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Abstract

SLE is a chronic autoimmune disease caused by perturbations of the immune system. The clinical presen-

tation is heterogeneous, largely because of the multiple genetic and environmental factors that contribute to

disease initiation and progression. Over the last 60 years, there have been a number of significant leaps in

our understanding of the immunological mechanisms driving disease processes. We now know that multiple

leucocyte subsets, together with inflammatory cytokines, chemokines and regulatory mediators that are

normally involved in host protection from invading pathogens, contribute to the inflammatory events leading

to tissue destruction and organ failure. In this broad overview, we discuss the main pathways involved in

SLE and highlight new findings. We describe the immunological changes that characterize this form of

autoimmunity. The major leucocytes that are essential for disease progression are discussed, together

with key mediators that propagate the immune response and drive the inflammatory response in SLE.
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Rheumatology key messages

. SLE is a heterogeneous disease influenced by a variety of genetic and environmental factors.

. Innate and adaptive immune responses contribute to the autoimmune dysfunction observed in SLE.

. Autoantibodies form immune complexes that drive target organ inflammation in most individuals with SLE.

Introduction

Autoimmunity affects �8% of the global population.

However, the incidence is increasing because of a

number of factors, including awareness and improved

clinical diagnoses [1]. Moreover, there is evidence that

autoimmune diseases are a leading cause of death in

young females within the USA [2]. SLE affects primarily

women, with a gender bias of 9:1, which has been

attributed in part to oestrogen receptor-1 and to un-

defined immunomodulatory genes on the X chromosome

[3]. There is no prevention or cure, and the mainstay of

treatment is immunosuppressive therapy. Disease aeti-

ology involves genetic predisposition and environmental

factors, with the influence of gender [4]. Over 60 genetic

regions have been associated with the development or

severity of human disease [5]. These genetic associations

have directed research towards multiple pathways

involved in innate and adaptive immunity.

Comprehensive discussions of the history of SLE have

been described previously [6, 7]. An important step in

determining that SLE is a disease of the immune

system, or an immunological disease, was taken in 1948

by Dr Hargraves, who discovered the LE cell or LE body.

The LE cell is a neutrophil or macrophage in the bone

marrow that has a distinct morphology by haematoxylin

staining as a result of the phagocytosis of nuclear debris.

The presence of these cells is indicative of SLE or other
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connective tissues disorders. Later, the LE cell phenotype

was defined as an ANA reaction because it could be

reproduced from bone marrow preparations with the add-

ition of SLE serum [7]. This observation and test provided

the key to linking SLE to immunological dysfunction. The

LE test was subsequently replaced by serum ANA assays

[8]. Since these early discoveries, there has been a dra-

matic progression in our understanding of the immunolo-

gical pathways driving disease.

The cellular roles of individual leucocytes, including B

cells, T cells and myeloid cells, in the initiation and pro-

gression of SLE have been recently reviewed elsewhere

[9�12]. There are several known factors that contribute to

the initiation and progression of autoimmunity in SLE.

These factors include the following: the initial break in tol-

erance and generation of autoantigen-specific effector B

and T lymphocytes and the subsequent production of

ANAs; defects in cell death or debris clearance pathways

and the continued generation of self-antigens; and tissue

inflammation and deficiencies in immune regulation com-

bined with mechanisms that propagate chronicity to drive

lupus immunopathology.

Breaking immune tolerance and the
development of autoimmunity

The loss of tolerance to self and the subsequent elevation

in serum ANA levels is proposed to be a crucial first step

in the development of SLE [13�15]. This observation is

supported by the finding that autoantibodies can be de-

tected before clinical symptoms in most SLE patients [15].

The presence of autoantibodies in patients, including anti-

dsDNA, anti-SSA (Ro), anti-SSB (La), anti-Sm and anti-

RNPs, suggests that a common mechanism is involved

in the peripheral expansion of autoreactive B cells that

has yet to be delineated fully [15�17].

The majority of B cells generated are self-reactive and

are usually removed by central tolerance mechanisms in

the bone marrow, including receptor editing, deletion or

the induction of anergy, reviewed by Meffre [13] and

Goodnow et al. [18]. These are B-cell-intrinsic mechanisms

and are known to be controlled by B-cell antigen receptor

signalling thresholds and regulators of the phosphoinosi-

tide 3-kinase pathway [19�21]. Recently, the miR-17�92

family of miRNA has been shown to regulate central B-

cell tolerance by targeting phosphatase and tensin homo-

log [20, 22]. Additional removal of autoreactive B cells

occurs by selection mechanisms in the periphery, which

are less clear but can involve impaired survival and anergy

[23]. Elevated levels of B-cell activating factor (BAFF, also

known as B lymphocyte stimulator (BLyS) or CD257),

which are observed in SLE patients (see below) [24, 25],

have been shown in mouse models to promote a breach in

B-cell tolerance and enhance the survival of autoreactive B

cells [26]. Evidence from SLE patients has shown that

there is failure in both central B-cell checkpoints in the

bone marrow and peripheral checkpoints at the transi-

tional-naive B-cell stage [27]. Furthermore, SLE patients

exhibit a defect in anergy of naive B cells [28].

Additionally, the generation of de novo autoreactive B

cells occurs after maturation as a result of somatic hyper-

mutation in germinal centres (GCs) [29]. It is believed that

the majority of pathogenic autoantibodies are somatically

hypermutated, class-switched IgGs. This class-switching

from IgM to IgG occurs primarily, but not solely, in GCs,

through interactions of the B cell with antigen and with

CD4+ T follicular helper (Tfh) cells, which are identified by

the markers CD4, inducible T-cell costimulator (ICOS), C-

X-C chemokine receptor type 5 (CXCR5), CD57 and pro-

grammed cell death protein 1 (PD-1) [12, 30�33]. B cell

activation in GCs is followed by expansion and differenti-

ation into autoreactive plasmablasts and plasma cells that

secrete high levels of antibodies to autoantigens. The tar-

geted deletion of IFN-g, Toll-like receptor 7 (TLR7) and

signal transducer and activator of transcription 1 (STAT1)

in mice results in the disruption of autoreactive GCs and

impaired production of IgG autoantibodies [34�36] (Fig. 1).

Importantly, it has been shown that the IFN-g receptor

(IFN-gR) requirement for the class-switch recombination

of pathogenic autoantibodies and the subsequent devel-

opment of systemic autoimmunity is B-cell intrinsic [35,

37]. A T-box transcription factor (T-bet) also contributes

to pathogenic autoantibody production [35, 37]. TLR7

within the B cell is also required for spontaneous GC for-

mation and antibody production [35, 36, 38, 39].

Other mechanisms that might contribute to ANA pro-

duction include molecular mimicry; for example, autoanti-

bodies can be induced during an infection as a result of

activation of lymphocytes that recognize foreign antigens

that cross-react with autoantigens [40]. Alternatively,

injury to tissues during infection can induce epitope

spreading from immune responses against pathogens to

tissue antigens. Often these self-antigens have undergone

chemical modifications as a result of the inflammatory re-

sponse [41, 42]. Autoantibodies in target tissues form

immune complexes (ICs), which, combined with inflam-

matory cytokines from infiltrating leucocytes, perpetuate

organ inflammation and tissue injury.

Similar to B lymphocytes, T cells undergo tolerance

mechanisms to restrict autoreactivity. Multiple autoim-

mune-prone strains have demonstrated a requirement

for both B and CD4+ T cells for the production of IgG

autoantibodies, indicating that loss of T-cell tolerance

may play a role in lupus [43]. Tolerance mechanisms in-

clude deletion of autoreactive T cells in the thymus during

development, and peripheral mechanisms such as apop-

tosis, anergy or inhibition by Treg [44]. In SLE, there are

decreased numbers of recent thymic emigrants, suggest-

ing that central T-cell tolerance mechanisms are dysregu-

lated [45]. A contributing factor could be the upregulated

gene expression of HLA-D region and antigen-presenta-

tion pathways in SLE patients’ dendritic cells (DCs), as

was recently reported [46]. Moreover, elevated expression

of HLA-DR on DCs could impact tolerance of autoreactive

T cells in secondary lymphoid organs. Peripheral auto-

reactive T-cell tolerance can be disrupted by exposure

to pathogens and by a variety of other mechanisms [47].

In SLE, abnormalities in proximal signalling pathways can
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FIG. 1 Overview of immunological pathways leading to SLE

The development of SLE occurs in three interconnected phases, illustrated by coloured backgrounds. Loss of adaptive

immune tolerance (blue) leads to an increase in autoreactive B cells. Signals from self-antigens, TLR ligands, BAFF/APRIL

and T-cell-derived cytokines promote the formation of germinal centres and the production of autoantibodies. Innate

immune defects leading to increased availability of self-antigens (pink) include increased NETosis, impaired clearance of

apoptotic debris and reduced phagocytosis. Self-antigens form ICs with autoantibodies, enabling FcRg-mediated uptake

and activation of several downstream pathways. Inflammation and tissue damage (green) is caused by mediators

released by recruited inflammatory cells and IC-induced complement activation. Abs: antibodies; Ags: antigens; APRIL

(CD256): a proliferation-inducing ligand; B: B cell; BAFF (CD257): B-cell-activating factor; BAFF-R: B-cell-activating

factor receptor; BCMA: B-cell maturation antigen; BCR: B-cell antigen receptor; FcRg: Fc receptor-g; fDC: follicular

dendritic cell; HLA class II: human leucocyte antigen class II; mDC: myeloid dendritic cell; M�: macrophage; Mo:

monocyte; NET: neutrophil extracellular trap; ox-mDNA: oxidized mitochondrial DNA; pDC: plasmacytoid dendritic cell;

Stat1: signal transducer and activator of transcription (a transcription factor); T: T cell; TACI (CD267): transmembrane

activator, calcium modulator and cyclophilin ligand interactor; T-bet: a T-box transcription factor; Tfh: T follicular helper;

TLR7/9: Toll-like receptors 7 and 9.
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contribute to altered T-cell tolerance and responsiveness

[48]. Dysfunction in autoreactive T-cell anergy can be

mediated by several factors, including genetic variants,

epigenetic modifications or alterations in gene regulation.

Such dysfunction can result in hyperactive T-cell

responses, disruption of T-cell trafficking patterns and

alter the balance of T-cell pro-inflammatory and anti-

inflammatory cytokine production [48].

Treg cells appear to play a major role in the maintenance

of peripheral autoreactive T-cell anergy. Although reports

of altered Treg numbers and function in SLE have been

contradictory, Treg defects are observed in some SLE pa-

tients [49]. Low-dose IL-2 therapy can correct these de-

fects, reduce the relative frequency of Tfh and Th17 cells

and decrease disease activity, suggesting that disruption

of the balance of Treg to Tfh and/or Th17 cells may con-

tribute to loss of tolerance in SLE [50, 51]. These observa-

tions are also supported by studies in murine models [52].

Tfh cells are important for the activation and selection of

B cells within GCs [53]. Tfh cells are found at increased

frequencies in the peripheral circulation of SLE patients

undergoing flares, and in LN, Tfh cells can be found in

the kidneys [12]. Elevated numbers of Tfh cells are asso-

ciated with increased disease activity and decreased

Treg numbers and/or function in SLE patients and autoim-

mune mouse models [30�33, 54�56]. IFN-gR signalling is

also necessary for Tfh cell development, and consistent

with this, excess of IFN-gR signalling leads to an accrual

of Tfh cells, which is associated with elevated ANA titres, a

higher frequency of circulating activated B cells (plasma-

blasts) and disease activity [35, 37, 57] . Interestingly,

higher levels of serum IFN-g, along with IL-5 and IL-6,

have been detected >3 years before SLE diagnosis, sug-

gesting their importance in the development of disease [58].

Generation of self-ligand and impaired
clearance mechanisms

It is believed that pathogenic class-switched IgG autoan-

tibodies play a significant role in the inflammatory pro-

cesses that lead to tissue destruction. These antibodies

are produced by B cells that have been activated by self-

antigens [59]. Current lines of evidence suggest that

increased nuclear debris in the periphery of SLE patients

might provide a source of excess autoantigens that con-

tribute to increased serum ANA levels [59�61]. Nuclear

debris results from increased apoptotic or necrotic cells

or impaired uptake of dying cells through phagocytosis by

neutrophils and macrophages [60, 62, 63]. Phagocytosis

is defective in macrophages derived from SLE patients

[64, 65]. Studies in murine models suggest that deficien-

cies in cell surface proteins, such as receptor tyrosine

kinases Mer and Axl or the combination of milk fat glo-

bule-EGF factor 8 and T-cell immunoglobulin- and mucin-

domain-containing molecule, involved in the clearance of

circulating cellular debris, may contribute to autoimmunity

[66�68]. Opsonins, such as CRP, C1q, serum amyloid P,

mannose-binding lectin, pentraxin 3 and other soluble

proteins, bind to apoptotic cells and facilitate their

clearance [64]. In SLE, reduced levels of CRP, which

binds to nuclear proteins and phosphatidylethanolamine

on damaged cell membranes, contribute to defects in cell

debris clearance [69]. In addition, autoantibodies binding

to opsonins on circulating necrotic cell debris can gener-

ate ICs and promote pro-inflammatory responses and

tissue damage, as discussed below [69].

Neutrophils also undergo a unique process ultimately re-

sulting in cell death, known as NETosis, the release of neu-

trophil extracellular traps (NETs), which is enhanced in

paediatric SLE [70, 71]. This specific form of liberating nu-

clear contents is believed to contribute to the autoantigens

necessary for the persistent autoreactive inflammatory re-

sponse [70] (Fig. 1). In SLE, neutrophils can undergo

NETosis after priming by type I IFNs and activation induced

by cytokines (IL-1b, IL-8, IL-17 and TNF) and anti-RNP anti-

bodies or autoantibodies to cell surface anti-microbial pep-

tides (cathelicidin LL-37, human neutrophil peptide) [70,

71]. The nuclear contents (DNA, RNA, histones, etc.) are

released in the form of spider web-like NETs [72]. The

released DNA and RNA is coated with self-proteins, includ-

ing anti-microbial peptides which stabilize the NETs in an

immunogenic form [70, 71]. Serum samples from active

SLE patients fail to degrade NETs efficiently because they

contain autoantibodies and C1q, which inhibit DNase-I

degradation of chromatin [73, 74]. Moreover, renal

DNase-I is downregulated in late-stage LN [73, 75]. These

findings are consistent with observations in murine models

demonstrating that loss of DNase-I accelerates LN [76].

The nuclear material forms ICs with the autoantibodies,

which are then taken up through either the B-cell antigen

receptor on B cells or FcgR on DCs [77, 78] (Fig. 1). This

can then activate specific intracellular innate receptors,

including TLR7 and Toll-like receptor 9 (TLR9), which

drive cellular activation and the production of pro-

inflammatory cytokines, including IL-6, IL-8, IL-1b, IL-12

and TNF. Additionally, oxidized mitochondrial DNA

released by SLE neutrophils can stimulate plasmacytoid

DCs (pDCs) to produce IFN [79]. In SLE, neutrophils po-

tentially represent a major reservoir of autoantigens to

drive B-cell and DC activation and effector function, re-

sulting in propagation of the inflammatory response.

The complement system is a major mechanism of

innate immunity. It plays an important role in the lysis of

invading bacteria, in the clearance of antibodies found in

ICs and in the removal of cellular debris [80]. Activation of

three possible pathways (classical, alternative or lectin)

induces an enzymatic cascade of activated and cleaved

complement proteins. However, genetic deficiencies in

predominantly the classical components, including C1

(C1s-C1r, C1q), C2 and C4 have been associated with

the development of SLE, reviewed by Sturfelt and

Truedsson [81]. In most SLE patients, complement activity

is reduced during episodes of inflammation.

The classical pathway is activated by the binding of C1q

to clusters of IgG or IgM, CRP or apoptotic cell debris.

This triggers the enzymatic cascade through a series of

proteases to cleave C4, C3 and, ultimately, C5. The re-

sulting products, C3a, C4a and C5a, are potent
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chemoattractive agents, which can recruit inflammatory

cells. The C3b and C4b fragments bind ICs, which then

activate complement receptors on macrophages that

clear them from circulation in the spleen and liver.

The complement system also plays a role in peripheral

tolerance. Genetic ablation of C4 in a murine model

reduced negative selection during the progression from

transitional to mature naive B cells [82]. These findings

are consistent with the high frequency of patients with

deficiencies in early complement components who have

SLE or other autoimmune disorders [81, 83]. Taken to-

gether, these studies demonstrate that while complement

activation can promote inflammation and tissue damage

in SLE, defects in complement-dependent clearance of

ICs and apoptotic debris results in more antigen availabil-

ity. This, in turn, promotes loss of adaptive immune toler-

ance and promotes autoimmunity.

Immune-mediated perpetuation
of inflammation

Positive feedback loops resulting from the loss of adaptive

immune tolerance, the formation of ICs and the activation

of the innate immune system perpetuate inflammatory re-

sponses that may result in target organ injury (Fig. 1) [84].

Below, we discuss key mediators involved in the

immune-mediated perpetuation of the inflammatory re-

sponse. A recent report has described elevations in a

number of serum innate and adaptive cytokines before

SLE disease onset [58]. These include the innate cyto-

kines IL-23 and IL-12p70 and TNF superfamily members

BAFF (CD257) and CD256 (a proliferation-inducing ligand,

APRIL), the IFN-inducible chemokines IP-10 and CXCL9,

the Th1 cytokines IFN-g and IL-2, the Th2 cytokine IL-5

and the Th17-associated cytokine IL-21. In addition, sol-

uble serum TNFRI and TNFRII levels were elevated,

whereas regulatory TGFb levels were decreased [58].

Importantly, the combination of certain mediators

(CXCL9, IFN-g, IL-5, IL-6) with ANA titres and the pres-

ence of anti-Ro and anti-SSA antibodies had a greater

predictive power for the development of SLE than auto-

antibodies alone. These cytokines along with others

demonstrated to be key in the autoimmune response,

such as type I IFNs and IL-6, are discussed below.

These studies further highlight the dysregulation of mul-

tiple innate and adaptive pathways required to perpetuate

autoreactive immune responses by undergoing a series of

amplification steps, each with increasing complexity,

leading to the establishment of full-blown disease.

DCs and type I IFNs

DCs play an important role in the initial stages of lympho-

cyte activation, presenting antigen to drive the immune

response. In SLE, debris from apoptotic cells can be pre-

sented as self-antigens to propagate B- and T-cell hyper-

reactivity [62, 85]. Furthermore, previous data have shown

that monocytes cultured with serum from SLE patients

mature into cells with myeloid DC-like morphology and

function [86]. These studies demonstrated that

differentiation of healthy control monocytes by SLE

serum was dependent on IFN-a and correlated with SLE

disease activity. This has important implications, as it has

been proposed that lymph node myeloid dendritic cells

(mDCs) participate in the maintenance of peripheral toler-

ance by regulating autoreactive T cells. IFN-a upregulates

costimulatory expression and TLR7 mRNA expression in

human mDCs, making them potentially potent antigen-

presenting cells for foreign and self-antigens [87]. In

BXSB and Y-autoimmune accelerator (Yaa)-associated

murine models of lupus, a 2-fold increase in TLR7 expres-

sion is required for the development of severe disease [34,

88�91]. Moreover, the increase in DCs, and not B cells, is

crucial for TLR7-induced severe pathology [87, 89].

In SLE, pDCs play an important role through the pro-

duction of IFN-a. ICs activate immature pDCs via the

innate TLRs, TLR7 and TLR9, to produce inflammatory

cytokines, including type I IFNs [92]. Although pDCs are

reduced in the periphery of SLE patients with active dis-

ease, they accumulate at inflammatory sites in tissues,

including cutaneous lesions and kidneys [86, 93�95].

Type I IFNs serve to propagate autoimmune responses

through activities including the maturation of monocytes

into mDCs (see above) [86], the priming of neutrophils to

undergo NETosis in the presence of anti-RNP autoantibo-

dies [70] and the promotion of B-cell responses to TLR7

engagement [96]. Previous data have shown that an ele-

vated serum IFN-a level is a heritable trait that can con-

tribute to SLE disease susceptibility [97, 98]. The majority

of SLE patients have a consistent upregulation in a broad

array of type I IFN-responsive genes compared with con-

trols [99�102]. This IFN signature could be induced by IFN

and correlated with increased serum type I IFN levels

[101, 103]. Mixed results were obtained in longitudinal

studies correlating an IFN signature score with disease

activity [104�106]. A specific IFN signature, represented

by a select number (of the order of 5�30 mRNAs) of re-

producibly affected expressed genes, has been success-

fully used as a diagnostic biomarker or in clinical trials as a

pharmacodynamic biomarker [107, 108]. For example, in

studies of sifalimumab and rontalizumab, mAbs targeting

type I IFN, a dose-dependent suppression of the IFN sig-

nature was correlated with improvement in clinical symp-

toms in SLE patients [109, 110]. Thus, the IFN signature

appears to be detectable in most, but perhaps not all,

lupus patients’ peripheral blood cells, during increases

in disease activity.

In addition to TLRs, type I IFN responses can be

induced by stimulation of cytosolic DNA or RNA sensors.

Mutations or deficiencies in related signalling pathway

members have been shown to alter lupus-like disease sig-

nificantly in humans and in murine models. For example,

in humans a constitutively active mutant STING (stimulator

of IFN genes) protein has been shown to be associated

with elevated serum type I IFN and an IFN signature in

peripheral blood mononuclear cells, resulting in a lupus-

like syndrome [111]. Unexpectedly, the MRL/lpr mouse

model of lupus intercrossed to mice deficient in the key

downstream signalling component STING demonstrated

www.rheumatology.oxfordjournals.org i59
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accelerated lupus pathology, including increased auto-

antibody production and TLR-mediated cytokine produc-

tion [112]. These studies suggest that in addition to

mediating signalling by cytosolic sensors, STING might

activate negative feedback mechanisms that control in-

flammatory responses. Further studies are warranted to

gain a full understanding of the role of the cytosolic sen-

sors and their signalling pathways in lupus.

IL-6

IL-6 is a potent cytokine produced by innate and adaptive

cells. It stimulates B-cell growth and B- and T-cell differ-

entiation, as observed by their diminished activity in mice

deficient for IL-6 [113, 114]. IL-6 can also contribute to

tissue damage independent of its role in B- and T-cell

activation [115]. IL-6, like IL-1b, has a number of regula-

tory homeostatic functions beyond immune regulation and

induces other mediators during the acute phase response

to infections. Deficiency of IL-6 in numerous murine lupus

models results in amelioration of autoantibody production,

inflammation and glomerulonephritis [116�118]. Given the

important role of IL-6 in the innate and adaptive immune

responses, tocilizumab, an anti-IL-6 receptor antibody,

was developed as a potential therapy for autoimmune dis-

eases. Similar to murine models, blockade of IL-6 was

shown to decrease B-cell hyperactivity evidenced by

decreased serum anti-dsDNA levels and disease activity

in SLE patients [116, 119�121].

IFN-g

IFN-g signalling in B cells promotes autoreactive GC

formation and autoantibody production [35, 37].

Complementary to the findings of Rahman and Rawlings

and colleagues discussed above for B-cell-intrinsic regu-

lation of GC formation, genetic ablation of IFN-g in

the MRLlpr and B6.Sle1b murine models prevents lupus-

like disease progression, including glomerulonephritis

[37, 122]. IFN-g was shown to amplify macrophage acti-

vation, enhance anti-dsDNA autoantibody production and

upregulate the expression of MHC classes I and II on renal

cells, which promoted the inflammatory response in the

target tissue. IFN-g-mediated production of BAFF by mye-

loid cells was also shown to contribute to disease in the

Lyn-deficient lupus model [123]. Thus, IFN-g contributes

to the innate and adaptive arms of the immune response

and augments inflammation in target tissues.

IL-21

IL-21 is produced primarily by Tfh cells and is important

for B-cell expansion in the GC, class switch recombin-

ation and the generation of plasma cells [31, 33, 124,

125]. More recently, it has been shown that IL-21, to-

gether with IL-6, drives Tfh cell expansion in humans

and mice [31, 126]. Furthermore, IL-21 also contributes

to Th17 cell differentiation and the expansion of

CD8+ suppressor T cells [127]. Despite its role in expan-

sion of regulatory cells, IL-21 was found to play a crucial

role in driving lupus-like disease in the BXSB.Yaa murine

lupus model [127]. Therefore, IL-21 appears to have the

potential to play both positive and negative roles in pro-

motion of disease manifestations.

BAFF (CD257)

BAFF is primarily secreted by myeloid cells, but can also

be produced by other types of cells. It stimulates the ex-

pansion, differentiation and antibody production of B cells

[128, 129], and its overexpression promotes loss of B-cell

tolerance [26]. It can be active in membrane or soluble

form and it can bind to three receptors (transmembrane

activator, calcium modulator, and cyclophilin ligand inter-

actor (TACI), B cell maturation antigen (BCMA) and BAFF-

R) on B cells, whose expression is modulated in SLE with

increased disease activity [24, 25, 130�132]. BAFF is ele-

vated in the circulation of SLE patients and was shown to

be correlated with anti-dsDNA antibody titres. Mixed re-

sults were reported for correlations with disease activity,

and BAFF levels were decreased in patients treated with

CSs [24, 25, 132]. Of note, 17b-estradiol induced soluble

BAFF, anti-dsDNA and anti-C1q in a murine lupus model

[133]. A mAb to soluble BAFF, belimumab, has been

approved by the US Food and Drug Administration for

the treatment of SLE and has been found to reduce disease

activity and the number of lupus flares [134, 135]. Although

this is considered a breakthrough in lupus treatment, further

studies are required to determine the best regimen incor-

porating this treatment for patient subgroups.

Adaptive immune pro-inflammatory mediators

Aside from being essential for ANA production, B cells and

T cells play a crucial role in the inflammatory events that

contribute to disease progression [136]. B cells can func-

tion as antigen-presenting cells for memory T-cell re-

sponses; they produce an array of cytokines and can

function in a regulatory capacity [137]. Regulatory B-cell

activity has been shown to be impaired in SLE patients

[137, 138]. Multiple types of effector T cells have been

implicated in disease development in both murine

models and SLE patients. Depletion of CD4+ Th1 cells pre-

vents disease progression in several murine models, and

Th1 cells producing IL-2 and IFN-g are required for anti-

body production by autoreactive B cells [9, 35, 37, 139].

IFN-g, along with the Th2 cytokines IL4 and IL5, promotes

the recruitment of lymphocytes to lymph nodes. Moreover,

some studies have found that Th2 effector cells promote

disease chronicity in target tissues [140, 141].

Immune-mediated end-organ damage

Inflammation of the skin or mucosal membranes or arth-

ritis is seen in milder forms of SLE [142]. More commonly,

severe disease manifests in neurological symptoms, renal

disease, vasculitis, serositis involving the heart (pericardi-

tis) or lungs (pleuritis), or haematological disorders,

including leucopenia, lymphopenia, thrombocytopenia,

thrombotic thrombocytopenic purpura, myelofibrosis and

autoimmune haemolytic anaemia [142�144].

Ultimately, tissue inflammation can result from a variety

of factors. Given the heterogeneous nature of the disease,

antibodies can often, but not always, be involved in local
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inflammatory responses. Autoantibodies can form ICs, ac-

tivate innate or resident cells and directly induce target

organ injury. In addition to autoantibodies, defects in cell

death, cell clearance or phagocytic machinery can initiate

complement activation, IC formation with ensuing myeloid

cell activation and cytokine production with resultant

autoimmune tissue destruction [145]. Infiltrating and resi-

dent renal myeloid cells activated by ICs produce cyto-

kines and chemokines, such as IL-6 and BAFF, that

promote B-cell activation and differentiation. The chemo-

kines CXCL13 and CCL21 direct lymphocyte migration to

lymphoid follicles in lymph nodes and in target tissues.

Specialized tissue-resident pDCs promote the mainten-

ance of Treg populations, and this pDC population and

Treg cell numbers are decreased during inflammation

[146, 147].

As exemplified in LN, which affects up to 60% of SLE

patients [148], mechanisms involving numerous inflamma-

tory cytokines, leucocytes, responses by the resident

tissue cells, along with alterations in vascular endothelial

cell function contribute to tissue damage [149]. Each tis-

sue’s response to immune-mediated injury is unique and

has been reviewed extensively [84, 142�144, 149�153],

but ultimately, chronic inflammation can result in tissue

dysfunction caused by remodelling and fibrosis.

Summary and future directions

The presence of elevated levels of autoantibodies and nu-

merous cytokines serve as markers of immune-mediated

pathology in preclinical SLE disease. Most often, the de-

position of ICs combined with inflammatory cytokines

from infiltrating leucocytes perpetuate target organ inflam-

mation. The unabated inflammatory response eventually

results in autoimmune-mediated tissue destruction.

However, no single mediator consistently serves as a

diagnostic marker for patients with SLE. Although most

patients at the time of diagnosis have elevated levels of

autoantibodies, which appear to contribute to SLE path-

ology, similar disease manifestations can occur in individ-

uals without elevated autoantibodies. Likewise, elevations

in circulating type I IFNs have been found in a majority, but

not all patients. Future strategies will incorporate new

biomarkers to evaluate the patient’s disease and immuno-

logical signature based on our continually evolving under-

standing of relevant immunological pathways. The era of

immunologics and biologics has only just begun.
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