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A combination of transcription factors, enhancers, and epigenetic
marks determines the expression of the key transcription factor
FoxP3 in regulatory T cells (Tregs). Adding an additional layer of
complexity, the long noncoding RNA (lncRNA) Flicr (Foxp3 long
intergenic noncoding RNA) is a negative regulator that tunes Foxp3
expression, resulting in a subset of Tregs with twofold- to fivefold-
lower levels of FoxP3 protein. The impact of Flicr is particularly
marked in conditions of IL-2 deficiency, and, conversely, IL-2 re-
presses Flicr expression. Flicr neighbors Foxp3 in mouse and human
genomes, is specifically expressed in mature Tregs, and acts only in
cis. It does not affect DNA methylation, but modifies chromatin
accessibility in the conserved noncoding sequence 3 (CNS3)/Accessi-
ble region 5 (AR5) region of Foxp3. Like many lncRNAs, Flicr’s mo-
lecular effects are subtle, but by curtailing Treg activity, Flicr
markedly promotes autoimmune diabetes and, conversely, restrains
antiviral responses. This mechanism of FoxP3 control may allow
escape from dominant Treg control during infection or cancer, at
the cost of heightened autoimmunity.

autoimmunity | regulatory T cells | gene regulation |
long noncoding RNA | Foxp3

Regulatory T cells (Tregs), a subset of CD4+ T cells determined
by the transcription factor (TF) FoxP3, are fundamental ac-

tors in maintaining immune homeostasis, by dampening activation
of several immunocyte lineages (1, 2). In their absence, humans
and mice develop devastating autoimmune and lymphoprolifer-
ative pathologies (3). Although beneficial in preventing runaway
immune activation, supporting tolerance of symbiotic microbes,
and restraining tissue destruction in autoimmune lesions, their
regulatory activity can also be deleterious, for example, by inhib-
iting antitumor (4) or antiviral responses (2, 5).
Phenotypic stability is important for Tregs (1, 6–8), particularly

as their antigen receptors tend to show reactivity to self-antigens.
This stability, and the stability of Foxp3 expression, result from a
combination of factors (9): DNA hypomethylation at conserved
enhancer elements of Foxp3 and other key loci (10) or self-
reinforcing TF networks (11). This stability is bolstered by sig-
nals from IL-2, the key trophic cytokine for Tregs (2, 7, 9, 12, 13).
At the center of this network lies FoxP3, the lineage-defining TF
that is essential for Treg differentiation, maintenance, and func-
tion (1, 14–17). Several enhancer elements, conserved across
vertebrates, ensure correct Foxp3 expression, one of them [con-
served noncoding sequence 2 (CNS2)] being important for the
stability of Foxp3 expression (18–20) during cell division and in
proinflammatory milieus.
Deep transcriptome analyses have revealed the existence of

an abundant class of long noncoding RNAs (lncRNAs) (21–24).
LncRNAs do not encode proteins and are longer (>200 bp) than
other noncoding transcripts like microRNAs. This family repre-
sents up to 20% of mammalian transcriptomes, which also applies
in Tregs (25), and their expression is more tissue-specific than that
of proteins. Evolving rapidly, they are poorly conserved evolu-
tionarily, and only ∼10% of human lncRNAs have a clear ho-
molog in mice (26). lncRNAs seem to be mostly involved in
regulating gene expression through several mechanisms, which
are conditioned by expression levels (typically low), subcellular

localization (nuclear or cytoplasmic) and position in the genome
(23). Some nuclear lncRNAs act in cis and activate or repress
genes in their immediate vicinity; others have longer-range cis (e.g.,
Xist inactivates the entire X chromosome) (27) or trans action
(Hotair and Hox genes) (28–30). Cytoplasmic lncRNAs also can
interfere with translation, have catalytic activity, or act as miRNA
sponges (31). In general, lncRNAs are thought to be modulators of
expression patterns dictated by transcription regulators, although
in some instances they have a dominant impact, as in the allelic
inactivation of one copy of the X chromosome driven by Xist.
Relatively few lncRNAs specific to the immune system have

been studied in detail in vivo, and their cumulative impact on
immune functions remains largely unknown (32). Some lncRNAs
are dynamically expressed during development (33), and others are
important for granulocyte homeostasis (e.g., Morrbid regulates
myeloid cell lifespan) (34) or immune effector functions (e.g.,
Rmrp and Th17 cell function, NeST and IFNγ expression in T cells)
(35, 36). Consequently, lncRNAs influence the immunopathology
of infections (NeST, Morrbid), endotoxic shock (lincRNA-EPS)
(37), or gut inflammatory diseases (Rmrp, linc-13) (36, 38).
While analyzing lncRNA expression in Treg profiling data, we

noticed the transcript 4930524L23Rik. Its Treg-specific expres-
sion and genomic localization, partially overlapping Foxp3, were
too striking to ignore. Here we report the structure, expression,
and function of this lncRNA, hereinafter called Flicr (Foxp3 long
intergenic noncoding RNA). This lncRNA is present across
mammalian species with clear stretches of sequence conserva-
tion. Flicr modulates Foxp3 expression, most visibly in a subset of
Tregs. This subtle fine-tuning has important consequences for
autoimmune disease, thus subtly modulating the Janus-faced
dominant suppressive function of Tregs.

Significance

Regulatory T cells (Tregs) are an essential population of im-
munoregulatory cells that play a central role in immune toler-
ance and the control of autoimmune disease, infections, and
cancer. The transcription factor FoxP3 is the central orchestra-
tor of Treg differentiation, stability, and function. Here we
report the discovery of the noncoding RNA, Flicr, and its fine-
tuning of FoxP3 expression through modification of chromatin
accessibility, with marked consequences on the progression
of autoimmune diabetes. Our findings add an important piece
to the puzzle of Treg differentiation and stability, and how
their function adapts to physiological circumstances.
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Results
Flicr, an lncRNA Specifically Expressed in Tregs. Flicr first caught our
attention as an lncRNA detected only in Tregs among the Imm-
Gen compendium of immunocyte gene expression (39) (Fig. 1A).
This exclusivity was confirmed by RNA sequencing (RNA-Seq)
analysis (Fig. S1). Outside of the immune system, Flicr was ob-
served only in the testis, at low levels (40) (Fig. 1B). During Treg
differentiation, it appeared concomitantly with Foxp3 but only in
the final CD25hi stage (Fig. 1C). Flicr was present in Tregs from all
peripheral lymphoid organs and at lower levels in the specific Treg
populations found in several nonlymphoid tissues (Fig. 1D). Tissue
Tregs tend to have activated phenotypes and, accordingly, Treg
activation slightly reduced Flicr expression in vivo (41) and in vitro
(42) (Fig. 1E). In contrast, Flicr was not expressed in induced Tregs
generated in vitro from naïve conventional T cells (Tconvs) with
TGF-β and IL-2 (43) (Fig. 1F). That Flicr expression may require
thymic Treg differentiation was consistent with its lower abundance
in colonic RORγ+ Helios− Tregs, considered to result from extra-
thymic differentiation, relative to their thymically derived RORγ−
Helios+ counterparts (44) (Fig. 1G). In keeping with the notion that
FoxP3 alone is not sufficient to promote Flicr expression, trans-
duction of Foxp3 in CD4+ T cells did not induce Flicr (11) (Fig. 1H).

However, FoxP3 was necessary for Flicr expression, because Treg-
like cells, in which Foxp3 is transcriptionally active but encodes a
nonfunctional protein, were Flicr-negative (45) (Fig. 1I).

Structure and Conservation of the Mouse and Human FLICR. We
combined several types of analyses and external data sources to
accurately position Flicr transcripts in the mouse genome (Fig.
2A), identifying four different isoforms of varying lengths (566,
737, 3,278, and 4,150 bp) that share two exonic elements and an
intron, located 1.8 kb upstream of the Foxp3 transcriptional start
site (TSS). They are all transcribed from the same sense strand of
ChrX as Foxp3, and the two longest ones overlap the Foxp3 TSS.
A 5′ rapid amplification of cDNA ends (RACE) analysis mapped
several closely spaced 5′ ends of Flicr transcripts, concordant
with CAGE data from the FANTOM Consortium (46) (Fig.
S2A). However, we could not find evidence in Tregs for tran-
scripts initiating further upstream and corresponding to the
4930524L23Rik or Ppp1r3fos expressed sequence tags (ESTs)
previously isolated from testis and thymus. A combination of 3′
RACE and polyA-tagged RNA-Seq data identified three main
polyadenylation sites (Fig. 2A and Fig. S2A). These transcripts
contained no open reading-frame (ORF) longer than 143 aa, and
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Fig. 1. Flicr is expressed specifically in Tregs. Flicr expression in various contexts. (A and B) ImmGen mouse immunocyte (39) or GNF mouse organ microarray
compendia (40) (dashed lines: background level). (C) During thymic Treg differentiation. (Left) ImmGen data. (Right) RNA-Seq analysis of CD4+ SP thymocytes
sorted as shown; y-axis, transcripts per million (tpm). (D) Tissue Tregs. Each point is an individual mouse. Sp, spleen; Col, colonic lamina propria; Panc, pancreas;
Adip. tissue, visceral adipose tissue; Muscle, injured muscle at 4 d postcardiotoxin injection. (E) After activation in vitro with anti-CD3/CD28 beads (42) (Left) or
in vivo (41) (Right). Rest., resting CD44loCD62Lhi; Act., activated CD44hiCD62Llo Tregs; rpkm, reads per kb per million reads. (F) In vitro converted induced Tregs
(TCR activation with IL-2 and TGF-β) (43). (G) Ex vivo Helios−RORγ+ colonic peripheral Tregs (44). (H) In Tconvs transduced with Foxp3 or control retrovectors
(11). (I) In Treg-like cells of mice with Foxp3 inactivation by Gfp insertion (Foxp3ΔGfp) (45).
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had computationally predicted low peptide coding potential by
codon substitution frequency analysis (PhyloCSF) (47); however,
as for most lncRNAs, the possibility of translation into very short
peptides cannot be ruled out (Fig. S2C).
lncRNAs are usually poorly conserved, but the region com-

mon to mouse Flicr isoforms showed distinct sequence homology
to a similar location upstream of human FOXP3 (Fig. 2A) and
more generally among placental mammals. Indeed, focused PCR
identified three FLICR isoforms in the human FOXP3+ C5/MJ
cell line, structures that were confirmed by parsing RNA-Seq
from human Tregs (48). The main 5′ ends mapped closer to
PPP1R3F than in the mouse, and we did not find FLICR tran-
scripts that overlapped the FOXP3 TSS, but the intron and
flanking exons were again found ∼2 kb upstream of FOXP3 (Fig.
2A and Fig. S2B). There was no preservation of putative ORFs in
the conserved region, with nonsense or frame shift mutations in
all possible reading frames (Fig. S2C). As in the mouse, FLICR
expression was restricted to Tregs (Fig. 2B; human RNA-Seq)
(48). Thus, human and mouse Tregs specifically express an
lncRNA of very similar structure and position, situated very close
to the Foxp3 locus.

Flicr Dampens FoxP3 Expression in Tregs. To determine its function,
we generated a Flicr-deficient mouse line by deleting a short seg-
ment (263 bp) encompassing exon 2 and the splice junction, the
focal point of sequence conservation (Fig. 3A), using CRISPR/
Cas9 (clustered regularly interspaced short palindromic repeats) to
introduce two specific breaks for nonhomologous end-joining in
fertilized mouse eggs (49). We purposely kept the deletion very
short to avoid affecting Foxp3 enhancer elements, targeting a re-
gion devoid of H3K27Ac enhancer, H3K27me3 repressive marks,
or CpG islands (Fig. S3A) (50). Indeed, transcriptome analysis
showed that Tregs in Flicr-deficient (KO) mice lost Flicr, but not
Ppp1r3f and Foxp3 transcripts, the latter being slightly increased

(Fig. 3B). KO mice developed and grew normally, with no histo-
logical evidence of systemic autoimmune disease. Treg differenti-
ation and homeostasis seemed unchanged, with normal Treg
proportions in the thymus, spleen, and lymph nodes (Fig. S3B);
however, close examination of cytometry profiles revealed a
consistent trait (Fig. 3C): whereas CD25hi Tregs from WT mice
showed the usual range of FoxP3 expression, with some cells
having twofold to fivefold less FoxP3 than the main peak, Flicr-
deficient Tregs had a tighter distribution, with significantly fewer
FoxP3lo Tregs. Correspondingly, the overall mean fluorescence
intensity (MFI) increased slightly (Fig. 3D). This disappearance of
the FoxP3lo Tregs was observed in Flicr-deficient mice on the NOD
background, where the mutation was initially constructed, and on
the autoimmune-resistant B6xNOD background (Fig. S3C).
Although the Flicr KO deletion was relatively small (263 bp)

and eschewed regulatory regions identifiable by chromatin
marks, we wanted to assess definitively whether these observa-
tions could be explained by the deletion of a putative regulatory
DNA element. First, the same reduction of FoxP3lo cells was
present in an independent Flicr mutant mouse in which only
12 bp at the splice junction of exon 3 were deleted (Fig. 3A and
Fig. S3D). Unfortunately, only one progeny could be obtained
from this line, precluding statistical analysis and follow-up, but
nevertheless this provides confirmatory evidence. Second, we
confirmed the results by an independent RNAi approach,
transfecting locked nucleic acid (LNA) antisense oligonucleotide
to target Flicr in Tregs in culture (34). Here again, a reduction in
FoxP3lo cells was observed (Fig. 3E), confirming a direct role of
Flicr RNA on FoxP3 expression. Third, if Flicr down-regulates
FoxP3 in a subset of cells, then it would be predicted to be
overrepresented in FoxP3lo cells. Indeed, more Flicr RNA was
detected in cells with lower FoxP3 (Fig. 3F).
To test whether the FoxP3 phenotype of Flicr-deficient mice

was Treg-autonomous or resulted from an indirect effect, we
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constructed mixed chimeras. Alymphoid Rag-deficient hosts
were reconstituted with equal proportions of bone marrow from
Flicr WT and KO donors. In this setting, we again observed the
“tightening” of FoxP3 expression in Tregs of Flicr KO genotype,
relative to WT Tregs in the same hosts (Fig. 4A), indicating a
Treg-intrinsic effect. Interestingly, KO Tregs had a competitive
advantage over their WT counterparts in the same mice; the
ratio of cells of KO vs. WT origin was consistently higher in
Tregs than in CD4+ Tconvs in the same mice (Fig. 4B, Left),
which resulted in a higher proportion of Tregs in the KO pool
(Fig. 4B), revealing better fitness of Flicr-deficient Tregs than
was observed in the full KO mice.

Flicr Destabilizes FoxP3 Expression in Conditions of Limiting IL-2. The
foregoing results suggested that Flicr affects the stability of
FoxP3 expression in some Tregs. For confirmation, we cultured
Tregs in conditions of limited IL-2, under which FoxP3 tends to be
lost (51). The FoxP3lo cells that normally appear in low–IL-2 cul-
tures were essentially absent in Treg cultures from Flicr-deficient
mice (Fig. 5A). Thus, the subtle effect observed under steady state
was magnified when trophic support became limiting.
These results also suggested that IL-2 and Flicr are diametric

opposites with regard to Treg homeostasis. Because IL-2 signal-
ing stabilizes FoxP3 expression by recruiting the transcription
factor STAT5b to the Foxp3 locus (52), we hypothesized that it

might inhibit Flicr to maintain Foxp3 expression. Indeed, pro-
vision of IL-2 lowered Flicr expression in culture (Fig. 5B). In-
terestingly, a slight accumulation of STAT5b was present in the
FLICR promoter region in a ChIP sequencing analysis of human
Tregs (53) (Fig. 5C), suggesting a pathway by which IL-2 might
repress Flicr directly. Thus, Flicr appeared to be an active
mechanism of Foxp3 destabilization, which IL-2 counteracts.

Flicr Acts only in Cis. PCR quantitation after nuclear-cytoplasmic
fractionation showed that Flicr, like Xist, resides primarily in the
nucleus (Fig. S4A), suggesting that it might regulate transcrip-
tion. We asked whether Flicr had broader effects in Tregs beyond
its cis action on the neighboring Foxp3 gene. A comparison of
Flicr WT and KO Tregs showed a very limited impact on gene
expression profiles (from no changes to a twofold increase; Fig.
6A). Signature genes overexpressed in Tregs were biased to-
ward underexpression in WT cells (P = 2 × 10−5), and the
transcripts most affected by the deletion of Flicr were Treg sig-
nature genes (Fig. 6B). Similarly, FoxP3-binding genomic targets
(ChIP sequencing data from ref. 54) were mostly underexpressed
in WT Tregs compared with KO Tregs (Fig. 6C). These findings
suggest that many/most of Flicr’s effects result from lowering or
destabilization of Foxp3 expression.
Given its position, Flicr seemed likely to influence Foxp3

transcription through a local cis effect, as is the case for several
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lncRNAs (27, 30, 55). We tested this hypothesis by attempting to
complement Flicr KO mice with a BAC transgene that includes a
WT Flicr, together with an insertionally inactivated Foxp3 (56)
(Fig. 6D). Although the transgene-encoded Flicr was expressed
at the same level as the endogenous one (Fig. S4B), it did not
restore FoxP3lo Tregs in vivo (Fig. 6E) or the sensitivity to low
IL-2 supply in vitro (Fig. 6F). Expression of the genes affected by
the Flicr deficiency also was not normalized by the Flicr-encoding
complementing transgene (Fig. S4B), reinforcing the notion that

Flicr’s influence on their expression is indirect, via FoxP3. Thus,
Flicr’s genomic proximity to Foxp3 is necessary for its mechanism
of action. These results show that Flicr is a nuclear lncRNA that
acts in cis on Foxp3 expression, and indirectly has a subtle but
broader impact on the Treg transcriptome.

Flicr Influences Focal Chromatin Accessibility in the Foxp3 Locus.
Given that Flicr acts in cis, we reasoned that it might influence
the Foxp3 epigenetic landscape. Methylation at several CpG clusters
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within the Foxp3 locus, particularly in the CNS2 enhancer region,
correlates with the stability of its expression (10, 57). However,
comparison of methylation at the Foxp3 locus in Flicr WT and KO
Tregs showed superimposable profiles, except for a minor alter-
ation within Flicr itself (Fig. 7A). Treg-specific hypomethylation at
CNS2 was intact.
We then used assay for transposase-accessible chromatin

(ATAC) high-throughput sequencing (ATAC-seq), which probes
chromatin openness by its accessibility to the Tn5 transposase,
and produces detailed information on the configuration of hy-
persensitive TSS and enhancer elements (58). Six accessible re-
gions were identifiable across Foxp3 in Tregs: the promoter, the
CNS2 and CNS3 enhancers (20), two other regions [hereinafter
referred to as accessible regions (AR) 5 and 6], and the 3′ UTR
(Fig. 7B). Overall, ATAC-seq profiles were very similar in Flicr
WT and KO Tregs, but close examination revealed reciprocal
shifts at Accessible region 5 (AR5) [less accessible in KO Tregs;
P = 0.03 based on the genome-wide variance distribution be-
tween replicates (DiffBind)] (Fig. 7B) and CNS3 (more acces-
sible; P = 0.01). These shifts were reproducible in independent
experiments, as was the increased accessibility in the 3′ UTR,
possibly reflecting altered Pol-II recycling. In contrast, CNS2
profiles did not vary.

Physiological Consequences of Flicr Deletion. FoxP3 stability is
needed to maintain Treg homeostasis and prevent autoimmunity
(6). An active mechanism that destabilized Foxp3 expression in

Tregs might be advantageous as a “back door” to avoid dominant
Treg control in some circumstances, but also seems risky. We
tested immune function in Flicr-deficient mice in several Treg-
dependent settings. A first set of experiments showed identical
growth of the MC38 tumor line in Flicr WT and KO hosts. We
then tested the notion that Flicr might promote autoimmunity by
destabilizing Treg function (8, 56), and analyzed the course of
autoimmune diabetes in Flicr-deficient NOD females. These mice
showed a significantly reduced rate and incidence of overt di-
abetes (Fig. 8A). This halving of diabetes incidence was reflected
in reduced severity of insulitis at age 11 wk (Fig. 8B). In the in-
flammatory context of these infiltrated islets (Fig. 8C), Tregs
showed the same stabilization of FoxP3 levels in the absence of
Flicr as they did in lymphoid organs. As reported previously (59),
insulitis was inversely correlated with the proportion of Treg in the
pancreas (Fig. 8D). Interestingly, the slope of this anticorrelation
was steeper in Flicr KO mice than in heterozygous or WT control
littermates (r = −0.91 vs. r = −0.46; P = 0.05), possibly suggesting
that Flicr-deficient Tregs are functionally more efficient on a per-
cell basis, reminiscent of the superior fitness noted above.

Discussion
Here we report the discovery of the lncRNA Flicr, a negative
regulator of Foxp3 expression in Tregs. It appears to act exclu-
sively in cis, but by controlling FoxP3 has wider effects on the
specific Treg transcriptome and Treg fitness. Its molecular ef-
fects are subtle, and more particularly visible in a subset of Tregs,
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but they have a marked impact on the efficacy of peripheral
immunologic tolerance. The Foxp3 locus appears to come di-
rectly equipped with a counterregulatory mechanism.
Based on its genomic location, expression pattern, and physio-

logical impact, Flicr seems to be one of the lncRNAs that selec-
tively modulates a specific physiological function, here Treg
activity. FoxP3 does not merely obey on/off regulation to dictate
Treg repressive functions, but can be tuned in response to different
environmental cues, particularly in conditions of limiting IL-2 (2, 4,
18, 19). These results show that IL-2 has two means of enhancing
Foxp3 expression, directly via activation of the Cns2 enhancer and
indirectly by repressing Flicr, the attenuator of Foxp3. Flicr ex-
pression is also curtailed in conditions of heightened Treg activa-
tion and functionality, in tissue Tregs and after TCR activation. By
destabilizing Foxp3, Flicr dampens the Treg signature and may
lower Treg stability, allowing stronger antiviral responses but also
increasing the risk of as autoimmune disease.
Like other lncRNAs in the immune system (60), Flicr has a

focused role that matches its expression. In this respect, it con-
trasts with Rmrp, the impact of which in T lymphocytes seems
limited to Th17 cells despite ubiquitous expression (36), but is
akin in this respect to Morrbid (34) and NeST (35), which have a
range of activity conditioned by their restricted expression. From
the lack of trans complementation by the Flicr-expressing BAC
transgene, we infer that the mild bias that it imparts on other

loci, predominantly Treg signature genes, is indirectly due to
FoxP3 dampening. Several of these Treg signature genes are
related to the different mechanisms through which Treg cells
exert their suppressive activity (61). Thus, modification of the
stability of FoxP3 expression and shifts in Treg signature genes
likely contribute to the down-modulation of Treg function and
fitness by Flicr. Importantly, Flicr seems to preferentially impact
a subset of Tregs; increased FoxP3 levels are seen not in the
main Treg pool, in which mean FoxP3 levels are not noticeably
affected, but rather in the FoxP3lo subset. We speculate that in
vivo FoxP3lo Tregs are equivalent to those observed in vitro
when IL-2 is limiting, and that Flicr may be hastening their
shutdown of FoxP3 expression.
Cis-acting lncRNAs have several modes of action (30). The

localized human/mouse sequence conservation suggests that it is
not akin to lncRNAs, the very transcription of which is regula-
tory by promoter interference, but that the primary or secondary
structure of the RNA matters (30), possibly involving the splicing
machinery given that the sequence conservation extends into the
intron. Like many other lncRNAs, Flicr’s molecular signature is
subtle, but ultimately results in a larger shift in the outcome of
pancreatic autoimmunity and the progression to overt diabetes.
This amplification is congruent with the observation that many of
the genetic variants (eQTLs) that condition the propensity to
autoimmune disease have only subtle effects on the expression of
the gene that they influence. Because much of lymphocyte dif-
ferentiation is related to engagement by self molecules, the im-
mune system is likely tuned at the edge of autoimmunity, and
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small changes, here in Treg fitness, can tip the system toward serious
autoimmune consequences.
Different mechanisms are involved in controlling the stability

of Foxp3 expression. At the epigenetic level, the CNS2 enhancer
plays a critical role, reinforced by DNA methylation (10), and by
integrating signals from the TCR and the IL-2 receptor (18, 19).
However, Flicr does not seem to influence DNA methylation or
chromatin accessibility at CNS2, but instead affects chromatin
structure in the CNS3/AR5 region. CNS3 previously has been
described as a poised enhancer open more generally in the T-cell
lineage and important for Treg differentiation (41). Our results
suggest this region also has a role in mature Tregs, balanced with
AR5. lncRNAs commonly operate within ribonucleoprotein
complexes with specific TFs (36), chromatin modifiers (28), or
Hnrnp proteins (37, 60), and we propose that Flicr may target a
repressive complex to the CNS3/AR5 region of Foxp3.
The functions of lncRNAs in the immune system are just being

elucidated. Through its effects on Tregs, FLICR may be associ-
ated with human diseases associated with enhanced Treg activity,
like infections or tumors, and its modulation opens avenues to
suppress or enhance Treg function.

Materials and Methods
All experimental procedures are described in detail in SI Materials and
Methods.

Mice. C57BL/6J mice were obtained from The Jackson Laboratory. NOD/Lt/DOI
and Foxp3-DTR-GFP/N (56), Foxp3-Ires-Thy1.1/B6 (62), and Foxp3-IRES-GFP/B6 (63)
mice were maintained in our colony. Foxp3-DTR-GFP/N carries a BAC transgene
encompassing 150 kb downstream and 70 kb upstream of the Foxp3 TSS, with a
DTR-eGFP-stop insertion between the first and second codons of Foxp3. All
experimentation was performed following animal protocol guidelines of
Harvard Medical School (reviewed and approved HMS IACUC protocols 02954).

Mapping of Mouse and Human Flicr Transcripts. Treg RNA was prepared from
double-sorted CD4+ TCRβ+ Thy1.1+ Tregs from Foxp3-Ires-Thy1.1/B6 mice. 3′
and 5′ RACE were performed using the SMARTer RACE cDNA Amplification
Kit (Clontech), followed by Sanger sequencing. The 3′ termini were also
mapped using RNA-Seq, and 5′ extremities were mapped from the FANTOM
CAGE data (46). Exploratory PCR was performed using primers spanning the
4930524L23Rik locus, as shown in Fig. S2A. Isoforms were cloned with pri-
mers designed based on the extremities found. RNA from the FOXP3+ C5/MJ
HTLV1-transformed cells [American Type Culture Collection (ATCC); CRL-
8293] was used to map human FLICR (3′ and 5′ RACE), and confirmed by
Treg RNA-Seq data (48).

Flicr KO Mice. To generate Flicr-deficient mice using the CRISPR/Cas9 system,
we closely followed the method of Yang et al. (49) with several modifica-
tions. Because the active region of Flicr is unknown, we chose to introduce a
point mutation using one guide RNA (gRNA) targeting the shared splice
donor site or to delete a whole exon (exon 2) using two gRNAs, encom-
passing the region of highest homology between mouse and human tran-
scripts, but keeping the mutation as small as possible to avoid interfering
with Foxp3 enhancer elements. Two mutants were obtained. One founder

had a 12-bp deletion deleting the donor spliced site of exon 3, but gave only
one progeny. Another mutant had a 263-bp deletion spanning Flicr exon 2.

In Vitro FoxP3 Stability. CD4+ T cells from spleen and subcutaneous lymph
nodes isolated by magnetic negative selection and CD4+TCRβ+CD25hi (top
50%) Tregs were sorted by flow cytometry, then cultured with anti-CD3/
CD28 beads (1:1 bead:cell; Gibco) and IL-2 (Peprotech; 212–12).

Gene Expression Profiling by Microarray. Microarray preparation and analysis
were performed in accordance with ImmGen protocols (39). In brief, 50,000
CD4+TCRβ+CD25hi (top 50%) Tregs and CD25− Tconvs isolated from pooled
spleen and subcutaneous lymph nodes from 8-wk-old Flicr WT and KO mice
were double-sorted as above. RNA was prepared from TRIzol extracts and
used to prepare probes for Affymetrix Mouse Gene 1.0 ST arrays. Gene ex-
pression differences were calculated using the lmFit and eBayes functions of
the limma package (64).

ATAC-seq. ATAC-seq was performed in biological duplicates following the
protocol described by Buenrostro et al. (58). In brief, 50,000 CD4+TCRβ+CD25hi

(top 50%) Tregs were sorted and lysed. After transposition and PCR, final bead
purification and selection (100–600 bp) were performed twice using 0.6× and
1.6× solid phase reversible immobilization (SPRI) beads. Libraries were paired-
end sequenced (40, 50) using a 75-bp kit on an Illumina NextSeq High-
Throughput Sequencing System.

Reads were filtered for quality and adapter-trimmed before mapping to
the mm9 mouse genome. Reads mapping to multiple positions and PCR
duplicates were discarded. Nucleosome free fragments (<120 bp) were an-
alyzed, and peaks were called using Homer (65). Data were imported in R,
and differential peak analysis was performed using DiffBind (differential
peak analysis based on negative binomial distributions) (66).

Methylation Analysis by Bisulfite Treatment and High-Throughput Sequencing.
The protocol was adapted from Feng et al. (18). Here 80,000 CD25hi Tregs
were sorted as above, and DNA was purified and bisulfite-converted using
the EZ DNA Methylation Direct Kit (Zymo Research), amplified by PCR. Illu-
mina adapters were ligated and libraries amplified by a final PCR before
sequencing using an Illumina MiSeq system. Reads were trimmed of the
adapter aligned to the mm9 genome using Bismark (67). Data were ana-
lyzed and visualized using custom R scripts and the BiSeq library (68).

Autoimmune Diabetes. For diabetes incidence, mice were screened for diabetes
by glucose urinalysis everyweek for 30wk. A positive strip test was confirmed by
blood analysis, and animals were considered diabetic with glucose >250 mg/dL
on 2 consecutive days.

For histological evaluation, formalin-fixed and paraffin-embedded pan-
creas was sectioned and stained with hematoxylin and eosin. Four steps
sections separated by 100 μm were used to calculate the insulitis score for
each islet cells (0, no infiltration; 1, peri-insulitis; 2, intraislet insulitis), and
100 independent islets were scored for each mouse.
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