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Abstract

SPADE stands for spanning-tree progression analysis for density-normalized events. It combines 

down-sampling, clustering and a minimum-spanning tree to provide an intuitive visualization of 

high-dimensional single-cell data, which assists with the interpretation of the cellular 

heterogeneity underlying the data. SPADE has been widely used for analysis of high-content flow 

cytometry data and CyTOF data. The downsampling and clustering components of SPADE are 

both stochastic, which lead to stochasticity in the tree visualization it generates. Running SPADE 

twice on the same data may generate two different tree structures. Although they typically lead to 

the same biological interpretation of subpopulations present in the data, robustness of the 

algorithm can be improved. Another avenue of improvement is the interpretation of the SPADE 

tree, which involves visual inspection of multiple colored versions of the tree based on expression 

of measured markers. This is essentially manual gating on the SPADE tree, and can benefit from 

automated algorithms. This paper presents improvements of SPADE in both aspects above, leading 

to a deterministic SPADE algorithm and a software implementation for semi-automated 

interpretation.
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1 Introduction

Flow cytometry is a powerful technology that provides multi-parametric single-cell 

measurements of a heterogeneous population of cells [1,2]. The flow cytometry data for one 

biological sample is usually in the form of a tall thin matrix, where each row corresponds to 

an individual cell and each column corresponds to one protein marker. Each element in the 

data matrix is the expression of a protein marker on/in an individual cell. Such single-cell 

data enables quantification of cellular heterogeneity [3, 4], discovery of novel 

subpopulations [5, 6], identification of rare cell types [7, 8], and correlation between single-

cell characteristics and clinical features [9,10].
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Rapid development of this technology has enabled simultaneous measurements of more and 

more protein markers [11,12]. As a result, the dimension and complexity of flow cytometry 

data have quickly grown beyond the capability of conventional manual gating analysis, 

which is subjective and labor intensive [13,14]. The data challenge has motivated 

development of various automated clustering algorithms for flow cytometry. Examples 

include variations of k-means [15–17], mixture models [18–21], density-based clustering 

[22–27], spectral analysis [28] and hierarchical Bayesian [29]. Furthermore, efforts have 

been spent on the FlowCAP project (Flow Cytometry: Critical Assessment of Population 

Identification Methods), which provided benchmark datasets to compare the performance of 

computational analysis algorithms [30].

An alternative strategy to improve upon manual gating is data visualization via nonlinear 

dimension reduction and data reduction. The basic idea is to derive low-dimensional (2D or 

3D) visualizations that preserve the high-dimensional structure in the data as much as 

possible. Subsequently, manual gating and automated clustering can be can be performed on 

the low-dimensional visualizations. Such algorithms include SPADE [4] and tSNE [31, 32], 

both generating 2D visualizations that are typically represent more information compared to 

biaxial gating plots. However, interpretation of output visualizations of these algorithms is 

not without its difficulties. For example, due to the stochasticity in the SPADE algorithm, 

running it twice on the same dataset can produce different tree visualizations. Although the 

subpopulations represented in the SPADE trees are stable, the robustness of the tree structure 

can be improved. Another difficulty is the identification of subpopulations from the 

visualizations. SPADE and tSNE typically present multiple colored versions of their 

visualizations colored by individual markers, and rely on experts visual inspection to 

interpret which parts of the visualization correspond to what phenotypes. This is essentially 

manual gating on the visualizations, which is much less labor intensive compared to 

conventional manual gating on biaxial plots, but still a non-trivial amount of effort.

This paper presents several improvements of the SPADE algorithm. To improve the 

robustness of SPADE, a deterministic density-dependent downsampling algorithm is 

developed, and the clustering component of SPADE is replaced by a deterministic k-means 

clustering algorithm [33]. These two improvements completely remove the stochasticity in 

SPADE, making it a deterministic algorithm. To assist with the biological interpretation of 

the SPADE tree (i.e., which parts of the tree correspond to what phenotypes), a tree 

partitioning algorithm is integrated into a Matlab-based software implementation of 

deterministic SPADE. The algorithm automatically suggests the tree partitioning with the 

largest phenotype differences in high-dimensional space and requires the users to accept or 

reject, thus, providing semi-automated assistance to the interpretation of the SPADE tree.

2 Methods

2.1 Brief Review of SPADE

SPADE can be applied to analyze flow cytometry data of multiple biological samples with 

identical or overlapping protein markers measured. Based on the overlapping markers, or a 

selected subset of them, SPADE considers the data as a point cloud of cells, and derives a 

tree structure to approximate the shape of the point cloud. The tree structure reveals the 
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cellular heterogeneity landscape underlying the data, capturing cell subpopulations that exist 

in at least one of the samples.

Starting from flow cytometry data of multiple samples and a selected set of protein markers, 

SPADE first performs density-dependent downsampling on each sample separately to obtain 

approximately equal number of cells from each sample, and then pools the downsampled 

cells together. In order to perform density-dependent downsampling on one sample, SPADE 

computes the local density of each cell (i.e., the number of neighbors in a small 

neighborhood), and randomly removes each cell with probability proportional to its local 

density. The purpose of density-dependent downsampling is to suppress the presence of 

abundant cell types, so that rare cell types are more likely to be captured in the subsequent 

components of SPADE. Separately downsampling each sample before pooling normalizes 

the contribution of samples with large or small numbers of cells. The drawback of this 

downsampling algorithm is the stochasticity it introduces, which propagates to subsequent 

components.

After downsampling, SPADE clusters the pooled downsampled cells. The key idea is to 

over-cluster, where the number of desired clusters is typically in the order of 100 to 300, 

much larger than the number of expected cell populations in the data. When over-clustered, 

no subpopulation is captured by a single cluster, but each resulting cluster is likely to be 

“pure” with cells from only one subpopulation. In the existing implementations of SPADE 

[4, 34, 35], the clustering algorithm is either a speed-up variation of agglomerative 

hierarchical clustering or the k-means algorithm, both of which contain randomness.

SPADE then constructs a minimum spanning tree (MST) to connect the clusters. Since MST 

aims to connect the clusters with minimum total edge length, the tree structure approximates 

the skeleton of the point cloud formed by the data. Since MST is known to be unstable under 

noise perturbation [36], the stochasticity in the downsampling and clustering components 

leads to the stochasticity in the tree structure. This is the reason why running SPADE twice 

on the same data can lead to different tree structures. Although they typically represent the 

same cell subpopulations, robustness of the algorithm can be improved.

After SPADE generates the tree structure, efforts are needed to derive biological 

interpretation of the tree, i.e., which parts of the tree correspond to what cell types. The 

interpretation is typically performed by visual inspection of multiple colored versions of the 

SPADE tree, each version colored by one measured protein marker. In high-content flow 

cytometry and CyTOF analysis, the number of colored trees is in the order of dozens. Visual 

interpretation is less labor intensive compared to conventional manual gating, but still 

requires a nontrivial amount of effort.

2.2 Deterministic SPADE

The robustness issue of the SPADE tree stems from the stochasticity in its downsampling 

and clustering components. One strategy for improvement is to remove the stochasticity by 

deterministic algorithms, leading to a deterministic SPADE algorithm.
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Deterministic density-dependent downsampling—The stochastic downsampling 

algorithm in SPADE [4] computes the local density of each cell, and randomly removes each 

cell with probability proportional to its local density. A dense and abundant subpopulation 

will be downsampled heavily such that a small proportion is chosen randomly to serve as the 

representative cells, whereas a sparse and rare subpopulation is less affected with a much 

larger proportion surviving the downsampling process. Such differential treatment between 

dense and sparse subpopulations, in terms of the proportions of cells being representatives, 

is the essence of density-dependent downsampling. The stochasticity arises from the random 

choice of representative cells. To remove the stochasticity, one can choose the 

representatives deterministically, and a natural idea is tochoose cells with relatively high 

local density as the representatives.

The deterministic downsampling algorithm also starts with computing the local density of 

each cell. The local density LDi of cell I is the number of neighboring cell in a small 

neighborhood. The neighborhood size is heuristically chosen to be 5 times the median of 

nearest neighbor distances, same as the stochastic downsampling algorithm in SPADE [4]. 

Given a user-defined outlier density OD and desired target number of cells TN, a weight WI 

is computed for each cell:

(1)

where, TD is chosen such that .

If one would like to downsample the data to TN number of cells, the weights describe how 

much each cell in the original data should contribute to the targeted downsampled data. Cells 

with extremely small number of neighbors (LDi ≤ OD) are considered as outliers that do not 

contribute to the downsampled data. For cells whose local density is smaller than a target 

density (OD < LD i ≤ TD), each contribute as one cell in the downsampled data. Cells with 

large local density are counted as a fraction inversely proportional to the local density. The 

target density (TD) is chosen such that the sum of the weightsamounts to the desired number 

of cells, and can be computed by line search.

After the weights are computed, downsampling is performed in an iterative process, with 

one down-sampled cell selected in each iteration. In the first iteration, all cells are initialized 

to be available. The cell with the highest local density is selected as a downsampled cell. All 

cells are ordered according to their distances to the selected cell, and a running cumulative 

sum of the weights is computed. Top cells up to the cumulative sum reaches 1 are marked as 

unavailable. In the second and subsequent iterations, the available cell with the highest local 

density is selected as a downsampled cell. All cells are re-ordered according to their 

distances to the selected cell to compute the cumulative sum of the weights. The algorithm 

marks unavailable the top cells up to either the cumulative sum reaches 1, or the first 

unavailable cell is encountered, which ever happens earlier. The downsampling algorithm 

terminates when all cells are marked unavailable.

Qiu Page 4

Cytometry A. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This algorithm draws inspiration from both the density-dependent downsampling algorithm 

in SPADE [4] and the faithful downsampling algorithm in SamSPECTRAL [28]. The 

algorithm views the data as a point cloud, selects the highest density point, and punches a 

hole with size adaptive to the selected point. The size of the hole depends on the local 

density of the selected cell, and is also constrained not to overlap with existing holes. At the 

end of this process, the collection of the selected cells are the downsampled data, which 

exhibits similar distribution as the stochastic downsamping algorithm in SPADE. Moreover, 

this downsample algorithm is deterministic.

Deterministic k-means clustering—The clustering component of SPADE operates on 

the downsampled data, and aims to over-partition the downsampled cells into small clusters. 

This can be achieved by incorporating a deterministic k-means algorithm [33], where the 

basic idea is to initialize the algorithm with a deterministic procedure and perform the 

standard k-means updating iterations.

The deterministic k-means initialization is essentially a divisive hierarchical clustering 

process that aims to partition the data into a desired number of clusters with approximately 

equal size. At the beginning of the process, all cells are treated as one cluster, on which 

principle component analysis (PCA) is applied. All cells in this cluster are projected onto the 

first principle component. Using the median of the coefficient of the first principle 

component as threshold, the cluster is divided into two. Among the two resulting clusters, 

the one with larger overall variance is further divided into two clusters in the same way in 

the second iteration. Similarly in each subsequent iteration of the process, the cluster with 

the largest variance is further divided into two, until the desired number of clusters is 

obtained. After this deterministic initialization process, standard k-means algorithm can be 

applied to refine the clusters.

2.3 Semi-automated Interpretation

The output tree visualization of SPADE typically captures various cell subpopulations in the 

data. To derive biological interpretations of what subpopulations are represented by which 

parts of the tree, colored versions of the tree are visualized. Each version is colored by one 

measured protein marker, and the color of each node is defined by the mean expression of 

the marker for cells in the corresponding cluster. In datasets where dozens of markers are 

measured, visual interpretation requires a nontrivial amount of effort, and can benefit from 

automated graph partitioning algorithms.

Since removing one edge always partitions a tree into two subtrees, partitioning of the 

SPADE tree can simply be achieved by sequential removal of edges. For the initial SPADE 

tree, its variance is defined as the sum of variances of protein markers used to construct the 

tree, and the variances are computed based on all the downsampled cells. After one edge is 

removed, the variance of each resulting subtree is similarly computed as the sum of 

variances of protein markers across the downsampled cells belonging to nodes of the 

subtree. The difference in variance before and after removing the edge is defined as the 

variance reduction associated to the edge. After the variance reductions of all edges are 

computed, the one with the maximum variance reduction is removed first. After that, the 
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variance reduction of each remaining edge is re-calculated to determine which edge should 

be removed next. The process continues until a stopping criterion is met.

The above variance definition for a subtree is essentially the sum of marginal univariate 

variances computed based on downsampled cells. The selected edge to remove typically 

results in subtrees that exhibit large expression difference in one or more protein markers. 

Alternative choices of variance definitions have been explored. For example, the variance 

can be defined in a multivariate fashion, such as the norm or determinant of the covariance 

matrix; the univariate or multivariate variance can be computed based on the original data or 

the downsampled data. However, multivariate variance often leads to subtrees that do not 

exhibit clear marginal different in expression of any marker, and variance computed from the 

original data tends to split abundant populations while ignoring rare populations on the tree. 

Therefore, the partitioning algorithm is implemented using the univariate variance based on 

downsampled data.

Reasonable choices of stopping criteria include: a desired number of partitioning is 

performed; or a minimum threshold of variance reduction cannot be met; or no marker 

exhibits significant statistical difference between the two subtrees after a partitioning. 

However, all of those stopping criteria require some kind of threshold whose value can vary 

from dataset to dataset. There probably does not exist a universal stopping criterion that will 

always be appropriate for various datasets. Therefore, the tree partitioning algorithm is 

implemented in a semi-automated fashion, allowing biology experts to interact with the 

partitioning process. After the algorithm suggests a partitioning and presents the reasons 

supporting the suggestion, it is up to the biology experts to accept or reject the suggestion. 

The software also allows users to select a certain region of the tree and suggests the best 

partition in the selected region. More details are described in the Results section.

3 Results

The deterministic SPADE and the semi-automated interpretation are implemented into a 

MATLAB-based software with graphical user interface. Source code of the software is 

available for researchers who may want to customize the SPADE analysis, or build their own 

algorithms using components of SPADE. In addition, pre-compiled standalones of the 

software are provided for researchers who do not have access to MATLAB license. Both the 

source code and the standalones, as well as software documentations, are available at Github 

https://github.com/pqiu/Deterministic-SPADE and the author’s website http://

pengqiu.gatech.edu/software/SPADE/.

To showcase the algorithm improvements and software implementation, a mouse bone 

marrow dataset is analyzed. The data contains measurements of 8 protein markers on half a 

million cells, and the markers are able to delineate major cell subpopulations in mouse bone 

marrow. The data is available at http://pengqiu.gatech.edu/software/SPADE/data/

mouseBM.fcs. Data stored in the fcs file is already compensated and transformed by 

hyperbolic inverse sine transformation. The software starts with the main control window 

shown in Figure 1(a). After the “Browse” button is used to select the directory that contains 
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the FCS [37] data to be analyzed, another window will pop-up to display the list of 

recognized data files in the selected folder.

Figure 1(b) shows the parameter setting interface for users to conveniently set and update 

parameters for SPADE analysis. (1) Typically, markers used to build the SPADE tree are 

markers that would have been used if one were to perform manual gating analysis. (2) By 

default, all data files are used to build the tree, unless the user would like to reserve some 

data files for validation and comparison. (3) For FCS data files generated by conventional 

flow cytometry, users should choose to apply compensation and hyperbolic inverse sine 

(arcsinh) transformation with cofactor of 150. For CyTOF data, the appropriate setting is to 

ignore compensation and arcsinh transformation with cofactor of 5. For data generated by 

other FCS file format converters, the appropriate setting depends on whether the raw data or 

the compensated data is store in the data files. (4) The default downsampling setting is to 

remove the bottom 1% outlier cells with the lowest local density, and downsample to 20000 

cells for each data file separately. The target number of cells is typically less than  of the 

number of cells in each data file. (5) When a large collection of data files are analyzed 

together, the total number of pooled downsampled cells can be extremely large, making the 

subsequent SPADE components computationally expensive and intractable. To guard against 

that, the maximum allowable cells parameter is defined. If the pooled downsampled data 

exceeds that parameter, SPADE performs another round of deterministic density-dependent 

downsampling to reduce the pooled downsampled data to the maximum allowed number of 

cells, and then proceeds to the subsequent components. (6) One key idea in SPADE is to 

over-cluster the data, so that the resulting tree is able to capture the underlying 

differentiation hierarchy among the cells. For high-content flow cytometry and CyTOF data, 

the number of desired clusters is typically around 100 ~ 300, much larger than the expected 

number of cell types in the data.

After setting the parameters as show in Figure 1(b), SPADE can be performed step-by-step 

by sequentially clicking the three buttons in the third section of the main control window. In 

addition, the one-click-for-all button conveniently performs the entire SPADE analysis 

pipeline. Run time of the analysis depends on the size of the data files. Typically, the 

density-dependent downsampling component is the most time consuming. For this mouse 

bone marrow dataset with 8 selected markers and 500,000 cells, deterministic density-

dependent downsampling took roughly 20 minutes, whereas the rest of SPADE took less 

than 1 minute, on a PC desktop with Intel i7 CPU @ 3.40 GHz. This is approximately 

double the run time compared to the original SPADE algorithm. The run time increases 

linearly with respect to the number of markers, and between linearly and quadratically with 

respect to the number of cells, depending on how the cells are distributed.

The bottom button in the main control window brings up Figure 2, a highly interactive 

visualization interface to display the SPADE tree. The tree can be colored by marker 

expression to visualize which parts of the tree are positive for what protein marker [4], or 

expression ratio across different samples for markers not used to build the tree [38], or cell 

frequency percentages to show distribution changes among different samples [10]. The 

default colorbar shows the range from 5th to 95th percentiles of the variation in the data, and 

the range can be manually adjusted.
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Tree nodes can be selected and moved by mouse, allowing users to manually adjust the 

automatically generated layout of the tree. Cells belonging to the selected nodes can be 

highlighted in the biaxial plots, visualizing how the selected nodes would look like in 

conventional gating plots. Numerical indices of the selected nodes are listed next to the add-

to-annotation button, which remembers the selected nodes and draws a bubble around them. 

This function enables users to manually annotate and interpret the SPADE tree using the 

software.

To facilitate the interpretation and annotation, the edge removal algorithm described above is 

implemented in the auto-suggest-annotation button. The algorithm will examine the mouse-

selected region of the tree, or the entire tree if nothing is selected, and automatically suggest 

the best partitioning based on all markers used to build the tree. The reasons of the suggested 

partitioning are displayed in another window, where the users can choose to accept or reject 

it. In this example dataset, the first suggested partitioning is shown in Figure 3(a). The 

boxplots show that the two resulting pieces (“C1” and “C2”) differ in FSC-A, SSC-A, TCR-

B and B220. “P” represents the combination of the two pieces and ”ALL” represents the 

entire tree. The SPADE trees is colored by B220, the marker that shows the strongest 

difference. Two bubbles are drawn to visualize the partitioning. When the second 

partitioning is suggested, the two SPADE tree visualizations will look different as shown in 

Figure 3(b). In the upper right tree, only nodes in the partitioned part of the tree are colored 

by CD11b, which contributes most to the second suggested partitioning. After eight rounds 

of the semi-automated annotation algorithm, the SPADE tree is partitioned into nine pieces, 

as shown in Figure 4(a) colored by average expression of B220 for each tree node. The 

boxplots and heatmap in Figure 4(b) summarizes the mean marker expressions across the 

annotations. For example, the heatmap shows that the second annotation is positive for TCR-

B and CD8, indicating that the second annotation represents the CD8+ T cells. The fifth and 

sixth annotations are both positive for B220, but differ in CD4 expression, indicating that 

they represent B cells and dendritic cells respectively.

In the bottom right section of the visualization interface, several functions are implemented 

to export SPADE results to formats useful for other analytical tools. The SPADE tree, and its 

colored and annotated versions, can be exported to PDF format to generate publication 

quality figures. The layout of the tree can be exported to GML format compatible with 

Cytoscape [39]. The mean marker expressions and percentage frequencies of the nodes and 

annotations can be exported into tab-delimited TXT files for statical analysis in MATLAB 

and R. The clustering results can be appended in to FCS files which can be visualized by 

FlowJo and other flow cytometry analysis software [37]. When multiple samples are 

analyzed jointly, the Earth Mover’s Distance (EMD) between each pair of samples is 

calculated, forming a distance matrix that can be used in machine learning analysis [10].

4 Discussion

The deterministic downsampling and clustering algorithms lead to deterministic SPADE. 

Compared to the original SPADE algorithm, deterministic SPADE should in most cases 

generate similar results. In the previous analysis of the above mouse bone marrow data, 

manual annotations of the original SPADE tree identified 7 cell populations that were highly 
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consistent with manual gating [4]. The tree partitioning algorithm of deterministic SPADE 

generated 9 annotations. As shown in the bottom panel of Figure 4(b), the 3rd annotated 

population is negative for all markers. The 4th and 9th annotations represent myeloid cells 

with slightly different CD4 expression. The remaining 6 annotations capture the same 

populations as in the original analysis (c-kit+: 1st, B cells: 5th, Dendritic cells: 6th, T cell 

subtypes: 2nd 7th and 8th). Table 1 shows that the deterministic SPADE annotations are 

highly consistent with the manual gates in [4], and the level of consistency is similar to the 

original SPADE algorithm.

To evaluate the overall robustness of deterministic SPADE and automated annotation, 100 

subsampled datasets were generated, each containing a random subset of 90% of the cells. 

Deterministic SPADE was applied to each dataset separately. For each resulting tree, 8 

iterations of the tree partitioning algorithm were applied to generate 9 annotations, similar to 

the setting in Figure 4(a), and the centers of the annotations were computed. With the 

deterministic algorithms, the tree structure can still vary among the 100 analysis. However, 

the annotations are robust. Figure 5 shows the tSNE visualization of these 900 annotation 

centers, colored by various markers. The annotation centers form 9 groups, each 

corresponding to a distinct annotation in Figure 4(b). This result shows that the deterministic 

SPADE algorithm is able to generate robust biological interpretations, as well as the 

robustness of the tree partitioning algorithm.

The source code of the improved algorithm is provided for researchers who would like to 

build their own variation of the analysis pipeline, or build their own algorithms that can use 

certain components of SPADE. One such example is a combination of tSNE and SPADE, 

applying tSNE for dimension reduction and then SPADE for clustering and tree-based 

visualization [40]. The software is not designed to perform such a combination, but the 

source code can be rearranged to perform the analysis and generate result files that can be 

loaded into the SPADE software, for visualization and interpretation purposes. The software 

implementation and graphical user interface make it convenient to perform SPADE analysis, 

visualize and interact with the resulting tree, and connect to other analytic tools. Moreover, 

the semi-automated annotation algorithm significantly reduces the time and effort required 

for biological interpretation of the SPADE analysis.

Acknowledgments

A patent (S10-010) for the original stochastic SPADE algorithm was applied for on behalf of Stanford University. 
The newly developed deterministic algorithms in this paper are not pursued in any patents.

References

1. Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: unravelling the 
immune system. Nat Rev Immunol. 2004; 4:648–655. [PubMed: 15286731] 

2. Chattopadhyay PK, Hogerkorp CM, Roederer M. A chromatic explosion: the development and 
future of multiparameter flow cytometry. Immunology. 2008; 125:441–449. [PubMed: 19137647] 

3. Lu Y, Xue Q, Eisele MR, Sulistijo ES, Brower K, et al. Highly multiplexed profiling of single-cell 
effector functions reveals deep functional heterogeneity in response to pathogenic ligands. 
Proceedings of the National Academy of Sciences. 2015; 112:E607–E615.

Qiu Page 9

Cytometry A. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Qiu P, Simonds E, Bendall S, Gibbs K Jr, Bruggner R, et al. Extracting a cellular hierarchy from 
high-dimensional cytometry data with SPADE. Nature Biotechnology. 2011; 29:886–891.

5. Singh S, Clarke I, Terasaki M, Bonn V, Hawkins C, et al. Identification of a cancer stem cell in 
human brain tumors. Cancer Res. 2003; 63:5821–8. [PubMed: 14522905] 

6. Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, et al. Identification of a novel 
population of langerin+ dendritic cells. The Journal of experimental medicine. 2007; 204:3147–
3156. [PubMed: 18086865] 

7. Betts M, Brenchley J, Price D, De Rosa S, Douek D, et al. Sensitive and viable identification of 
antigen-specific cd8+ t cells by a flow cytometric assay for degranulation. J Immunol Methods. 
2003; 281:65–78. [PubMed: 14580882] 

8. Qiu P. Computational prediction of manually gated rare cells in flow cytometry data. Cytometry Part 
A. 2015; 87:594–602.

9. Irish JM, Myklebust JH, Alizadeh AA, Houot R, Sharman JP, et al. B-cell signaling networks reveal 
a negative prognostic human lymphoma cell subset that emerges during tumor progression. 
Proceedings of the National Academy of Sciences. 2010; 107:12747–12754.

10. Qiu P. Inferring phenotypic properties from single-cell characteristics. PLoS One. 2012; 7:e37038. 
[PubMed: 22662133] 

11. Chattopadhyay P, Price D, Harper T, Betts M, Yu J, et al. Quantum dot semiconductor nanocrystals 
for immunophenotyping by polychromatic flow cytometry. Nature Medicine. 2006; 12:972–977.

12. Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. A deep profiler’s guide to cytometry. 
Trends in immunology. 2012; 33:323–332. [PubMed: 22476049] 

13. Herzenberg L, Tung J, Moore W, Herzenberg L, Parks D. Interpreting flow cytometry data: a guide 
for the perplexed. Nature Immunology. 2006; 7:681–685. [PubMed: 16785881] 

14. Maecker HT, Rinfret A, D’Souza P, Darden J, Roig E, et al. Standardization of cytokine flow 
cytometry assays. BMC Immunol. 2005; 6:13. [PubMed: 15978127] 

15. Murphy RF. Automated identification of subpopulations in flow cytometric list mode data using 
cluster analysis. Cytometry. 1985; 6:302–309. [PubMed: 4017796] 

16. Aghaeepour N, Nikolic R, Hoos H, RRB. Rapid cell population identification in flow cytometry 
data. Cytometry A. 2011; 79:6–13. [PubMed: 21182178] 

17. Ge Y, Sealfon S. flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means 
and density peak finding. Bioinformatics. 2012 Epub. 

18. Lo K, Brinkman R, Gottardo R. Automated gating of flow cytometry data via robust model-based 
clustering. Cytometry A. 2008; 73:321–332. [PubMed: 18307272] 

19. Boedigheimer M, Ferbas J. Mixture modeling approach to flow cytometry data. Cytometry A. 
2008; 73:421–429. [PubMed: 18383311] 

20. Chan C, Feng F, Ottinger J, Foster D, West M, et al. Statistical mixture modeling for cell subtype 
identification in flow cytometry. Cytometry A. 2008; 73:693–701. [PubMed: 18496851] 

21. Pyne S, Hu X, Kang K, Rossin E, Lin T, et al. Automated high-dimensional flow cytometric data 
anlysis. Proceedings of the National Academy of Science. 2009; 106:8519–8524.

22. Walther G, Zimmerman N, Moore W, Parks D, Meehan S, et al. Automatic clustering of flow 
cytometry data with density-based merging. Advances in Bioinformatics. 2009

23. Qian Y, Wei C, Lee F, Campbell J, Halliley J, et al. Elucidation of seventeen human peripheral 
blood B-cell subsets and quantification of the tetanus response using a density-based method for 
the automated identification of cell populations in multidimensional flow cytometry data. 
Cytometry Part B: Clinical Cytometry. 2010; 78B:S69–S82.

24. Naumann U, Luta G, Wand M. The curvhdr method for gating flow cytometry samples. BMC 
Bioinformatics. 2010:11. [PubMed: 20053295] 

25. Sugar I, Sealfon S. Misty mountain clustering: application to fast unsupervised flow cytometry 
gating. BMC Bioinformatics. 2010:11. [PubMed: 20053295] 

26. Naim I, Datta S, Rebhahn J, Cavenaugh J, Mosmann T, et al. Swift-scalable clustering for 
automated identification of rare cell populations in large, high-dimensional flow cytometry 
datasets, part 1: algorithm design. Cytometry A. 2014; 85:408–21. [PubMed: 24677621] 

Qiu Page 10

Cytometry A. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Mosmann T, Naim I, Rebhahn J, Datta S, Cavenaugh J, et al. Swift-scalable clustering for 
automated identification of rare cell populations in large, high-dimensional flow cytometry 
datasets, part 2: biological evaluation. Cytometry A. 2014; 85:422–33. [PubMed: 24532172] 

28. Zare H, Shooshtari P, Gupta A, Brinkman R. Data reduction for spectral clustering to analyze high 
throughput flow cytometry data. BMC Bioinformatics. 2010; 11:403. [PubMed: 20667133] 

29. Cron A, Gouttefangeas C, Frelinger J, Lin L, Singh S, et al. Hierarchical modeling for rare event 
detection and cell subset alignment across flow cytometry samples. PLoS Comput Biol. 2013; 
9:e1003130. [PubMed: 23874174] 

30. Aghaeepour N, Finak G, Hoos H, et al. FlowCAP Consortium, DREAM Consortium. Critical 
assessment of automated flow cytometry data analysis techniques. Nature methods. 2013; 10:228–
238. [PubMed: 23396282] 

31. Van der Maaten L, Hinton G. Visualizing data using t-sne. Journal of Machine Learning Research. 
2008; 9:85.

32. Amir, eA, Davis, K., Tadmor, M., Simonds, E., Levine, J., et al. viSNE enables visualization of 
high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat 
Biotechnol. 2013; 31:545–52. [PubMed: 23685480] 

33. Su, T., Dy, J. A deterministic method for initializing k-means clustering. Tools with Artificial 
Intelligence, 2004. ICTAI 2004. 16th IEEE International Conference on; IEEE; 2004. p. 784-786.

34. Linderman MD, Bjornson Z, Simonds EF, Qiu P, Bruggner RV, et al. Cytospade: high-performance 
analysis and visualization of high-dimensional cytometry data. Bioinformatics. 2012; 28:2400–
2401. [PubMed: 22782546] 

35. Kotecha N, Krutzik PO, Irish JM. Web-based analysis and publication of flow cytometry 
experiments. Curr Protoc Cytom. 2010; 53:1–10.

36. Graham RL, Hell P. On the history of the minimum spanning tree problem. Annals of the History 
of Computing. 1985; 7:43–57.

37. Seamer L, Bagwell C, Barden L, Redelman D, Salzman G, et al. Proposed new data file standard 
for flow cytometry, version fcs 3.0. Cytometry. 1997; 28:118–22. [PubMed: 9181300] 

38. Bendall S, Simonds E, Qiu P, Amir E, Krutzik P, et al. Single cell mass cytometry of differential 
immune and drug responses across the human hematopoietic continuum. Science. 2011; 332:687–
696. [PubMed: 21551058] 

39. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, et al. Cytoscape: a software environment for 
integrated models of biomolecular interaction networks. Genome research. 2003; 13:2498–2504. 
[PubMed: 14597658] 

40. Diggins KE, Ferrell PB, Irish JM. Methods for discovery and characterization of cell subsets in 
high dimensional mass cytometry data. Methods. 2015; 82:55–63. [PubMed: 25979346] 

Qiu Page 11

Cytometry A. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Qiu Page 12

Cytometry A. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Screenshots of the deterministic SPADE software: (a) main control window, (b) parameter 

setting window, and parameters used for the mouse bone marrow data.
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Figure 2. 
Screenshot of SPADE visualization interface.
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Figure 3. 
The first two automated partitioning suggestions. Boxplots show which markers support the 

suggested partitioning. Bubbles are drawn to visualize the partitioning. The tree is colored 

by the marker that contributes the most to the suggestion. In the upper-left tree, all nodes are 

colored. In the upper-right tree, only nodes involved in the suggested partitioning are 

colored.

Qiu Page 16

Cytometry A. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Semi-automated partitioning result: (a) visualization interface displaying the partitioning, (b) 

interactive boxplot and heatmap summarizing the marker expression combination of the 

annotations.
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Figure 5. 
Robustness of deterministic SPADE and tree partitioning algorithms. 100 random 

subsamples of the mouse bone marrow dataset were analyzed, with 9 automatically 

generated annotations in each analysis. In the tSNE visualization, the centers of the 9*100 

annotations formed 9 groups corresponding to distinct populations, which showed the 

robustness of the annotations.
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