be thioredoxin 

[31,32].

[1]

[2]

[3]

The Km values of rat liver MST for mercaptopyruvate (1.2 mM) and thiosulfate (62 mM) are 

vastly different. Furthermore, their specificity constants (5.6 × 103 M−1 s−1 for 

mercaptopyruvate (pH 9.55 and 25 °C) and 1.5 × 102 M−1 s−1 for thiosulfate (pH 5.0 and 

25 °C)) are difficult to compare given the difference in the assay conditions [33]. The kcat/

Km(3-MP) for human MST with mercaptopyruvate as donor and thioredoxin as acceptor is 

3.7 × 103 M−1 s−1 at pH 7.4 and 37 °C [31]. In human MST, Arg188, Arg197 and Ser250 
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make contacts with the carbonyl and carboxyl oxygens of mercaptopyruvate and are 

important determinants of selectivity against thiosulfate [33].

Heme-dependent Metabolic Switching

Some cellular strategies for averting the potentially adverse effects of inherently lax 

substrate specificity are regulation of protein expression levels, limiting active site access via 

substrate or product inhibition and metabolite repair [34,35]. In the transsulfuration pathway, 

the single or combinatorial use of even a limited number of amino acids creates a multitude 

of reaction choices for CBS and CSE (Fig. 2A, B), which must be regulated to service 

cellular needs for cysteine versus H2S synthesis. CBS is poised at a key metabolic decision 

point where the choice between recycling or transmuting homocysteine is made. Hence, 

CBS is a major hub of regulation; it is allosterically stabilized [36] and activated by S-

adenosylmethionine (AdoMet), and by glutathionylation [37], but inhibited by CO [38–41], 

NO [42,43], nitrite [44] and by SUMOylation [45]. Human CBS comprises an N-terminal 

regulatory domain that houses a heme [46,47] and a C-terminal domain that has a tandem 

repeat of CBS domains, a secondary structure motif that is often utilized in energy sensing 

modules [48].

In human CBS, Cys52 and His65 serve as ligands to the heme in the ferric and ferrous states 

(Fig. 1C). Although located ~20 Å from the catalytic site where the PLP cofactor is housed, 

the heme exerts long-range allosteric effects [49]. Binding of NO or CO to the ferrous heme 

results in the formation of 5- and 6-coordinate species, respectively in which Cys52 or both 

endogenous ligands are displaced (Fig. 1C). The heme also exhibits catalytic activity 

reducing nitrite to NO and forming the inhibitory ferrous-nitrosyl complex [44]. Changes in 

the native heme environment are communicated to the PLP pocket [49–51] and results in a 

shift in the tautomeric equilibrium from the active ketoeneamine to the inactive enolimine 

form [52]. Inhibition of CBS by CO and NO is readily reversed in the presence of oxygen, 

which rapidly oxidizes ferrous CBS [53].

The heme in CBS is a key operator that can switch the transsulfuration pathway between the 

cysteine and H2S production tracks [54]. When the heme is coordinated by endogenous 

ligands, synthesis of cystathionine via the canonical reaction is favored due to the higher 

intracellular concentration of serine and its higher affinity for CBS versus cysteine. 

Cystathionine (Km =0.28 mM) in turn, competes with cysteine (Km = 1.7 mM) and 

homocysteine (Km = 2.7 mM) for CSE resulting in the transsulfuration pathway operating in 

the canonical cysteine-producing track (Fig. 3). Under conditions that induce nitric oxide 

synthase or heme oxygenase, e.g. ER stress [55] or inflammation [56], enhanced production 

of NO or CO could lead to ferrous nitrosyl or ferrous carbonyl CBS, which are inactive. 

Consequently, homocysteine levels rise and cystathionine levels fall, promoting H2S 

synthesis by CSE (Fig. 3). As NO or CO levels drop, or the ferrous heme in CBS is 

oxidized, the transsulfuration pathway switches back to the cysteine track. Both the 

transsulfuration pathway and transporters feed the cysteine pool and conditions such as ER 

stress enhance cysteine import [57]. In liver, where the transsulfuration pathway is best 

characterized, CSE is estimated to account for ~97% of H2S produced at physiologically 
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relevant substrate concentrations and taking into account differences in the protein levels of 

CBS and CSE [58].

Other strategies for controlling H2S production also exist in cells including substrate level 

activation, posttranslational modification of CBS [37,59] and CSE [60] and regulation of 

protein levels of the transsulfuration pathway enzymes. While CSE is more abundant than 

CBS in liver and kidney [58], CBS predominates in brain [61].

Conclusions

The rampant promiscuity of enzymes involved in mammalian H2S synthesis is not surprising 

from an evolutionary perspective. CSE and CBS orthologs in lower organisms condense 

cysteine and H2S (or thiosulfate) with O-phosphohomoserine and O-acetylserine forming 

cystathionine and cysteine (or sulfocysteine), respectively [20,62,63]. While metabolic 

regulation during evolution has resulted in reversal of the transsulfuration pathway from 

sulfur assimilation in lower organisms to dissimilation in higher organisms, lax substrate 

specificity in the pathway enzymes has endured. Other enzymes such as AAT/CAT and D-

amino acid oxidase, which feed MST-dependent H2S synthesis, are inherently broad 

specificity enzymes. The heme-regulated metabolic track switching discussed here is one 

strategy for regulating the multipurpose enzymes involved in H2S biogenesis; other 

strategies must exist and remain to be identified. Whether the use of small molecule 

regulators for switching enzyme specificity and redirecting flux might is a strategy deployed 

by other metabolic pathways remains to be elucidated.
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Highlights

• This review highlights the prevalence of promiscuity not only in the enzymes 

that synthesize hydrogen sulfide, a signaling molecule, but also in the 

metabolic pathways in which they reside.

• The role of heme-dependent metabolic track switching as a mechanism of 

regulating flux between competing pathways is discussed.

Banerjee Page 11

Curr Opin Chem Biol. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Overview of H2S synthesizing reactions. A. H2S can be synthesized by the transsulfuration 

pathway enzymes, CBS and CSE or by the cysteine catabolism pathway enzymes, CAT/AAT 

and MST. The canonical transsulfuration reactions catalyzed by CBS and CSE results in the 

conversion of serine and homocysteine to cysteine. However, these enzymes can also utilize 

cysteine and homocysteine to generate H2S. Cystathionine, an intermediate in the canonical 

transsulfuration pathway competes with cysteine for binding to CSE, thus inhibiting H2S 

synthesis (red dotted line). MST is a sulfurtransferase, which catalyzes the transfer of the 

sulfur atom from mercaptopyruvate to an active site cysteine thiol to form a cysteine 

persulfide. The latter, in the presence of reductants can release H2S. αKB denotes α-

ketobytyrate. B. The first step in the reactions catalyzed by CBS, CSE and CAT/AAT is the 

formation of an external aldimine via a Schiff base linkage between PLP and the amino acid. 

CBS can bind either serine or cysteine, CSE can bind cysteine or homocysteine, while 

CAT/AAT can bind aspartate or cysteine sulfinic acid (CSA) in addition to cysteine at this 

position. C. CBS has a regulatory heme cofactor that is ligated by His65 and Cys52 (human 

protein numbering). One electron reduction to the ferrous state promotes binding of 

exogenous ligands such as CO or NO leading to inactive enzyme. The heme harbors nitrite 

reductase activity and forms nitrosyl heme, which is 5-coordinate. The broken line to His65 

indicates that this residue serves as a ligand when CO but not when NO is bound. The 

ferrous nitrosyl and ferrous carbonyl forms of CBS are readily converted to the ferric state in 

the presence of O2.
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Figure 2. 
Promiscuity of PLP enzymes involved in H2S synthesis. H2S and persulfide-generating 

reactions catalyzed by the transsulfuration pathway enzymes CBS (A) and CSE (B). 

Reactions catalyzed by CAT/AAT (C). Pyr and α-KB denote pyruvate and α-ketobutyrate 

respectively.
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Figure 3. 
Heme-dependent metabolic track switching. The canonical transsulfuration track operates 

when the heme in CBS is coordinated by its endogenous ligands and serine, which is more 

abundant than cysteine and binds with higher affinity, competes effectively for the active 

site. The product, cystathionine, is then converted by CSE to cysteine. The enzymes switch 

metabolic tracks when ferrous CBS binds either NO or CO, inhibiting activity, which leads 

to an increase in homocysteine and a decrease in cystathionine. Under these conditions, H2S 

synthesis from cysteine, which is catalyzed by CSE, is promoted. The red up and down 

arrows denote changes in metabolite levels.
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