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Abstract

Background—There is limited evidence regarding the optimal timing of initiating antiretroviral 

therapy (ART) in children. We conducted a causal modelling analysis in children aged 1–5 years 

from the International Epidemiologic Databases to Evaluate AIDS West/Southern-Africa 
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collaboration to determine growth and mortality differences related to different CD4-based 

treatment initiation criteria, age groups and regions.

Methods—ART-naïve children of age 12–59 months at enrollment with at least one visit before 

ART initiation and one follow-up visit were included. We estimated 3-year growth and cumulative 

mortality from the start of follow-up for different CD4 criteria using g-computation.

Results—About one quarter of the 5826 included children was from West Africa (24.6%). The 

median (first; third quartile) CD4% at the first visit was 16% (11%;23%), the median weight-for-

age z-scores and height-for-age z-scores were −1.5 (−2.7; −0.6) and −2.5 (−3.5; −1.5), 

respectively. Estimated cumulative mortality was higher overall, and growth was slower, when 

initiating ART at lower CD4 thresholds. After 3 years of follow-up, the estimated mortality 

difference between starting ART routinely irrespective of CD4 count and starting ART if either 

CD4 count<750 cells/mm3 or CD4%<25% was 0.2% (95%CI: −0.2%;0.3%), and the difference in 

the mean height-for-age z-scores of those who survived was −0.02 (95%CI: −0.04;0.01). Younger 

children aged 1–2 and children in West Africa had worse outcomes.

Conclusions—Our results demonstrate that earlier treatment initiation yields overall better 

growth and mortality outcomes, though we could not show any differences in outcomes between 

immediate ART and delaying until CD4 count/% falls below750/25%.

INTRODUCTION

Despite a reduced number of newly infected children in 2012, the burden of HIV remains 

high with 260,000 new annual pediatric infections in low- and middle-income countries.1 

The optimal timing of antiretroviral treatment (ART) initiation in children beyond 12 months 

of age remains controversial: early ART initiation may reduce morbidity and mortality but 

could increase the risk of toxicity, complications due to non-adherence, and early 

development of drug resistance.2–6

The World Health Organization (WHO) 2006 guidelines recommended treatment initiation 

for all children with WHO clinical stage III/IV (with exceptions for children ≥12months, 

stage III, and particular clinical events) or based on age-dependent CD4 criteria for children 

with clinical stage I/II (starting ART if (i) CD4 count<350 cells/mm3 or CD4%<15% for 

children aged 36–59 months (ii) CD4 count<750 cells/mm3 or CD4%<20% for children 

aged 12–35 months). The CHER trial showed a 76% (95% CI: 49%–89%) reduction in 

mortality in infants, enrolled at age 6–12 weeks, for immediate ART initiation versus 

deferring ART until CD4% was lower than 25%.7 These results caused WHO to update their 

guidelines in 2008 to recommend ART initiation in all HIV-infected children less than 12 

months of age, regardless of their clinical and immunological status. These 

recommendations were expanded to all HIV-infected children less than 24 months of age in 

2010 while for children between 24–59 months, with an asymptomatic or mild clinical 

disease, ART was recommended if either CD4 count<750 cells/mm3 or CD4%<25%. Both 

the 2006 and the 2010 recommendations relied however solely on the evaluation of disease 

progression in analyses that were neither randomized experiments nor causally interpretable. 

In addition, many of these analyses were based on data from high-income countries.8–11
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The question of when to start was also investigated in the PREDICT trial in which Asian 

children of age 1–12 were included at a median age of 6.4 years, with only 6% in their 

second year of life.3,12,13 This trial didn’t show any difference between immediate ART 

initiation and deferring ART until either the CD4% was below 15% or any CDC category C 

event occurred - with respect to mortality and morbidity outcomes. The trial did however 

show better height gain for children who start ART immediately. However, the authors 

suggested that the study was underpowered to detect differences due to the lower than 

expected event rate. In Southern African children, a causal modelling study showed no 

mortality difference in 2–5 year old children for starting ART immediately versus starting 

ART when either the CD4 count falls below 750 cells/mm3 or the CD4% drops below 

25%.14 In 2013, WHO guidelines were further updated to recommend ART initiation in all 

children less than 5 years. This change was mainly motivated by potential programmatic 

advantages, i.e. to provide simplified criteria for initiating ART and to bring young children 

into the health care system.

Thus, there still remain considerable evidence gaps: a comparison of different CD4 initiation 

criteria has never been explored for children aged 1–2 years. These children are known to 

have slower disease progression than infants, but also progress faster than older children and 

thus findings both from the CHER and PREDICT trial, as well from other recent analyses, 

may not apply to them.3,5 Moreover, it is of interest whether the evidence for children aged 

2–5 years can be generalized to West African populations and whether the different growth 

response suggested by the PREDICT trial applies to these populations.

We thus used g-computation 14–16 to determine mortality and growth differences for 

different ART initiation strategies in young children from West and Southern Africa. We 

chose g-computation because it allows adjustment for time-varying confounders affected by 

prior treatment; in our data these are CD4 count, CD4%, and WHO stage (approximated by 

weight for age z-scores [WAZ]) which influence both ART initiation and our outcome 

measures. Traditional multivariate regression techniques may yield biased treatment effect 

estimates. An advantage of g-computation over competing methods is its suitability to 

compare dynamic intervention rules, its efficiency, and that it provides natural estimation of 

marginal effects.17

Our primary study aims were (i) to compare mortality and height outcomes for different 

CD4 based treatment initiation criteria (derived from selected CD4 criteria from WHO 

guidelines since 2006), (ii) to contrast mortality and growth of 1–2 year old children with 

older children, and (iii) to investigate the heterogeneity of results from Southern Africa and 

West Africa. All our estimates are based on the idealized conditions of regular visits (every 3 

months) at which CD4 measurements are taken, and instantaneous treatment initiation if a 

treatment threshold has been reached.

METHODS

This study includes data of 16 cohorts from Côte d’Ivoire, Burkina Faso, Ghana, Senegal, 

Togo, South Africa, Malawi and Zimbabwe. All cohorts are part of either the IeDEA West 

Africa or IeDEA Southern Africa cohort collaboration. Both collaborations have been 
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described elsewhere.18–21 In brief, data were collected at each facility as part of routine 

monitoring and were transferred to the coordinating data centres at Bordeaux University, 

France, University of Cape Town, South Africa, and University of Bern, Switzerland. All 

contributing sites obtained ethical approval from the relevant local institutions before 

submitting anonymized patient data to the collaboration. The data centres in Bordeaux, 

Bern, and Cape Town got ethical approval from the respective universities’ review boards to 

analyse this data.

The present study is limited to cohorts which routinely capture both pre-ART and post-ART 

data of HIV-infected children. All ART naïve children of age 12–59 months at enrollment 

with at least one visit before ART initiation and one follow-up visit were included (Figure 

1).

The analysis made use of children’s age at enrollment, their sex, treatment facility, date of 

ART initiation as well as CD4 count, CD4%, weight for age z-scores, and height for age z-

scores, both at time of enrollment and during follow-up. All z-scores were calculated using 

WHO standards.22 We defined young children to be those who present at age 12–24 months 

(1–2 year age group), and old children to be those who present at age >24 months and ≤59 

months (2–5 year age group). Follow-up data was evaluated one month after enrollment, 

three months after enrollment and then subsequently in 3-month intervals for a period of up 

to 3 years. If no data were available for a particular interval, the data were defined to be 

missing. Children were defined as being lost to follow-up (LTFU), and censored, if at the 

time of database closure they had no contact with their health care facility for at least 9 

months since their last recorded visit. In a sensitivity analysis we censored children 9 

months after having no contact with their health care facility, even if they re-entered care 

after 10 months or more.

We carried forward missing CD4 count, CD4%, weight- and height-for-age Z score follow-

up data and used multiple imputation by means of the Expectation-Maximization-Bootstrap 

(EMB) algorithm 23 to deal with missing baseline data. The imputation model included all 

baseline variables, follow-up variables (including lagged and lead versions of them), death, a 

carry-forward indicator variable, and region, and also accounted for the longitudinal, 

possibly non-linear, structure of the data.

We summarized the data at time of enrollment, stratified by age and region, and during 

follow-up. Continuous data were described with medians (reported with first; third quartiles) 

and categorical data were summarized by proportions.

The primary analysis used g-computation to estimate cumulative mortality and growth 

(mean HAZ of children who are alive) during 3 years of follow-up for different interventions 

strategies: (a) immediate ART (b) delaying ART until CD4 fell below750 cells/mm3 or 25%, 

(c) delaying ART until CD4 fell below 350 cells/mm3 or 15%, or (d) no ART given. This 

analysis emulates the following clinical trial: HIV positive and ART-naïve children, aged 1–

5 years, presenting at a health care facility for the first time, are randomly assigned one of 

the four treatment strategies (a)-(d). Each of the four arms is therefore differing by the CD4 

thresholds used to determine the timing of ART initiation. Under full adherence to the 
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regime, no administrative censoring, and no loss to follow-up, we can estimate the 

cumulative mortality at time t for each of the four regimes as well as the growth (mean 

height-for-age z score) of those children who survived until time t. We assume that CD4 

count/% is measured and evaluated regularly because we are interested in the outcomes that 

would be observed if treatment strategies were followed; we therefore evaluate the outcomes 

under an ideal monitoring situation. We report cumulative mortality and growth for different 

follow-up times t, together with 95% bootstrap confidence intervals. We also report 

differences between the different interventions, regions, and age groups.

The mean height-for-age z score was chosen as the primary growth outcome to allow 

comparison with the PREDICT trial.13 Secondary growth outcomes are median height-for-

age z score, proportion with height-for-age z score>−2, and cumulative incidence of 

attaining height-for-age z score>−2 before the competing event of death occurs. We estimate 

all growth outcomes under no administrative censoring, and no loss to follow-up, but allow 

for death of children, which means growth is estimated for children who survived until time 

t.

G-computation has been used before to determine the optimal timing of treatment initiation 

in adults.24,25 Our implementation of the g-computation algorithm is similar to the one 

described by Westreich et al.24 but differs slightly from this algorithm in that we use 

multiple imputation for baseline data and other variables, relevant to pediatric analyses, are 

included. To implement g-computation we had to model (at each time point t) the 

associations of CD4 count, CD4%, weight- and height-for age z scores, and death with 

disease progression history (CD4 count, CD4%, weight- and height-for age z scores at time t

−1), baseline characteristics (CD4 count, CD4%, weight- and height-for-age z scores), 

demographics (age, sex, region), and the intervention (ART at times t−1 and t−2) using 

additive linear and logistic regression models. More details about our implementation are 

listed in eTextbox 2.

We conducted several sensitivity analyses: cumulative mortality was estimated (i) if only 

children with complete baseline data are included (ii) if missing follow-up data, as well as 

outcome data of lost children, is imputed (eTextbox 1). Growth was estimated (iii) if only 

children with complete baseline data are included, and (iv) under the assumption of no 

mortality in our population. We also estimated the outcomes and the confounders under the 

natural course, i.e. under no treatment intervention, and compared it to the observed 

data.16,25

In a secondary descriptive analysis, we estimated disease progression as the probability of 

falling below a CD4 value of 750 cells/mm3 or 25% for those children who were above this 

threshold at enrollment. Children LTFU, dead, or initiating ART were censored (first 

analysis) and treated as a competing risk (second analysis). Results were summarized using 

the Kaplan-Meier estimator and cumulative incidence curves 26 respectively.
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RESULTS

Descriptive Results

Among 22,172 children in the database, 7,078 children were in the eligible age-range from 

cohorts that capture pre-ART data. After excluding 258 non-ART naïve children and 1,264 

children with no follow-up, 5,826 were included in the analysis, of which 1,434 (24.6%) 

were from West Africa (Figure 1). Median (first; third quartile) follow-up was 27.4 (8.6; 

35.0) months. Of 267 deaths, 158 (59.2%) occurred in Southern Africa and 58.8% within the 

first 6 months. Out of 1195 (20.5%) children LTFU 869 (72.3%) were from Southern Africa.

Patient characteristics are summarized in Table 1. At presentation, the median age was 2.6 

(1.8; 3.8) years. The median CD4 count was 662 cells/mm3 (389; 1011), the median CD4 

percent 16% (11%; 23%), and median height- and weight-for-age z scores were −2.5 (−3.5; 

−1.5) and −1.5 (−2.7; −0.6) respectively. Almost 75% of children started ART. 

Characteristics at enrollment were similar when comparing 1–2 year old with 2–5 year old 

children, though the latter had a slightly better weight- and height-for-age z scores profile. In 

both regions there was an improvement in median CD4 count/CD4%/weight- and height-for-

age z scores over time, all outcomes being slightly better in Southern Africa than West 

Africa except for height-for-age z scores (eTable 1, eFigure 1). The increase of the mean 

height-for-age z score applied to children both on ART and not on ART (eFigure 1). The 

proportion of missing data at baseline varied from 18.4% for CD4 count to 40.3% for HAZ 

(Table 1). CD4 count/% was available every 3 months for 18%/15% of children; the median 

availability was every 6 months for CD4 count and every 8 months for CD4%. 19% [14%] 

of the 921 patients who had both a 3 monthly CD4 count and CD4% measurement started 

ART instantaneously given a 750/25% [350/15%] threshold.

Progression to CD4 threshold

The estimated proportion of children who progressed to below the threshold of 750 

cells/mm3 or 25% was similar in Southern and West Africa throughout follow-up, 

irrespective of whether a competing risk approach was used or not (Figure 2). After 3 years, 

71.6% (95% CI: 64.8%; 78.1%) of Southern African children and 74.9% (95% CI: 59.5%; 

87.9%) of West African children were estimated to have progressed below the threshold 

(Kaplan-Meier estimator). The estimates obtained from the cumulative incidence curves 

were slightly higher (75.7% (69.7%; 81.9%) and 83.6% (68.1%; 94.4%) respectively).

Mortality Analysis

The estimated cumulative mortality for different treatment strategies is summarized in 

Figure 3 (top left) and eTable2. There is a trend towards higher mortality associated with 

starting ART at lower CD4 thresholds during the whole follow-up period. After 3 years of 

follow-up mortality for the different strategies was estimated to be 8.8% (7.7%; 11.1%) (no 

ART), 5.7% (5.0%; 6.6%) (ART if CD4 <350/15%), 5.0% (4.3%; 5.9%) (ART if CD4 

<750/25%), and 4.8% (4.3%, 5.9%) (immediate ART). The estimated mortality difference 

between the latter two strategies was 0.2% (−0.2%; 0.3%) after 3 years and 0.9% (0.3%; 

1.2%) between immediate ART and giving ART if CD4 <350/15% (Figure 3, top right and 

eTable 2a). The trends can be seen in all age groups and regions (eTable2). Mortality after 3 
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years was estimated to be higher among 1–2 year olds compared to older children (mortality 

difference [MD] for immediate ART 1.3% (0.5%; 2.8%), Figure 3, bottom left, eTable 2b) 

and in West Africa compared to Southern Africa (MD for immediate ART: 4.6% (2.9%; 

5.9%), Figure 3, bottom right and eTable2). The mortality differences between age groups 

and regions are mostly driven by the first three months after the first visit and remain 

reasonably stable thereafter (Figure 3, bottom panel). The sensitivity analyses led to similar 

conclusions when comparing interventions, age groups, and regions (eFigure2, eFigure 3). 

Mortality was somewhat greater when using the extended imputation approach, and slightly 

smaller when restricting the analysis to children with complete baseline data.

Growth Analysis

Figure 4 (top left) demonstrates that the mean HAZ of surviving patients after 3 years of 

follow-up ranges between −1.92 (−2.09; −1.72) (no ART) and −1.73 (−1.88; −1.50) 

(immediate ART). In comparison to immediate ART, the differences in mean HAZ after 3 

years were estimated as −0.02 (−0.04; 0.01) (CD4 count/% threshold of 750/25%), −0.08 

(−0.10; −0.05) (threshold: 350/15%) and −0.19 (−0.25; −0.16) (no ART) (Figure 4, top 

right). Using the median HAZ, the probability of HAZ>−2 and the cumulative incidence of 

HAZ>−2 as outcome yield the same conclusions (eFigure 4, eTable 3). The mean HAZ is 

generally lower in younger children and in South Africa; the differences between the age 

groups are however reasonably stable over time (Figure 4, bottom panel, eFigure 5). The 

sensitivity analyses confirm the above findings (eFigure 6, eFigure 7).

The data characteristics are overall similar when comparing the observed data with the data 

simulated with g-computation under the natural course scenario, i.e. under no intervention, 

though for the CD4 measurements there are some deviations after 1 year of follow-up 

(eFigure 8). A different definition of LTFU led to overall similar results (eFigure9).

DISCUSSION

Statement of principal findings

We found overall lower mortality and better growth when starting ART earlier in children 

aged 1–5. These differences were very small when comparing immediate ART initiation 

with deferring ART until the CD4 threshold of 750/25% is reached, but clearer when 

comparing it with the CD4 threshold of 350/15%. Our findings were consistent over age 

groups and regions, but mortality was estimated to be lower, and growth to be faster, in 

children aged 2–5 and in Southern Africa.

Strengths of the study

This is the first implementation of g-computation to estimate growth differences associated 

with different treatment initiation rules. Consistent findings from the Southern and West 

Africa regions with differences in background morbidity, access and standard of HIV care, 

patient populations, and training possibilities are reassuring in terms of generalizability of 

our results. Our findings complement other studies which either focused on other age 

groups7,14 or were underpowered13.
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Limitations

The outcomes of children lost to follow-up were not known. While censoring by drop out 

can be handled using g-computation, and we conducted sensitivity analyses using multiple 

imputation, it may be possible that those defined to be lost have a particular high risk of 

being dead. In some settings, this is known to be true for adults; 27–29 however, in children 

less is known about those lost to follow-up because reasons for missing an appointment may 

relate to the caregiver’s work responsibilities, family situations, economic opportunities, and 

own health status 30. Studies that trace lost children or link them to vital registries are 

needed to gain more knowledge about this group. While it is possible that the deviations 

between observed CD4 data and the data generated under the natural course scenario 

(eFigure 8) are due to informative censoring, unmeasured confounding related to clinical 

events not captured by weight-for-age z-score data (i.e. encephalopathy or HIV-associated 

nephropathy), or model misspecification, offer alternative explanations.

Our study requires children to have at least one follow-up visit. Children who were excluded 

because of no follow-up data had higher CD4 counts (median [first; third quartile]: 742 

[422; 1220]) and higher CD4% (20 [13;28]) but lower weight- and height-for-age z-score 

values (−2.3 [−3.7; −0.9] and −2.8 [−3.8; −1.5] respectively). This means that mortality at 

the population level could potentially differ from our estimates.

We assume CD4 count/% to be measured 3 monthly and antiretroviral treatment to be started 

instantaneously after patients become eligible under the respective treatment strategy. Our 

estimates are therefore obtained under idealized conditions and may not be directly 

applicable to existing conditions in sub-Saharan Africa, i.e. if CD4 is performed less 

frequently or initiation of ART is not instantaneous after dropping below the threshold, it is 

possible that mortality and growth differences between immediate and deferred ART would 

be different from our estimates. However, it is noteworthy that both the PREDICT and the 

CHER trial scheduled visits no more than 3 months apart.

Other limitations relate to the lack of long-term outcome data and therefore the possibility of 

examining effects of toxicities and drug resistance. Also, missing data on first line regimens 

and differences in drug use between countries make it difficult to evaluate growth and 

mortality outcomes stratified by ART regimen. It may be possible that children on 

nevirapine show better growth outcomes compared to children using lopinavir, but also 

higher virological failure which could result in higher mortality 31.

Results in context

While we found a trend towards higher mortality being associated with starting ART at 

lower CD4 thresholds, differences between the criteria of starting ART immediately and 

delaying until CD4<750/25% were negligible, for all follow-up times and across regions and 

age groups. In line with previous reports13,14 this suggests that the change in WHO 

guidelines in 2013 may neither result in increased nor decreased mortality in young children. 

However, estimated mortality was higher, and growth slower, when starting ART at the 

350/15% threshold, confirming that later ART initiation, as recommended in 2006, may have 

consequences in terms of both mortality and growth.
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In line with the results of the PREDICT trial, where children were enrolled with higher HAZ 

than in our study (mean HAZ −1.7 vs. −2.5), we found a better growth response related to 

early ART initiation. We could however show no difference related to the criteria of starting 

ART immediately versus delaying until the threshold of 750/25% is reached. An important 

consideration regarding interpretation and understanding of our growth results relates to the 

fact that at different time points and for different interventions a different number of 

survivors remain, and thus comparisons are difficult. However, our results from the 

competing risk and sensitivity analyses (eTable 3, eFigure 7) address this concern and 

confirm the overall findings of the mean height-for-age z-score results. Moreover, our results 

can be considered as conservative estimates of the effect of earlier ART initiation: the 

number of survivors at lower ART initiation thresholds is overall lower with some of the 

sicker patients, with lowest height-for-age z score, thus excluded from the mean score when 

compared to higher thresholds; therefore true differences between initiation criteria for any 

particular group of survivors might be larger than reported by us.

In our data mortality was estimated to be higher in West Africa when compared to Southern 

Africa. This may relate to higher malnutrition in West Africa, a different background of co-

infections such as malaria, difficult access to care, different ART monitoring, and the role of 

stigma 32,33. However, these differences were largely driven by differences during the first 3 

months after enrollment. As indicated earlier, it might be possible that the high proportion of 

lost children in the first 3 months in Southern Africa includes a substantial proportion of 

children who died. It is still possible that some of the differences between regions can be 

attributed to under-ascertained mortality in Southern Africa.

Mortality was estimated to be higher, and growth slower, in children aged 1–2 compared to 

older children. This mainly reflects the differences at presentation: the group of children 

aged 1–2 contains many children who have probably been infected in utero or at birth. These 

children tend to have more severe disease, with a worse survival prognosis: if a child is not 

diagnosed with HIV in early infancy, it may only be identified too late, i.e. when caregivers 

arrive at a health care facility with a very sick child. These children have a high risk of death 

before or shortly after presentation. The age group of children aged 2–5 contains fewer of 

these children because these children are more long-term survivors when they are 2 or older 

than earlier. In addition, even in the absence of HIV, mortality is highest in infants and 

declines with increasing age during childhood.

Further considerations and future directions

Our results suggest no negative consequences regarding mortality and growth response when 

starting ART at the earliest presentation to health care services in young children aged 1–5. 

There are however other relevant considerations for determining the optimal time of 

treatment initiation: in settings with limited resources and few trained health care workers 

the allocation of resources needs to be considered carefully. Rapid ART initiation should not 

happen at the expense of neglecting early infant diagnosis and withholding care from the 

most vulnerable children. However, only about 11% of the children in our data presented 

with a CD4 count>750 cells/mm3 and CD4%>25% and about 75% of those progressed to 

below this threshold within 3 years. This suggests that the additional burden of early 
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treatment initiation may be moderate, although probably underestimated by us because our 

cohorts may not be representative of all HIV infected children between 1–5 years of age. 

Antiretroviral treatment also implies lifelong therapy and therefore early treatment goes 

along with longer exposure to the risks of non-adherence, toxicity, and resistance. It remains 

important to identify a caregiver who understands the implications and responsibilities of 

starting ART. Moreover, there may be non-identified long term risks and changing WHO 

guidelines back to delayed treatment may not be feasible anymore.

Nevertheless, recommending treatment initiation in all young children regardless of their 

immunological and clinical stage, may improve access to care, simplify pediatric treatment 

and facilitate expansion of ART coverage. Given the rapid disease progression in young 

children, using CD4 criteria may not delay the onset of therapy very much and risk children 

of dropping out of health care. Moreover, regular CD4 measurements are not available in all 

resource-limited settings. Early treatment initiation may also be beneficial for immune 

recovery and neurodevelopment.

Conclusions

In conclusion, early treatment initiation yields better growth and mortality outcomes in 

children aged 1 to 5 from West and Southern Africa, though differences between immediate 

ART initiation and delaying until CD4<750/25% are negligible. Younger children had worse 

outcomes in our study, but future studies need to confirm this and address programmatic and 

long-term implications and challenges of early treatment initiation to improve their survival.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart: Selection of patients.
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Figure 2. 
Estimated probability of falling below a CD4 count of 750 cells/mm3 or a CD4 percentage 

of 25%. (A) via the Kaplan-Meier estimator: this figure is based on 613 children (514 from 

Southern Africa, 99 from West Africa) presenting with a CD4 count of 750 cells/mm3 or 

above and a CD4% of 25% or above. Only pre-ART follow-up is considered and lost or dead 

children were censored at the time of the respective event. (B) ART initiation, death, and 

loss to follow-up (LTFU) were treated as competing risks. The probability of falling below 

the threshold was estimated via the cumulative incidence of falling below the threshold 

before any other event occurred divided by one minus the probability that any other event 

occurred before the threshold was reached. 95% confidence intervals were obtained via 

bootstrapping and are visualised via the shaded area.
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Figure 3. 
Estimated cumulative mortality by intervention strategy (top left) and differences between 

these intervention strategies (top right). For the intervention ‘immediate ART’ cumulative 

mortality differences are displayed for both comparing the two different age groups and 

regions (bottom panel). Results are based on g-computation and 95% bootstrap confidence 

intervals are represented by the shaded area.
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Figure 4. 
Estimated mean height-for-age z-score by intervention strategy (for survivors at the 

respective time point1, top left) and differences between these intervention strategies (top 

right). For the intervention ‘immediate ART’ the mean height-for-age z-score for both age 

groups as well as the difference between them are displayed (bottom panel). Results are 

based on g-computation and 95% bootstrap confidence intervals are represented by the 

shaded area.

1Note: the number of survivors is different for each time point and strategy. Consult the discussion for more insight.
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