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The fast bloodstream of animals is associated with large shear
stresses. To withstand these conditions, blood cells have evolved
a special morphology and a specific internal architecture to main-
tain their integrity over several weeks. For instance, nonmam-
malian red blood cells, mammalian erythroblasts, and platelets
have a peripheral ring of microtubules, called the marginal band,
that flattens the overall cell morphology by pushing on the cell
cortex. In this work, we model how the shape of these cells stems
from the balance between marginal band rigidity and cortical ten-
sion. We predict that the diameter of the cell scales with the total
microtubule polymer and verify the predicted law across a wide
range of species. Our analysis also shows that the combination of
the marginal band rigidity and cortical tension increases the abil-
ity of the cell to withstand forces without deformation. Finally,
we model the marginal band coiling that occurs during the disk-
to-sphere transition observed, for instance, at the onset of blood
platelet activation. We show that when cortical tension increases
faster than cross-linkers can unbind, the marginal band will coil,
whereas if the tension increases more slowly, the marginal band
may shorten as microtubules slide relative to each other.
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The shape of animal cells is determined by the cytoskele-
ton, including microtubules (MTs), contractile networks of

actin filaments, intermediate filaments, and other mechanical
elements. The 3D geometry of most cells in a multicellular organ-
ism is also largely determined by their adhesion to neighbor-
ing cells or to the extracellular matrix (1). This is, however, not
the case for blood cells because they circulate freely within the
fluid environment of the blood plasma. Red blood cells (RBCs)
and thrombocytes in nonmammalian animals (2, 3), as well as
platelets and erythroblasts in mammals (4, 5), adopt a simple
ellipsoidal shape (Fig. 1A). This shape is determined by two com-
ponents: a ring of MTs, called the marginal band (MB), and a
protein cortex at the cell periphery.

In the case of platelets and nonmammalian RBCs, both com-
ponents are relatively well characterized (Fig. 1). The cortex is
a composite structure made of spectrin, actin, and intermediate
filaments (Fig. 1B), and its complex architecture is likely to be
dynamic (11–13). It is a thin network under tension (14), that on
its own would lead to a spherical morphology (15). This effect
is counterbalanced by the MB, a ring made of multiple dynamic
MTs, held together by cross-linkers and molecular motors into
a closed circular bundle (4, 16) (Fig. 1C). The MB is essen-
tial to maintain the flat morphology, and treatment with a MT-
destabilizing agent causes platelets to round up (17). Platelets
also respond to biochemical signals indicating a damage of the
blood vessels, and during this activation, the MB is often seen to
buckle (3). This phenomenon is reminiscent of the buckling of
a closed elastic ring (18), but an important difference is that the
MB is not a continuous structure of constant length.

Indeed, the MB is made of multiple dynamic MTs that are
linked by MT-associated proteins. Because these connectors are

not static, but instead bind and unbind, MTs could slide rela-
tive to one another, allowing the length of the MB to change. It
was suggested in particular that molecular motors may drive the
elongation of the MB (19), but this possibility remains mechanis-
tically unclear. Moreover, the MB changes as MTs assemble and
disassemble. However, in the absence of sliding, elongation or
shortening of single MTs would principally affect the thickness
of the MB (i.e., the number of MTs in the cross-section) rather
than its length. These aspects have received little attention so
far, and much remains to be done before we can understand how
the original architecture of these cells is adapted to their unusual
environment and to the mechanical constraints associated with
it (7).

We argue here that, despite the potential complexity of the
system, the equilibrium between MB elasticity and cortical ten-
sion can be understood in simple mechanical terms. We first pre-
dict that the main cell radius should scale with the total length
of MT polymer and inversely with the cortical tension, and test
the predicted relationship by using data from a wide range of
species. We then simulate the shape changes observed during
platelet activation (20), discussing that a rapid increase of ten-
sion leads to MB coiling, accompanied by a shortening of the
ring, whereas a slow increase of tension leads to a shortening of
the ring without coiling. Finally, by computing the buckling force
of a ring confined within an ellipsoid, we find that the resistance
of the cell to external forces is dramatically increased compared
with the resistance of the ring alone.

Results
Cell Size Is Controlled by Total MT Polymer and Cortical Tension.
We first apply scaling arguments to explore how cell shape is
determined by the mechanical equilibrium between MB elasticity
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Fig. 1. (A) Scanning electron micrographs of platelets and erythrocytes shown at the same scale (6–8). (Scale bar, 1µm). (B) The actin/spectrin cortex of platelets;
EM from ref. 9, © Hartwig and DeSisto, 1991. Journal of Cell Biology, DOI:10.1083/jcb.112.3.407. (Scale bar, 0.5µm). (C) The MB of platelets is made of multiple
MTs bundled by motors and cross-linkers (10); EM reprinted with permission from ref. 6; www.sciencedirect.com/science/book/9780123878373. (D) In our model,
the shape of the cell is determined by the balance of two forces. Because of MT stiffness κ, the MB pushes against the tense cortex, which resists by virtue of
its surface tension σ.

and cortical tension. In their resting state, the cells are flat ellip-
soids, and the MB is contained in a plane that is orthogonal to
the minor cell axis. Assuming that the cell is discoid for simplic-
ity (R1 =R2 =R), the major radius R is also approximately the
radius of the MB (Fig. 1D), and thus the MTs bundled together
in the MB have a curvature C∼1/R and length of the ring is
∼2πR. Generically, the deformation energy of a such ring can
be written Er =2πR 1

2
κrC

2 = πκr/R, in which κr is the rigidity
of the bundle, often written as YI (with Y the young modulus of
the material and I its moment of inertia) (21). We first consider
time scales larger than the dynamics of MT cross-linker bind-
ing and unbinding [approximately 10 s (22)], for which we can
ignore the mechanical contribution of cross-linkers (10). In this
limit, the MTs are mechanically independent, and we can assume
κr =ncκ, with nc the number of MTs in a cross-section of the
ring and κ=22 pN µm2 the rigidity of an individual MT (23).
We can define L≈ 2πRnc , which corresponds to the sum of the
MTs’ lengths, and write the total elastic energy as EB = κ

2
L/R2.

At time scales larger than a few seconds, the cortex can reorga-
nize, and therefore we do not have to include contributions from
its rigidity (24). Its effect can then be modeled by a surface energy
associated with a surface tension σ (Fig. 1D). The surface area of
a cell of thickness 2r is S =2πR2[1 + O( r

R
)], and if the cell is

sufficiently flat, we can approximate the energy as ET ∼ 2πσR2.
The equilibrium of the system corresponds to ∂R(EB +ET )= 0,
leading finally to:

R4 =
κL
4πσ

. [1]

All other things constant, we thus expect R∝L1/4. To verify
this relationship, we used data from the literature (2), and for
25 species calculated L by multiplying the number of MTs in
a cross-section by the length of the marginal band. The scaling
is remarkably respected, over more than two orders of magni-
tude (Fig. 2A). By using Eq. 1, the fit provides an estimate of
the cortical tension of σ∼ 0.1 pN/µm, which is low compared
with the tension σ∼ 100 pN/µm of the actomyosin cortex of
blebbing cell (25). However, RBCs have a cortex made of spec-
trin rather than actomyosin, and a much lower cortical tension is
expected. Human RBCs, which are devoid of a marginal band,
have a cortical tension of ≈0.65 pN/µm (26), because the spec-
trin cortex opposes the membrane tension (27). In contrast to
this, we predict σ≈ 27 pN/µm for human blood platelets, given
that R≈ 1.6 µm and L≈ 100 µm (28), and this is close to the
tension of blood granulocytes (35 pN/µm) (14).

The scaling observed across 25 species seems to confirm that,
at long time scales, the mechanical balance between bending
rigidity of the MTs and cortical tension define cell size (Fig. 1D).
To verify the validity of this result for a ring made of multiple
dynamically cross-linked MTs, we developed a numerical model
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B

Fig. 2. (A) Cell radius as a function of total MT length L. Dots represent
data from 25 species (2).Lwas estimated from the number of MTs in a cross-
section, measured in EM, and the cell radius. (B) Cell radius as a function of
Lκ/σ in simulations with 0 (gray dots) or 10,000 (black dots) cross-linkers.
On both graphs, the dashed line indicates the scaling law 4πR4 =κL/σ.
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in Cytosim, a cytoskeleton simulation engine (29). Cytosim solves
the Langevin equation (viscosity× velocity = forces + Brownian
noise), describing the motion of bendable filaments that are dis-
cretized into model points. The forces stem from the rigidity
of the filaments (tending to minimize bending energy), links
between filaments (modeled as Hookean springs between fila-
ments), and confinement within the cell. The Brownian noise is
a stochastic force calibrated from temperature. For this work,
we extended Cytosim to be able to model a contractile surface
under tension that can be deformed by the MTs. The cell shape
is restricted to remain ellipsoidal and is described by six parame-
ters: the lengths of three axes R1, R2, and r and a rotation matrix
(i.e., three angles describing the cell orientation in the space).
Because RBCs have active mechanisms to maintain their volume
(30), we also constrained the three lengths to keep the volume
of the ellipsoid constant. To implement confinement, any MT
model point located outside the cell is subject to inward-directed
force f= kδ, in which δ is the shortest vector between the point
and the surface and k the confining stiffness. Here, for each force
f applied on a MT, an opposite force−f is applied to the surface,
in agreement with Newton’s third law. The rates of change of
the ellipsoid parameters are then given by the net force on each
axis, divided by µ, an effective viscosity parameter (SI Text, sec-
tion 1.3 and Fig. S1). The value of µ affects the rate at which the
cell shape can change, but not the shape that will eventually be
reached. This approach is much simpler than using a tessellated
surface to represent the cell, and still general enough to cap-
ture the shape of blood platelets (3, 6) and several RBCs (8, 31)
(Fig. 1A).

To model resting platelets, we simulated marginal bands made
of 10–20 MTs of fixed length 9–16 µm (4) with 0 or 10,000
cross-linkers, confined in a cell of volume 8.4 µm3 with a ten-
sion σ∼ 0.45–45 pN/µm. Initially the filaments had random ori-
entations, and we simulated the system for >6 min, which was
enough time for them to align at the periphery and balance the
cortical tension given the viscosity. This also allowed for multi-
ple rounds of cross-linker binding/unbinding events. We found
that the numerical results agree with the scaling law over a very
large range of parameter values, as illustrated in Fig. 2B. Inter-
estingly, simulated cells were slightly larger than predicted ana-
lytically. This is because MTs of finite length do not exactly fol-
low the cell radius, and their ends are less curved, thus exerting
more force on the cell. This means that the value of the tension
computed from the biological data (σ∼ 0.1 pN/µm) is slightly
underestimated. More importantly, a simulated cell has the same
size at equilibrium with or without cross-linkers (compare black
and gray dots on Fig. 2B). This shows that, if they are given time
to freely reorganize, cross-linkers do not affect the mechanical
equilibrium of the system. To understand the response of the
system that occurs at short time scale, it is, however, necessary
to consider the cross-linkers.

The MB Behaves Like a Viscoelastic System. During activation,
mammalian platelets round up before spreading, and within a
few seconds, their MB coils (19). A similar response is seen
also in thrombocytes (3). This process can be triggered by
several activators, including thrombin and ADP, that bind to
G-protein-coupled receptors (32) and activate several down-
stream events. Among them, RhoA may induce actin contrac-
tion (33), possibly through its role in myosin light-chain phos-
phorylation (34). To observe platelet activation experimentally,
we extracted mice platelets and exposed them to ADP, causing
an often-reversible activation. By monitoring the MB with SiR-
tubulin, a bright docetaxel-based MT dye, we could record the
MB coiling live, Fig. 3A (SI Text, section 4). The MB coils accord-
ing to the baseball-seam curve, which is the shape that an incom-
pressible elastic ring would adopt when constrained into a sphere
smaller than its natural radius (35). Thus, at short time scale,
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Fig. 3. (A) MB of a live platelet labeled with SIR-tubulin dye. Fluorescence
images were segmented at the specified time after the addition of ADP, a
platelet activator, to obtain the MB size L. (B) Simulation of a platelet at
different times. A limited increase of the tension (90 pN/µm) causes the
MB to shorten, whereas a large increase of the tension (220 pN/µm) causes
the MB to buckle. (C) In simulations, the MB buckles if cell rounding is fast
enough because cross-linkers cannot reorganize. This represents an elastic
behavior, but at longer times, the MB rearranges, leading to a viscoelastic
response.

the MB seems to behave as an incompressible ring, and we rea-
soned that this must be because cross-linkers prevent MTs from
sliding relative to each other. To analyze this process further,
we returned to Cytosim. After an initialization time, in which
the MB assembles as a ring of MTs connected by cross-linkers,
cortical tension is increased stepwise. The cell as a consequence
becomes nearly spherical, and, because we assumed that the vol-
ume should be constant, the radius of this sphere was smaller
than the largest radius that the cell had at low tension. As a
result, the MB adopted a baseball-seam shape (Fig. 3B). Over
a longer period, however, the MB regained a flat shape, as MTs
rearranged into a new, smaller ring (Fig. 3A). In conclusion, the
simulated MB is viscoelastic (Fig. 3B). At short time scales, MTs
do not have time to slide, and the MB behaves as an incompress-
ible elastic ring. At long time scales, the MB behaves as if cross-
linkers were not present, with an overall elastic energy that is the
sum of individual MT energies. Thus, overall, the ring behavior
seems to transition from purely elastic at short time scales, to
viscoelastic Kelvin–Voigt law at long time scales (Fig. 3C). The
transition between the two regimes is determined by the time
scale at which cross-linkers permit MTs to slide.

The Cell Is Unexpectedly Robust. The MB in blood cells is nec-
essary to establish a flat morphology, but also to maintain
this morphology in the face of transient mechanical challenges,
for example as the cell passes through a narrow capillary (7).
We thus investigated how the cortex effectively reinforces the
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MB, making the cell a stronger object than the MB alone.
Specifically, we calculated the resistance of the cell to deforma-
tions that would require its marginal band to coil, on a short time
scale, during which cross-linkers do not reorganize. We there-
fore considered the MB as a closed ring of constant length L
and uniform rigidity κr . We first examined the mechanics of this
ring within a sphere and then extended these results to a nonde-
formable ellipsoid. The shape of a ring in a sphere was previously
calculated numerically (35), and we extended this result by deriv-
ing analytically the force fB required to buckle a confined ring (SI
Text, section 1.2.2 and Fig. S2). If EB is the energy of a buckled
MB, the force is:

fB = − lim
L→2πR

∂REB = 8π
κr

R2
. [2]

We verified this relation in simulations, with L=2πR(1 + ε),
where 1 � ε> 0, which made the ring slightly oversized com-
pared with its confinement. Given the confining stiffness k , the
force applied to each model point of the ring is kRε. If n is
the number of model-points in the rings (i.e., n =L/s where s
is the discretization parameter of the ring), the total centripetal
force is nkRε. Hence, we expected that the ring would buckle
if k exceeds kc =

1
nRε

fB . Upon systematically varying k in the
simulation (Methods), we indeed found that the ring coils for
k > kc (Fig. 4A). We next simulated oblate ellipsoidal cells, with
R1 =R2 =R and r <R, and we varied the flatness of the cell by
changing r/R. We found that the measured critical confinement
k∗ is indeed kc for r =R, but increases strongly with 1−R/r
(Fig. 4 A and B). We also found that the mode of deformation
increases with the cell flatness (Fig. 4A, shades of red). This is
because, as the cell gets flatter, large deformations along the
short axis are increasingly penalized, and higher modes of defor-
mation (such as the chair shape; Fig. 4C, c) become more favor-
able than the baseball-seam curve (Fig. 4C, d), because the mag-
nitude of their out-of-plane deviations is smaller. This increase
of the critical buckling force with cell flatness implies that an
uncoiled marginal band in a flat cell could be metastable.

Platelets and nonmammalian RBCs have an isotropy ratio
r/R≈ 0.25 (Fig. 4C, e), which makes them >10 times more
resilient than a spherical cell with similar characteristics. Direct
micropipette aspiration showed that destabilizing MTs or actin
lead in both cases to an increased deformability, confirming
that actin and MT systems determine the rigidity of the cell
together (36).

Coiling Stems from Cortical Tension Overcoming MB Rigidity. We
then considered the case of a ring inside a deformable ellip-
soid of constant volume V0 =4/3πR3

0 , governed by a surface
tension σ. The length of the ring L is set with L> 2πR0, such
that we expected the ring to remain flat at low tension and to
be coiled at high tension, because it does not fit in the sphere of
radius R0. In simulations, starting from a flat ring, we observed
as predicted the existence of a critical tension σ∗f , above which
the ring is buckled (Fig. 5A). This shows that increasing σR3

0/κr

(i.e., increasing the ratio of cortical tension over ring rigidity)
leads to cell rounding. Thus, either increasing the cortical ten-
sion or weakening the ring will lead to coiling. Starting from a
buckled ring, decreasing the tension below a critical tension σ∗b
also leads to the cell flattening, as predicted. However, our sim-
ulations showed that σ∗b <σ

∗
f , and thus for σ∗b <σ<σ

∗
f , a cell

initially flat remains flat, whereas a cell initially round remains
round (Fig. 5). Hysteresis is the hallmark of bistability, and we
had predicted this bistability in the previous section by showing
that the flat configuration is metastable. This metastability (i.e.,
the fact that a MB in a flat cell has a higher buckling threshold
than in a spherical cell) allows the cell to withstand very large
mechanical constraints such as shear stresses. A platelet typically
has L/R0∼ 10 (i.e., an isotropy r/R∼ 0.25) and is therefore in

A

B
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Fig. 4. (A) Coiling diagram of an elastic ring confined inside a fixed oblate
ellipsoid. The configuration of the ring is indicated by the color (white,
uncoiled; colored, coiled), as a function of the isotropy r/R of the confining
ellipsoid and the normalized confinement stiffness k/kc. The gray dots indi-
cate the simulations performed to calculate the diagram. The dashed line
indicates the predicted critical buckling confinement in a spherical cell (i.e.,
r = R). The color indicates the main Fourier mode, from 2 (pink) to 5 (darker
red). (B) A closeup reveals that the critical confinement is exponential for

mode 2: k∗ = kc( r
R )2eα(1− R

r ) (red line), where α= 2.587 is a phenomeno-
logical parameter that depends on the excess length ε, defined from the
MB length as L = 2πR(1 + ε). (C) Illustrations of MB shapes from the phase
diagram, as indicated by the letters. Flatter cells (C, a and b) are deformed
in higher modes than rounder cells (C, c and d). The normal physiology of a
resting platelet corresponds to condition (C, e).

the region where the flat MB is extremely metastable. In this
regime, extending the MB does not cause buckling, but increas-
ing the tension does.

Discussion
We have examined how MB elasticity and cortical tension deter-
mine the morphology of blood cells. Equilibrium between these
forces predicts a scaling law, 4πR4 =κL/σ, in which L is the
sum of the lengths of the MTs inside the cell, κ is the bending
rigidity of MTs, and σ is the cortical tension. Remarkably, val-
ues of R and L measured for 25 species conform to this scaling
law. We caution that these observations were made for nondis-
coidal RBCs (where the two major axes differ), indicating that
other factors not considered here must be at work (7). In human
RBCs, perturbation of the spectrin meshwork can lead to ellipti-
cal RBCs (37), suggesting that the cortex can impose anisotropic
tensions, whereas another study suggests that MB-associated
actin can sequester the MB into an elliptical shape (38). Cor-
tical anisotropy would be an exciting topic for future studies,
but this may not be needed to understand wild-type mammalian
platelets.
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A

B

Fig. 5. (A) The equilibrium configuration of the MB is calculated as a func-
tion of renormalized tension σR3

0/κr and renormalized MB length L/R0, in
which the volume of the cell is 4

3πR3
0. The gray dots indicate the simulations

performed to calculate the diagram. The configuration of the MB is indi-
cated by colors: white, flat; red, buckled; and pink, bistable (i.e., buckled or
flat). The topmost scale indicates the shape parameter of the cell (isotropy
r/R), at equilibrium in the case where the MB is flat and has a length equal
to the cell perimeter. (B) A cut through the phase diagram, for a MB of
length L = 7.5R0. The degree of coiling (see Methods for definition) is indi-
cated as a function of tension, for a cell that is initially flat (black dots) or
buckled (gray dots). In the metastable region, the two trajectories are sepa-
rated, and the arrows illustrate hysteresis in the system.

Using analytical theory and numerical simulations, we ana-
lyzed the mechanical response of cells with MB and uncovered
a complex viscoelastic behavior characterized by a time scale τc
that is determined by cross-linker reorganization. At long time
scales (t� τc), the MB behaves elastically, and its elasticity is
the sum of all MTs’ rigidity. At short time scales (t <τc), the
MB behaves as an incompressible elastic ring of fixed length
because cross-linkers do not yield. At this time scale, the stiff-
ness of the ring exceeds the sum of the individual MT stiffness,
as long as the cross-linkers connect neighboring MT tightly (39).
Buckling leads to the baseball-seam curve, which is a configura-
tion of minimum elastic energy. This explains the coiled shape of
the MB observed in mouse platelets (Fig. 3A), human platelets
(19), and dogfish thrombocytes (3). Thus, an increase of cortical
tension over bundle rigidity can cause coiling, if the cell deforms
faster than the MB can reorganize. A fast increase of tension is a
likely mechanism supported by evidence of several experiments
(40–42). In dogfish thrombocytes and platelets, blebs are con-
comitant with MB coiling, suggesting a strong increase of cortical
tension (3). A recent study concluded that MB coiling could be
triggered by the extension of the MB, leading to coiling without
an increase of cortical tension (19). However, the fact that the
MB elongates during activation was inferred there by averaging
over populations of fixed platelets, rather than observed at the
single cell level.

Finally, calculating the buckling force of a cell containing an
elastic ring and a contractile cortex led to a surprising result.
We found that the buckling force increased exponentially with
the cell flatness, because the cortex reinforces the ring laterally.
This makes the MB a particularly efficient system to maintain
the structural integrity of blood cells. For transient mechani-
cal constraints, the MB behaves elastically, and the flat shape
is metastable, allowing the cell to overcome large forces with-
out deformation. However, as we observed, the viscoelasticity
of the MB allows the cell to adapt its shape when constraints
are applied over long time scales, exceeding the time necessary
for MB remodeling by cross-linker binding and unbinding. It
will thus be particularly interesting to compare the time scale
at which blood cells experience mechanical stimulations in vivo
with the time scale determined by the dynamics of the MT cross-
linkers.

Methods
Simulations. MTs of persistence length lp are described as bendable fila-
ments of rigidity κ= kBTlp, in which kBT is the thermal energy. The asso-

ciated bending energy is 1
2κ

∫ L
0(d2r/ds2)2 ds, where r(s) is the position as

a function of the arclength s along the filament. The dynamics of such a
system was simulated in Cytosim, an Open Source simulation software (29).
In Cytosim, a filament is represented by model points distributed regularly
defining segments of length s. Fibers are confined inside a convex region
of space Ω by adding a force to every model point that is outside Ω. The
force is f = k(p− r), where p is the projection of the model point r on the
edge of Ω, and k is a stiffness constant. For this work, we implemented a
deformable elliptical surface confining the MTs, parametrized by six param-
eters. The evolution of these parameters is implemented using an effective
viscosity (SI Text, section 1.3). To verify the accuracy of our approach, we
first simulated a straight elastic filament, which would buckle when sub-
mitted to a force exceeding π2κ/L2, as shown by Euler. Cytosim recovered
this result numerically. We then calculated the critical tension necessary
for the buckling of MTs in a prolate ellipsoid. The simulated critical ten-
sion corresponds very precisely to the theoretical prediction (43) (SI Text,
section 1.4 and Fig. S1).

To calculate the cell radius as a function of Lκ/σ, we used a volume of
8π/3 µm3 (close to the volume of a platelet), with a tension σ∼ 0.45 to
45 pN/µm, consistent with physiological values. We simulate 10− 20 MTs
with a rigidity 22 pN µm2 as measured experimentally (23). MTs have lengths
in 9− 16 µm and are finely represented with a segmentation of 125nm.
The cross-linkers have a resting length of 40 nm, a stiffness of 91 pN/µm,
a binding rate of 10 s−1, a binding range of 50 nm, and an unbinding rate
of 6 s−1. An example of simulation configuration file is provided in SI Text,
section 2. When considering an incompressible elastic ring, we used a cell of
volume 4/3πR3

0, where R0 is the radius of the spherical cell. For simplicity,
we can renormalize all lengths by R0 and thus all energies by κr/R0, where
κr is the ring rigidity. We simulate a cell with a tension σ= 5− 18κr/R3

0,
and a ring of length 1− 1.6 × 2πR0. To test the effect of confinement, we
place an elastic ring of rigidity κr in an ellipsoid space of principal radii
R, R, r R, in which r< 1. The elastic ring has a length (1 + ε)2πR, in which
ε= 0.05. An extensive list of parameters and their values are given in SI
Text, section 1.2. To estimate the coiling level of a MB, we first perform a
principal component analysis using all of the MTs’ model points. The coordi-
nate system is then rotated to bring the vector uz in the direction of the
smallest eigenvalue. We then define the degree of coiling as the devia-
tion in Z divided by the deviations in XY : C =

√∑
z2/

∑
x2 + y2. Thus, C is

independent of the size of the cell and only measures the deformation of
the MB.

To measure the critical value of a parameter θ (e.g., tension or con-
finement) leading to coiling, we computed the derivative of the degree
of coiling C, with respect to this parameter. Because buckling is analo-
gous to a first-order transition, the critical value θ∗ can be defined by:
∂θC|

θ∗ = max ‖∂θC‖. We calculated the Fourier modes of deformation by
transforming the z-coordinates of the MT model points.
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