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The distribution of fitness effects (DFE) of new mutations plays a
fundamental role in evolutionary genetics. However, the extent
to which the DFE differs across species has yet to be systematically
investigated. Furthermore, the biological mechanisms determining
the DFE in natural populations remain unclear. Here, we show that
theoretical models emphasizing different biological factors at
determining the DFE, such as protein stability, back-mutations,
species complexity, and mutational robustness make distinct pre-
dictions about how the DFE will differ between species. Analyzing
amino acid-changing variants from natural populations in a com-
parative population genomic framework, we find that humans have
a higher proportion of strongly deleterious mutations than Dro-
sophila melanogaster. Furthermore, when comparing the DFE across
yeast, Drosophila, mice, and humans, the average selection coeffi-
cient becomes more deleterious with increasing species complexity.
Last, pleiotropic genes have a DFE that is less variable than that
of nonpleiotropic genes. Comparing four categories of theoretical
models, only Fisher’s geometrical model (FGM) is consistent with
our findings. FGM assumes that multiple phenotypes are under
stabilizing selection, with the number of phenotypes defining the
complexity of the organism. Our results suggest that long-term
population size and cost of complexity drive the evolution of the
DFE, with many implications for evolutionary andmedical genomics.
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The distribution of fitness effects (DFE) represents the dis-
tribution of selection coefficients, s, of random mutations in

the genome. Here, s quantifies the relative change in fitness due
to the mutation. The DFE plays a fundamental role in evolu-
tionary genetics because it quantifies the amount of deleterious,
neutral, and adaptive mutations entering a population (1). De-
spite the importance and considerable study of the DFE (1–3),
the extent to which the DFE in terms of s differs across species
has yet to be systematically quantified. Furthermore, the bi-
ological factors determining the DFE in different species remain
elusive. Several theoretical models propose different mecha-
nisms for the evolution of the DFE (Fig. 1) (4–8). Although each
of these models has a reasonable theoretical basis as well as
some support from experimental evolution studies or microbial
studies, which model best explains differences in the DFE between
species has not yet been determined. Nor have these models been
tested with genetic variation data from natural populations in
higher organisms. Because experimental evolution studies in lab-
oratory organisms often use a homogeneous environment and
genetically homogeneous organisms, they may better satisfy some
of the assumptions of these theoretical models. However, natural
populations may provide different qualitative results due to in-
creased resolution to measure weakly deleterious mutations and
the unnatural selection pressure in the laboratory (2, 9).
Importantly, five theoretical models for the evolution of the

DFE predict that the DFE will differ between species with dif-
ferent levels of organismal complexity and long-term population
size (Fig. 1). These models are the functional importance model,

the protein stability model, the back-mutation model, the mu-
tational robustness model, and Fisher’s geometrical model
(FGM). For example, the mutational robustness model predicts
that more complex species will have more robust regulatory
networks that will better buffer the effects of deleterious muta-
tions, leading to less deleterious selection coefficients (10). Here,
we leverage these predictions of how the DFE is expected to
differ across species to test which theoretical model best explains
the evolution of the DFE by comparing the DFE in natural
populations of humans, Drosophila, yeast, and mice. We find that
humans have more strongly deleterious mutations than Dro-
sophila and that the average selection coefficient becomes more
deleterious with increasing species complexity. Furthermore,
genes showing greater pleiotropy, as inferred from breadth of
gene expression, tend to have a DFE that is less variable than
that of less pleiotropic genes. Of the theoretical models outlined
in Fig. 1, only FGM can explain these patterns.

Results and Discussion
Mutations Are More Deleterious in Humans than in Drosophila. We
used polymorphism data of a sample of 112 individuals from
Yoruba in Ibadan, Nigeria (YRI) from the 1000 Genomes
Project (11) and 197 African Drosophila melanogaster lines from
the Drosophila Population Genomics Project (12). We summa-
rize the polymorphism data by the folded site frequency spec-
trum (SFS), which represents the number of variants at different
minor allele frequencies in the sample (SI Appendix, Fig. S1A).
Because population history can also affect patterns of polymorphism,
we first use the synonymous SFS to estimate demographic models
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separately in each species (SI Appendix, Text S1 and S2). We
infer that the population size of YRI and Drosophila expanded
2.3-fold 6,000 generations ago and 2.7-fold 500,000 generations
ago, respectively (SI Appendix, Table S1). Note that demographic
estimates from synonymous sites are biased by selection affecting
linked neutral sites (13, 14), but that this bias does not affect our
ability to infer the DFE (14, 15) (SI Appendix, Text S3).
Conditional on the estimated demographic parameters, we

estimate the DFE for new nonsynonymous mutations in both
species using the nonsynonymous SFS (SI Appendix, Table S2).
In short, our approach uses the fact that more deleterious mu-
tations segregate in lower numbers and at lower frequencies than
less deleterious or neutral mutations (2, 3, 16, 17). We next
compare the estimates of the DFE from the two species in a
likelihood ratio test (LRT) framework that accounts for differ-
ences in recent demographic history between the two species
(Materials and Methods; SI Appendix, Text S2). Briefly, we as-
sume that the DFE follows a gamma distribution and find that a
model where each species has its own shape and scale parame-
ters fits the SFSs for the two species significantly better than a
model where the parameters are constrained to be the same in
both species (LRT statistic Λ = 12,012; df = 2, P < 10−16; Fig. 2
A–C). This result holds even when making different assumptions
about the mutation rate, as well as when omitting singleton
variants (SI Appendix, Text S3 and Table S2).
Examination of the maximum-likelihood gamma distribution

shows that Drosophila have a much higher proportion of weakly
deleterious mutations with selection coefficient jsj < 10−4 than

do humans (Fig. 2D). The proportion of strongly deleterious mu-
tations with jsj > 10−3 is significantly larger in humans (55%) than
in Drosophila (5%). Thus, our results provide statistical support for
humans andDrosophila having different DFEs (of s) that cannot be
explained by differences in population size or demography between
the species.

Robustness of Our Results. To evaluate the robustness of our
finding to the assumed functional form of the DFE, we tested a
range of different distributions such as a log-normal, shifted
gamma, mixture of gamma with point mass at neutrality, as well as
a nonparametric discretized distribution. We also tested whether
differences in the DFE between species are caused by analyzing
different sets of genes in the two species. We filtered for genes
that are strictly orthologous between humans and Drosophila, and
also required gene sets to have similar expression profiles. In all
cases, we consistently find that mutations are on average more
deleterious in humans than in Drosophila (SI Appendix, Text S3,
Figs. S1B, S2, S5, S8A, S12A, and S14, and Tables S2, S3, and S4).
In Drosophila, as much as 22% of synonymous sites could be

under strong purifying selection (18). We next tested whether
this type of selection could confound our inferences of the DFE.
To do this, we computed a synonymous SFS that would be
expected under neutrality given this extreme estimate of selec-
tion on synonymous sites (see SI Appendix, Text S3, for details).
We further assumed that the SFS from short introns has a
neutral shape (19, 20). We only see a negligible effect on the
DFE inference using this predicted neutral SFS compared with

Fig. 1. Overview of the main predictions of five
theoretical models regarding DFE differences be-
tween two species. Here, E[s] is the average selection
coefficient of a new mutation, and Ne is the effective
population size. See SI Appendix, Text S5, for more
details.
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estimates using the observed synonymous SFS (SI Appendix, Fig.
S7). Thus, our inferences are robust to extreme selection oc-
curring on synonymous sites.
Because a variety of demographic, statistical, and numerical

biases can confound LRTs using the SFS, we evaluated the
performance of our statistical approach by analyzing simulated
datasets. Specifically, we performed forward-in-time simulations
that include realistic levels of linkage disequilibrium and back-
ground selection (SI Appendix, Text S4). When we estimated the
DFE from the simulations of the full and constrained models,
the estimates were unbiased (Fig. 3 A and B). This suggests that the
size change model fit to synonymous polymorphisms successfully
controls for the effects of background selection (SI Appendix, Fig.
S3; see also refs. 14 and 15). As expected, the null distribution of Λ
derived from simulations under the constrained model is broader
than the χ2 distribution with 2 df (Fig. 3C). However, all of the 300
Λ values that we simulated were smaller than 34, suggesting the
probability of seeing a Λ value bigger than 12,012 is substantially
less than 0.33% under the null. Because selective sweeps were
suggested to be a major determinant of genetic diversity in Dro-
sophila (21), we also examined the effect of recurrent selective
sweeps on our inference. We found that selective sweeps do not
significantly bias our DFE estimates when correcting for the effect
of demography using the observed SFS at neutral sites (SI Ap-
pendix, Fig. S9 and Text S3). In summary, a combination of con-
founding factors cannot account for our finding of different DFEs
between humans and Drosophila (SI Appendix, Text S3).

Testing Models of the Evolution of the DFE. The most basic null
model for the evolution of the DFE is that it remained constant
over evolutionary time. This may be expected under a model
where protein function is the main driver of fitness effects of
mutations, and where protein function does not systematically
change between species (SI Appendix, Text S5). Having estab-
lished that humans and Drosophila have significantly different
DFEs, we can reject this functional importance model. We next
examined which of the four remaining theoretical models (Fig. 1)
can explain the differences in the DFE across species. The sec-
ond model, the protein stability model, predicts that much of the
selection pressure involves maintaining the thermodynamic sta-
bility of proteins. This model predicts that the distribution of Nes
is gamma distributed (22) and independent of the effective
population size (Ne) when at equilibrium (7) (see SI Appendix,
Text S5, for specific assumptions). Thus, this model predicts that
Nes is the same across taxa. However, in contrast to this pre-
diction, we found that a model with different Nes distributions in
each species fits the data significantly better than a model where

Nes is constrained to be the same in both species (Λ = 21,734,
P < 10−16; SI Appendix, Figs. S4 and S6), consistent with previous
results (23). Comparing this LRT statistic to the null distribution
obtained from forward simulations similar to those discussed
above suggests that such a large LRT statistic is highly incom-
patible with a model that assumes the same gamma (or lognor-
mal) Nes distribution in both species (P < 0.0033). Thus, our data
do not support protein stability models as the driving force in the
evolution of the DFE between species.
The third model, the back-mutation model, predicts that there

is a category of weakly advantageous mutations that restore fitness
after deleterious mutations become fixed (24). The back-mutation
model predicts that, in small populations, the proportion of
slightly beneficial mutations is greater than in large populations,
because more slightly deleterious mutations can become fixed in
small populations, leading to more opportunities for new benefi-
cial back-mutations (SI Appendix, Text S5). Using this logic,
Piganeau and Eyre-Walker (25) derived a formula for the equi-
librium DFE as a function of population size [see also Rice et al.
(6)]. When we estimate the parameters in this model on our data
using our inference framework, we found an unrealistically large
effective population size in Drosophila (5.2 × 1019). Importantly,
the back-mutation model predicts that the average effect size of
mutations (i.e., the absolute value of the selection coefficient) will
be the same in both species, and that differences in the DFE are
solely attributable to long-term differences in population size. To
test this prediction, we inferred distinct parameters of the effect
size distribution (the distribution of jsj) in the two species (SI
Appendix, Table S4). In contrast to the predictions of the back-
mutation model, we found that the average effect size E[jsj] of a
mutation in humans is about 55-fold larger in humans than in
Drosophila (SI Appendix, Fig. S8B). Although the Piganeau and
Eyre-Walker model fits well within both species, it falls short in
providing an evolutionary or mechanistic explanation for a large
difference in E[jsj] between species.
The fourth model, the mutational robustness model, postu-

lates that more robust, or complex, organisms have, on average,
less deleterious mutations (4, 5, 10). Here, more complex or-
ganisms have a greater ability to compensate and buffer the ef-
fects of deleterious mutations (SI Appendix, Text S5). Note that
complexity can be hard to define and quantify in a biologically
and evolutionarily meaningful way. However, a number of bi-
ological factors suggest that humans are more complex than
Drosophila. Such factors include a larger genome, a larger number
of genes, a larger number of proteins and protein–protein inter-
actions (26), and likely also a larger number of cell types (27) in
humans than in Drosophila. Mutational robustness models predict
greater mutational robustness in humans than in Drosophila be-
cause of the higher complexity and the smaller effective pop-
ulation size of humans compared with Drosophila. However,
inconsistent with this prediction, we have shown that E[s] is 70- to
110-fold more deleterious in humans than in Drosophila, and
humans have a larger proportion of strongly deleterious mutations
with jsj > 0.001 (Fig. 2 D–F). Furthermore, robustness models
predict that less pleiotropic mutations are more deleterious, be-
cause the smaller effective complexity of such mutations impedes
the evolution of robustness (28). Assuming that broadly expressed
genes are more pleotropic than tissue-specific genes, we observe
that tissue-specific genes have less negative estimates of E[s] than
broadly expressed genes (SI Appendix, Fig. S12A). In other words,
more pleiotropic mutations tend to be more deleterious. This
finding is inconsistent with predictions from the robustness model.
However, although our results suggest that mutational robustness
mechanisms are not the main driver of differences in the DFE
across species, this finding is not necessarily at odds with previous
work on these models. The clearest empirical evidence for an
increase of mutational robustness by selection comes from ex-
perimental evolution studies of viruses and bacteria (29, 30).
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Fig. 3. Estimates of the shape and scale parameters of a gamma DFE from
300 simulations of human (blue) and Drosophila (red) data. (A) Estimates
from simulations under the alternative hypothesis (H1), that is, assuming
maximum likelihood parameters in both species (dashed lines). Results show
that we can retrieve the true parameters. (B) Estimates from simulations
under the null hypothesis (H0), that is, assuming a single set of parameters in
both species (dashed lines). In gray are the estimation results using data from
both species simultaneously, assuming H0 is correct. Results show that, under
H0, we correctly retrieve the same set of parameters for both species. (C) The
expected (gray) and simulated (dark red) null distribution of the test statistic
Λ = –2*log(LConstrained,max/LFull,max) for testing the null hypothesis of no dif-
ference in shape and scale parameters between humans and Drosophila.
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Viruses and bacteria have large mutation rates and population
sizes. The specific mechanism that promotes robustness in such
organisms may not be applicable to higher organisms with smaller
population mutation rates (31). Our results suggest that if muta-
tional robustness mechanisms play a role in shaping the DFE of
higher organisms, they do not compensate for other factors that
increase the deleteriousness of mutations in humans compared
with Drosophila.
The fifth model, FGM, represents phenotypes as points in a

multidimensional phenotype space, and fitness is a decreasing
function of the distance from the optimal phenotype (4). The
dimensionality of the phenotype space is termed “complexity.”
FGM makes three predictions that we test with our data (SI
Appendix, Text S5). The first prediction of FGM is that muta-
tions in more complex organisms, like humans, are on average
more deleterious than in Drosophila, because mutations are more
likely to disrupt something important in a complex organism than
in a simple one (32) (see SI Appendix, Text S7, for assumptions
that go into this prediction). Indeed, this prediction is well sup-
ported by our data because the average selection coefficient E[s]
is estimated to be 70- to 110-fold more deleterious in humans
than in Drosophila (Fig. 2). To further validate this finding in a
larger phylogenetic context, we analyzed polymorphism data
from mouse (Mus musculus castaneus) and yeast (Saccharomyces
paradoxus). Although sample size is one order of magnitude
smaller, we replicate the pattern of increasing deleteriousness of
mutations with increasing complexity (Fig. 4A; SI Appendix, Table
S5). In principle, differences in population size across species
could explain some of this pattern, because more complex or-
ganisms also tend to have smaller population sizes. However, our
results suggest that variation in population size by itself cannot
account for the pattern shown in Fig. 4A because we have shown
that models only including population size effects for determining
the DFE (e.g., the back-mutation model and the protein stability
model) do not fit the data (see above and SI Appendix, Figs.
S8 and S10 and Table S4). Furthermore, our analyses of the
DFEs in yeast and mice are not consistent with the predictions of

the functional importance, mutational robustness, or protein
stability models (SI Appendix, Table S5), providing further evi-
dence that these models cannot explain the patterns in the data.
The second prediction of FGM is that smaller populations are

predicted to have a larger proportion of beneficial mutations due
to increased fixation of deleterious mutations in smaller pop-
ulations when populations are in equilibrium [drift load (33)].
Note that population size here refers to long-term effective
population size; thus, it could be affected by background selec-
tion and selective sweeps as well as demographic processes. To
test this prediction, we estimated the parameters for the DFE
based on FGM. Formulas have been derived for the DFE as-
suming the population is at an arbitrary distance from the opti-
mal phenotype [equation 8 in Lourenço et al. (33) and equation
5 in Martin and Lenormand (34)], or assuming mutation–selec-
tion–drift equilibrium [equation 15 in Lourenço et al. (33)]. We
found that the equilibrium DFE fits just as well or better than the
nonequilibrium versions (SI Appendix, Table S4). This result
suggests that, in both populations, most genes are close to
equilibrium and are not affected by environmental perturbations
of the phenotypic optimum. Furthermore, in humans, the equi-
librium Lourenço DFE shows a significantly better fit over the
plain gamma DFE (SI Appendix, Table S4), with a Ne,long-term of
2,476 (95% CI: 1,805–3,146). Note that this value of Ne,long-term is
of the same order of magnitude as the ancestral population size
estimated from synonymous sites (7,070). This is surprising be-
cause the estimate of Ne,long-term is not based on neutral genetic
diversity, but on the degree of maladaptation due to drift load
that results in some proportion of beneficial compensatory mu-
tations in the DFE. Thus, it is estimated from the predicted ef-
fect of drift load on the nonsynonymous SFS and likely reflects a
much larger time span than the estimate from the synonymous
SFS. In Drosophila, fitting the equilibrium Lourenço model led
to a similar fit as the plain gamma DFE (SI Appendix, Table S4).
Furthermore, the large Ne,long-term (8.4 × 107) estimated here is
also similar to that estimated from the neutral synonymous sites
(2.8 × 106). The fact that long-term population sizes inferred

A B

C D

Fig. 4. Empirical support for FGM. (A) Both under
the gamma DFE and the Lourenço et al. DFE, esti-
mated average deleteriousness of mutations in-
creases as a function of organismal complexity. (B)
The shape parameter of the gamma DFE depends on
the breadth of gene expression. Tissue-specific genes
have a smaller shape parameter (α) than broadly
expressed genes, supporting FGM. This pattern is
consistent across overall expression levels. (C and D)
By fitting the DFE of Lourenço et al., we can model
slightly beneficial mutations in the DFE (green) that
are thought to compensate for fixed deleterious
mutations in species with small population size. We
find support for a larger proportion of slightly ben-
eficial mutations in the DFE of (C) humans than in (D)
Drosophila.
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under FGM are consistent with previous estimates from genetic
variation data suggests that this prediction of FGM is satisfied by
our data.
The third prediction of FGM is that more pleotropic muta-

tions will show smaller variation in s. As before, we use gene
expression breadth as a proxy for pleiotropy. We found that the
shape parameter (α) of the gamma distribution is smaller for
tissue-specific genes than for broadly expressed genes (Fig. 4B).
The shape parameter is inversely related to the coefficient of
variation (CV) of the selection coefficient: CV(s) = 1/sqrt(α).
Thus, the smaller shape parameter indicates a larger CV(s) and
is consistent with the idea that mutations in tissue-specific genes
are less pleiotropic than in broadly expressed genes. Similar
conclusions were derived by explicitly estimating pleiotropy from
fitting the Lourenço DFE to the data (SI Appendix, Fig. S13).
Note that genes within a species evolve under the same pop-
ulation size. Thus, this pattern supports an effect of complexity
on the DFE that is not confounded by population size differ-
ences, providing further evidence that the pattern shown in Fig.
4A is not solely driven by differences in population size. In sum,
all three predictions made by FGM are supported by our data.

Conclusions
We conclude that FGM is a viable model to explain differences
in the DFE between species and genes. Under this model,
complexity as well as distance of the population to the fitness
optimum, modulated by long-term population size, are the key
drivers of the DFE of new amino acid mutations. Note that many
essential elements of protein evolution are captured by FGM
(35), where many molecular phenotypes (not just protein stabil-
ity) are under stabilizing selection (36). Thus, although we reject a
simple protein stability model determining the DFE, this should
not be taken to mean that general principles of protein evolution
do not play a role in determining the DFE. Further note that for
testing the back-mutation and protein stability models, we assume
that populations are in mutation–selection–drift equilibrium.
Fluctuating population size or environments can move a pop-
ulation out of equilibrium and thereby change the expected DFE
(7, 34). Fitting a nonequilibrium FGM model did not support a
deviation from mutation–selection–drift equilibrium (SI Appen-
dix, Table S4); however, a more thorough theoretical and em-
pirical examination of nonequilibrium models is warranted.
Our findings have implications for important aspects of evo-

lutionary genetics. First, FGM allows us to estimate the propor-
tion of new mutations that are adaptive. When assuming FGM, we
estimate that 14% of new nonsynonymous mutations in humans
are beneficial. The majority (98%) of these beneficial mutations
have small selection coefficients, with s < 0.0005 (Fig. 4C). In
Drosophila, however, the model including positive selection had a
similar fit to the data as the plain gamma DFE (SI Appendix, Table
S4), and only 1.5% of new mutations are beneficial (Fig. 4D). This
finding is qualitatively in the opposite direction compared with
what has been seen in previous studies of adaptive evolution in
these two species. The proportion of amino acid substitutions that
are beneficial was estimated to be larger in Drosophila (50%) than
in humans (10–20%), using a McDonald–Kreitman (MK) ap-
proach (3, 37–40). More generally, our results suggest that infer-
ences of the amount of adaptive evolution considering fixed
substitutions may be qualitatively different from those considering
new mutations. One explanation for this apparent difference
might be that a small proportion of strongly beneficial mutations
contribute substantially to substitutions in Drosophila but only
rarely show up as polymorphisms. Our approach provides limited
information about the class of strongly beneficial mutations be-
cause it only uses polymorphism data. Second, the larger pro-
portion of amino acid substitutions fixed by positive selection in
large populations like Drosophila could also be driven by an
overall decrease in the total amount of nonsynonymous

divergence in this species due to a decreased rate of fixation of
nearly neutral and mildly deleterious mutations due to more
efficient purifying selection (41, 42). Alternative measures of
adaptive evolution that are not affected by varying efficiency in
purifying selection were found to be only weakly (42) or not at all
(41) correlated with population size. Additionally, the amount of
positive selection in the human genome has been recently de-
bated (43, 44). After controlling for background selection, Enard
et al. (43) found that, in humans, estimates of the amount of
adaptive evolution from MK approaches may be severe under-
estimates. Their results instead argue that there may be many
small-scale adaptive steps in humans, that is, many weak selec-
tive sweeps that are only detectable when averaging across many
instances. Such a mode of adaptation is in fact predicted by FGM
for organisms with high complexity (45).
Second, a varying DFE over phylogenetic timescales has im-

plications for understanding the overdispersed molecular clock
(46). The substitution rate of deleterious mutations is a function
of the compound parameter Nes (47). Thus, not only phylogenetic
changes in Ne but also changes in s may contribute to over-
dispersion. Our results suggest that changes in the distribution of
s are coupled with changes in population size and complexity. For
example, the larger complexity of humans is supposed to reduce
the nonsynonymous divergence along the human lineage to lower
values than what would be expected from the two orders-of-
magnitude population size difference to Drosophila. Accurate
characterization of the DFE from many species across the tree of
life will enable a direct test of the contribution of changing DFEs
to the dispersion of the molecular clock.
Last, our results have implications for assessing the biological

function of sequences using evolutionary information. The
comparative genomics paradigm postulates that biologically im-
portant regions of the genome are constrained across long evo-
lutionary times (48). This implies that s for a particular sequence
is determined by the biological importance of the sequence and
that s remains constant over time. If, as our work suggests, se-
lection coefficients change over time as a consequence of species
complexity and long-term population size, this could result in
important sequences not showing the prototypical signatures of
conservation, leading to such sequences being missed by com-
parative approaches. Furthermore, it suggests that complexity and
population size are important factors to consider when deciding
which species to use in future comparative genomic studies.

Materials and Methods
Data. We used published next-generation sequencing datasets to extract the
synonymous and nonsynonymous SFS (SI Appendix, Text S1). For humans, we
used the sample of 112 individuals from YRI from the 1000 Genomes Project
(11). For Drosophila melanogaster, we used the Drosophila Population Ge-
nomics Project phase 3 data of a sample of 197 lines originating from
Zambia, Africa (12). To infer the DFE in Mus musculus castaneus (mouse) and
Saccharomyces paradoxus (yeast), we used data from Gossmann et al. (42).
To study the effect of gene expression, we used two recent tissue-specific
gene expression datasets from humans (49) and Drosophila (50) (SI Appen-
dix, Text S1).

Statistical Test for Different DFEs Between Two Species. We used the SFS from
polymorphism data from two species, A and B, to test whether the DFE differs
between these two species. We used the software ∂a∂i (51) to infer the
parameters of a single size change model from the synonymous SFS of each
species independently (denoted ΘD,A and ΘD,B), and conditional on the es-
timated size change model, we infer the DFE from the nonsynonymous SFS
(SI Appendix, Text S2). Specifically, we initially assumed that the DFE in both
species follows a gamma distribution with the shape parameter α and scale
parameter β. We used a Poisson composite likelihood function (3), where the
SFS at nonsynonymous SNPs in species A is treated as being independent of
that from species B, which is reasonable for distantly related species (52).
Then, the likelihood function for the parameters is as follows:
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Here, n and m are the sample size of species A and species B, respectively,
and Xi,A refers to the number of SNPs at frequency i in species A. We test
whether the shape (α) and scale (β) parameters in species A differ from those
in species B. To do this, we propose the following LRT:

.Λ=
L
�bαA = αB,bβA = βBj dΘD,A, dΘD,B

�

L
�dαA,dαB,cβAd, βBj dΘD,A, dΘD,B

�

The null hypothesis (constrained model) is that αA = αB and βA = βB. The full
model allows for αA ≠ αB and βA ≠ βB. We optimized the likelihood function
under both the null and full models (SI Appendix, Text S2). In all cases, we

conditioned on the demographic parameters in each population (ΘD,A,ΘD,BÞ,
thus accounting for differences in population history. Asymptotically,Λ fol-
lows a χ2 distribution with 2 df, due to the two additional free parameters in
the full model compared with the constrained model. Simulations were used
to test how well the usual asymptotic theory applies in this situation (SI
Appendix, Text S4). This test can be extended to any DFE distribution, and
any number of species. Here, we also tested the parameters of a gamma+
neutral and a log-normal distribution. The degree of freedom of the χ2 null
distribution is p*k − p, where p is the number of parameters of the distribution,
and k is the number of species. We test the robustness of the inferred DFE pa-
rameters to a number of potential confounding factors (SI Appendix, Text S3).
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