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ABSTRACT: DNA microarrays constitute an in vitro example
system of a highly crowded molecular recognition environment.
Although they are widely applied in many biological applications,
some of the basic mechanisms of the hybridization processes of DNA
remain poorly understood. On a microarray, cross-hybridization
arises from similarities of sequences that may introduce errors during
the transmission of information. Experimentally, we determine an
appropriate distance, called minimum Hamming distance, in which
the sequences of a set differ. By applying an algorithm based on a
graph-theoretical method, we find large orthogonal sets of sequences
that are sufficiently different not to exhibit any cross-hybridization.
To create such a set, we first derive an analytical solution for the
number of sequences that include at least four guanines in a row for a
given sequence length and eliminate them from the list of candidate
sequences. We experimentally confirm the orthogonality of the largest possible set with a size of 23 for the length of 7. We
anticipate our work to be a starting point toward the study of signal propagation in highly competitive environments, besides its
obvious application in DNA high throughput experiments.

■ INTRODUCTION

Molecular recognition in the crowded environment of DNA
microarrays plays an important role in processing information.
Recognition often requires the discrimination of one specific
molecule among many similar, competing molecules. In 1894,
Emil Fischer proposed the lock and key model to describe the
recognition of an enzyme and a substrate.1 According to this
model, the substrate possesses the perfect size and shape to
accommodate the active site of its complement. However, in
crowded environments, binding between noncomplementary
molecules may occur and result in introduction of errors. For
DNA, specific-binding of two single strands, that is the
formation of a stable double helix, occurs only if the bases A
and T as well as C and G pair along the sequence. DNA
microarrays are a widely used platform that, besides many
applications in medicine and biology, enables the study of the
fundamentals of DNA hybridization.2−10 These microarrays
consist of single-stranded DNA oligonucleotides immobilized
on a surface (probes). If these probes are exposed to a bulk
mixture of fluorescently labeled target sequences, only
complementary targets are expected to hybridize. However,
hybridization of a probe to a noncomplementary target still
occurs, albeit with a lower binding affinity than the
corresponding perfectly matching sequence. Therefore, sim-
ilarities among probes can lead to a significant amount of
nonspecific cross-hybridization. On a DNA microarray with
complex target mixtures, imperfect recognition introduces noise
and makes results difficult to interpret.

The kinetics of hybridization in the presence of competitors
and the importance of cross-hybridization for quantitative
interpretation of microarray data have been intensely
studied,11−13 especially for the purpose of single nucleotide
polymorphism detection and the accurate assessment of gene
expression levels.14−17 One strategy to avoid cross-hybrid-
ization is to construct sets of probes with minimized pairwise
competition so that they do not cross-hybridize. Such probes
are often referred to as orthogonal. Previous theoretical
research18−24 developed different strategies to find sets of
orthogonal sequences. The most intuitive approach to decide,
which sequences cross-hybridize, is based on the free energy
difference between the perfectly matched and mismatched
hybridization.25 However, estimating free energies led to poor
predictions of hybridization intensities on microarrays.26 In this
work, we apply a well-known local search algorithm and
implement graph-theoretical methods to find such sets.
Following the concept of Hamming distance from coding
theory, we consider that two sequences do not cross-hybridize
if they differ by at least a certain number of bases. This
threshold is called minimum Hamming distance d.27 We
determine a suitable d experimentally. One of the fundamental
problems in coding theory is finding the maximum size of a
code, where a code is a set of codewords with the length L and
minimum Hamming distance d.28 In analogy, here, we
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experimentally and theoretically find maximal sets of
independent (i.e., orthogonal) sequences (MIS) with a certain
minimum Hamming distance that can coexist on a microarray
without exhibiting cross-hybridization.

■ RESULTS AND DISCUSSION

Theoretical Results. For a given strand with L bases,
according to all permutations of DNA bases (A,C,T,G), there
are 4L distinct sequences. However, some of these sequences
exhibit undesired structures that prevent them from binding to
their complement. An example is the sequences with runs of at
least four guanines that we call 4G sequences. These sequences
are capable of forming complex structures such as G-
quadruplexes, which restrict hybridization. Moreover, they
have abnormal affinities and tend to show increased cross-
hybridization and reduced target-specific hybridization, which
makes the measurement of gene expression unreliable.29−31

Therefore, in this work, we eliminate 4G sequences and their
complement sequences 4C. The number of sequences for a
given length L that exhibit at least one run of 4G is given as
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where the sum represents the number of sequences that are not
4G. The quadrinomial coefficient equals the number of
permutations of L−k guanines within a sequence length of L
(for the derivation of eq 1, see section S1).
To verify eq 1, we numerically calculate N4G(L) by

generating 4L sequences for a given L ≤ 7 and discarding the
ones that contain 4G sequences. Figure 1 illustrates N4G(L) in
comparison to the total number of sequences 4L, for different
lengths. As depicted in Figure 1, for L ≤ 7, this fraction stays
below 1.5%, whereas for longer lengths, it rises, so that for L ≥

200, around 50% of all possible sequences contain 4G
structures.
The second category of sequences that will not contribute to

recognition are self-complementary sequences. We neglect
them as we work with short sequences where self-
complementarity only plays a minor role.32−34 For longer
lengths, however, this must be considered.
Coding theory is a branch of mathematics that studies codes

and their properties for different applications. A code is a set of
codewords. The length of a codeword L is the number of letters
that create the codeword, where the letters are often taken from
an alphabet. In our case, DNA sequences are taken as the
codewords, where L is the number of bases (A,C,G,T) that
make up the sequence. The number of positions that two
codewords of the same length differ is the Hamming distance.27

In case of DNA sequences, we define this distance as the
number of bases by which they differ. We assume that for every
sequence of a given length there is a minimum Hamming
distance d in such a way that there is no cross-hybridization as
long as the Hamming distance k is larger (or equal) than d. If
two sequences differ by less than d, they may cross-hybridize.
For a given sequence, N(d) is the number of sequences from
which one can choose a competitor with k ≥ d. N(d), decreases
by increasing d (Figure 2). Equation 2, for a given length L,

gives the number of sequences PL(k) with the Hamming
distance k. Figure 2 depicts N(d) obtained by summing PL(k)
over all k ≥ d for L = 7 and a given minimum Hamming
distance.
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Solving maximum independent set problems is believed to be
NP-hard. There is no general exact solution, however, there are
approximations.35,36 Finding maximal independent set (MIS) in
N(d) is a problem related to graph theory.36,37 A graph consists
of vertices represented by red circles in Figure 3a. Two vertices
are called adjacent if they are connected by an edge (blue line).
We represent the probes by vertices. If two sequences are such

Figure 1. Fraction of all possible 4L sequences that contain 4G
structures for different oligonucleotide lengths. The inset shows this
fraction stays below 1.5% for L ≤ 7. For longer lengths, it rises. Dotted
lines are a guide for the eye.

Figure 2. N(d) is the number of sequences with k ≥ d for a given
sequence with L = 7. This number decreases for larger d. The inset
depicts the number of sequences PL(k) for each Hamming distance k.
If d = 5, the shaded region represents the sum over all sequences with
k ≥ 5 which do not cross-hybridize with the given sequence. Dotted
lines are a guide for the eye.
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that they hybridize to each other, we connect them by an edge
(Figure 3b). An independent set is a subset with no adjacent
vertices. If adding any sequence to the set corrupts its
independency, the set is called MIS. The largest possible size
of a maximal set refers to the maximum independent set. Here,
MIS corresponds to the largest number of independent
oligonucleotides that can be found. For our approach, we
create an adjacency matrix for a given L and d, where the
number of rows and columns correspond to the number of
sequences; thus, it is a 4L × 4L square matrix (Figure 3c). If the
Hamming distance between sequences i and j is less than d,
they cross-hybridize, that is, they are connected by an edge. In
this case, Aij = 1, otherwise Aij = 0. Sequences are not self-
adjacent, that is, Aii = 0 ∀ i.
We apply a constructive local search algorithm38,39 that

iteratively adds orthogonal sequences to an existing set until the
available sequences are depleted. To identify the orthogonal
sequences the algorithm employs the adjacency matrix
constructed beforehand. The algorithm is restricted as it does
not try all combinations of sequences. Therefore, it does not
necessarily find the maximum independent set but proposes
many maximal independent sets instead. We consider the
largest set among them as an approximate solution to the exact
size of the maximum independent set. All obtained set sizes are
within the known Singleton and Gilbert−Varshamov28,40

bounds and are summarized in Tables S2 and S3 along with
a comparison to literature values. The size of the adjacency
matrix increases exponentially with the sequence length. This
requires a large memory. Therefore, we are limited to short
sequences L ≤ 7.
Figure 4 illustrates the possible sizes of different independent

sets for L = 7 and d = 5 before discarding 4G and 4C sequences
and afterward. The MIS size M(L, d) in both cases is 23.
Removing these sequences for L ≤ 7 does not change the size
of MIS in most cases (refer to Table S2). However, for longer
lengths, the fraction of 4G rises and we expect that discarding
such sequences reduces the size of a MIS (Figure 1). This
algorithm creates independent sets, based on the pool of
available sequences. Removing all sequences containing 4C and
4G changes this pool. Therefore, we obtain different
independent sets (blue columns) compared with the cases
where we did not discard these sequences (red columns). A
significant trend toward smaller or bigger set sizes by removing
4C and 4G sequences cannot be identified.
Experimental Results. A suitable minimum Hamming

distance d must be determined experimentally. Because the

longest sequences studied with our algorithm are 7-mers, we
design a microarray consisting of oligonucleotides of length 7
(plus four additional terminal bases, see Material and
Methods). We immobilize, complementary to a perfectly
matching target (PM), an arbitrary sequence and some of its
related mismatched sequences. To study the dependency of
hybridization probability on the positions of defects, we locate
the mismatches at the ends, in the middle of the sequence, or
uniformly distribute them. Hybridizing the PM target on the
microarray yields the results shown in Figure 5. Each feature
block, as depicted in Figure 5a−d, corresponds to a set of
sequences with one to four mismatches MM1−MM4,
respectively. They are all surrounded by a frame of PMs.
Each sequence appears 8 times within a feature block. To have

Figure 3. Concept of the graph-theoretical approach. (a) Vertices of
one graph (red circles) along with the edges (blue lines) between
adjacent vertices. The vertices inside of the dashed area form the
maximum independent set. (b) Sequences that are connected by blue
lines lead to cross-hybridization. ATT, TTC, and TCT are generating
the maximum independent set. (c) Adjacency matrix for the
corresponding set of sequences.

Figure 4. Size of all independent sets for L = 7 with d = 5 before (red
columns) and after removing 4G and 4C sequences (blue columns).
The height of each column gives the number of possible sets for a
given M(L, d).

Figure 5. Fluorescent intensity from a hybridized PM target on a
microarray. Each feature block (a−d) corresponds to a set of
sequences with one to four mismatches, respectively. They are
surrounded by a frame of PMs. Each sequence appears eight times
within a feature block.
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better statistics, the hybridization intensities from all sequences
are averaged, and their standard deviations σ are calculated.
Then, all intensities are normalized relative to the average PM
intensity on the microarray. The PM and mismatched
sequences are all subject to the same constant synthesis error
rate (see Material and Methods), which leads to an overall loss
of hybridization intensity. For the results presented in the
following, the relative intensity is of importance, which is not
affected by this loss. Fluorescence intensity variations are due to
inhomogeneities of the microarray surface, fluorescent stains in
the feature blocks, or illumination gradients during synthesis.9

For all MM ≥ 4, we detect no other intensity than PM
hybridization (not shown).
Figure 6 presents the normalized fluorescent intensities of

hybridization for a sequence with one mismatch as a function of

defect positions. The intensity for sequences with single
mismatches in the middle is smaller because the defects in
the middle of the duplex increase the base pair opening
probability and destabilize the duplex. This result agrees well
with previously reported work.10,41

We assume all eight fluorescence intensities of one probe
measured at different positions on the microarray to be
normally distributed and described by a standard deviation σ.
To discriminate the PM binding intensity from all other
nonspecific binding, the normal distributions of their hybrid-
ization intensities must be well separated. We show in Figure 7,
the distributions of the fluorescence intensities of PM and the
sequences which exhibit the highest cross-hybridization
intensities IMM,max for MM1−MM3. The normal distributions
are based on a statistical analysis of the microarrays shown in
Figure 5. The peak centers in Figure 7 correspond to the
average value of the fluorescence intensities and their widths to
the standard deviations (shown in Table 1). In DNA
microarrays, the binding affinities can largely vary, depending
on the precise sequence and its concentration,41 that is,
fluorescence intensities of perfectly matched sequences span a
large range. To illustrate that we determine the hybridization
free energy of the sample sequence 3′-CTATATATATC-5′
binding to its PM using Nupack software42 and the
corresponding expected fluorescence intensity using the

Langmuir isotherm.9 As this sequence does not contain any
G or C bases within the seven core bases, its fluorescence
intensity is amongst the lowest of all possible sequences. In fact,
we find that it has just 16.5% of the fluorescence intensity,
obtained by the same procedure, for the PM sequence 3′-
CTACCGTACTC-5′ used on the microarray shown in Figure
5. Accordingly, it should be expected that some perfectly
matched but weakly binding sequences will have lower
hybridization intensities than the 27% signal of IMM,max for
three mismatches. This clearly shows that a minimum
Hamming distance of d = 3 cannot be used for a reliable
discrimination between PM and MM hybridization. Therefore,
we investigate sets with d ≥ 4 in subsequent experiments. Table
1 shows the sequences and their intensities as well as the
corresponding standard deviations for each mismatch.
To test sets with d ≥ 4, we first design a microarray

consisting of 23 sequences (see Table S1) as predicted by our
algorithm, corresponding to d = 5 (compare Figure 4). To
verify its independence, we record the hybridization intensities
of three arbitrarily chosen PM targets of this set simultaneously.
Figure 8a shows the measured normalized hybridization
intensities Iseq in a barplot after background subtraction. It
can be clearly seen that the PM targets, which are present in
solution, hybridize to their corresponding complementary
probes only (green bars). By using the highest hybridization
intensity as a reference, the other hybridized PM sequences
reach 24 and 31% of that level. On the other hand, the
measured hybridization intensities of all other probes (blue
bars) scatter with σ = 0.3% around their average value of zero,

Figure 6. Normalized hybridization intensity for the sequences with
one mismatch as a function of their mismatch position. The intensity
for sequences including a single mismatch in the middle is smaller than
for a MM located at the end.

Figure 7. Normal distribution of the PM and MM1−MM3
hybridization intensities. Assuming a normal distribution with average
intensity (peak centers) and standard deviation σ as given in Table 1.
Even the average cross-hybridization intensity of IMM3,max = 27% is too
high for accurate discrimination of PM-binding and unwanted cross-
hybridization (compare main text).

Table 1. Sequences with Different Numbers of Mismatches,
Which Yield the Highest Hybridization Intensities among All
Probes within Each Feature Block (Figure 7) along with
Their σ

number of mismatches sequence Imax ± σ

0 3′-CTACCGTACTC-5′ 1 ± 0.066
1 3′-CTTCCGTACTC-5′ 0.63 ± 0.1
2 3′-CTACCGTCTTC-5′ 0.37 ± 0.074
3 3′-CTACCGACTTC-5′ 0.27 ± 0.073
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which can be attributed to the background fluorescence noise.
Negative values correspond to the intensities below the average
background level. The intensities of the probes, whose PM
targets are not present in a solution, stay well below 2% within
a large confident interval (5σ environment). To cross-check
that the sets with d ≤ 4 are not independent, we synthesize
another microarray including 83 sequences with d = 4.
Hybridization of one PM leads to cross-hybridization of 11
other probes that rise above 2%, as can be seen for the red bars
in Figure 8b. This underlines that d < 5 is not sufficient to
achieve independency.

■ CONCLUSION
In this work, we experimentally determined a minimum
Hamming distance d between DNA oligonucleotides. Sequen-
ces with a distance of d can make up an orthogonal set, which
means they do not cross-hybridize. By applying a local search
algorithm, we found orthogonal sets for different L and d. For
the length of 7, we determined a MIS with the size of 23 and
experimentally confirmed its orthogonality with an appropriate
minimum distance of 5. The small set size of 23 compared with
47 possible sequences arises from the minimum Hamming
distance of 5. Technology of optically directed synthesis
introduces errors into sequences.43−46 Single-nucleotide poly-
morphism detection in bulk has been achieved, albeit with
higher synthesis fidelity and optimized experimental con-
ditions.47 Moreover, d can be reduced by increasing the
temperature to reduce nonspecific bindings, which can improve
the discrimination among the sequences of a set.47 For longer
sequences lengths, higher temperatures are particularly
important to increase the number of complementary bases
that enable binding.48 At a given concentration, the
discrimination increases near a melting temperature.
In the course of our experiments, we found a minimum

Hamming distance of five for a sequence length of 11 (7 core
bases and four terminal extra ones) in a good agreement with
the discrimination level of d ≈ L/2 that is reported.18,19 Our set
size, on the other hand, does not gain from the four additional
bases. By extending our algorithm to longer sequences, these
extra bases are redundant, and we expect d ≈ L/2 will remain
applicable. With the same d, larger lengths lead to larger set
sizes than we have determined here.
We also derived an analytical expression to calculate the

number of 4G sequences. As we have shown, eliminating these
sequences for short lengths does not change the size of MIS in

most cases. However, we anticipate an impact for higher
sequence lengths, as the fraction of sequences containing 4G
structures increases. Although we could show how to avoid
cross-hybridization in our synthesis microarray, we cannot
easily transfer it to the real world microarray application as
developed by Affymetrix. Following the protocol for expression
studies, Affymetrix targets are very long compared with their
surface bound probes. Such sequence lengths introduce a large
variety of conformations. Therefore, in expression studies one
should consider additional effects such as the brush effect49 and
surface density of probes.7,50

■ MATERIALS AND METHODS
DNA Microarray Hybridization Experiment. The light-

directed in situ synthesis method and some of the analysis
software were described previously.4,41,51 We use in-house
synthesized DNA microarrays. Probes on a microarray are
tethered to the surface from their 3′-end. To increase the
hybridization probability at the given temperature, we extended
all sequences by adding four bases, CT at the 3′ and TC at 5′
end. The microarray synthesis used in our work has a stepwise
coupling efficiency of ≥99%. Considering the sequence length
7, this leads to an estimation of probes free of any synthesis
defects of 93%.52 The remaining 7% have mostly one defect.
The targets are prepared in 25 nM concentration in a 5× SSPE
buffer solution. Their terminus is labeled by a Cy3 fluorescent
dye. Hybridization is performed in equilibrium with the buffer
in a chamber designed for that purpose. We use an UPlanApo
10× 0.40 NA objective for observation. Figure 9 shows the

image of a hybridized microarray as obtained after 100 s
exposure time. The particular probe sequence species are
restricted to small areas commonly called features. To
determine the amount of bound targets to a probe, we measure
the fluorescence intensities (hybridization intensity) by taking
images from DNA microarray surfaces with an electron
multiplying EM-CCD camera (EM-CCD C9100-02, Hama-

Figure 8. Two microarrays consisting of sequences with two different
minimum Hamming distance, (a) independent set with d = 5 and (b)
set with d = 4. In both cases, the green bars present the probes whose
PM targets are present in solution. The blue color corresponds to the
hybridization intensities of sequences with Iseq ≤ 2%. Red bars
represent the cross-hybridized sequences with Iseq > 2%.

Figure 9. Image of a hybridized microarray. The bright features
correspond to the fluorescent intensities of hybridized targets.
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matsu). We correct for background fluorescence originating
from the unhybridized targets in the buffer by subtraction.
Microarray pictures shown in the Experimental Results are
computationally reconstructed by using these intensities, for
example, Figure 5a is produced from Figure 9. The hybrid-
ization temperature is 32 °C.
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