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Current HIV therapy is not curative regardless of how soon after infection it is initiated or how long it is administered, and therapy 
interruption almost invariably results in robust viral rebound. Human immunodeficiency virus persistence is therefore the major 
obstacle to a cure for AIDS. The testing and implementation of novel yet unproven approaches to HIV eradication that could com-
promise the health status of HIV-infected individuals might not be ethically warranted. Therefore, adequate in vitro and in vivo 
evidence of efficacy is needed to facilitate the clinical implementation of promising strategies for an HIV cure. Animal models of 
HIV infection have a strong and well-documented history of bridging the gap between laboratory discoveries and eventual clinical 
implementation. More recently, animal models have been developed and implemented for the in vivo evaluation of novel HIV cure 
strategies. In this article, we review the recent progress in this rapidly moving area of research, focusing on the two most promising 
model systems: humanized mice and nonhuman primates.
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Implementation of combination antiretroviral therapy (ART) 
for the treatment of human immunodeficiency virus (HIV) 
infection in the 1990s dramatically changed the course of dis-
ease. Human immunodeficiency virus type 1 (HIV-1) infection 
changed from an almost immediately terminal diagnosis to 
one of a chronic illness that could be managed relatively well. 
Although ART is extremely effective at impeding new infec-
tion, there is no mechanism by which current treatment reg-
imens will eliminate latently infected cells. Therefore, current 
ART regimens cannot cure HIV-1 infection. It has been clearly 
demonstrated that ART interruption results in rapid rebound 
of plasma viremia, presumably due to reactivation of a latent 
reservoir [1–6]. The persistent HIV reservoir represents long-
lived, latently infected, resting, inducible cells present in tissues 
and blood of an infected individual.

Peripheral blood has been well characterized as an ample and 
readily accessible reservoir of latently infected cells that can per-
sist for decades with an extremely long half-life [7–9]. However, 
latently infected cells are also present in tissues. Ethical and 
practical considerations limit studying the HIV tissue reservoirs 
in humans. Ethical considerations also prevent the evaluation of 
novel approaches to viral eradication that may present unnec-
essary risks to otherwise healthy individuals [10, 11]. Therefore, 
investigating the mechanisms of viral persistence in vivo and 

the in vivo evaluation of novel approaches to HIV eradiation 
require animal models that recapitulate critical aspects of infec-
tion in humans.

In this review, we discuss two different but highly comple-
mentary models for the investigation of virtually all aspects 
of HIV persistence and eradication: humanized mice and 
nonhuman primates (NHPs). As illustrated here, both offer 
strong benefits that can be used to shed light on the efficacy 
and safety of novel approaches to HIV eradication. Likewise, 
both models have challenges that have to be overcome to 
more efficiently translate observations made into clinical 
practice.

Animal models that recapitulate key aspects of HIV infec-
tion are critical to HIV cure research because most new cure 
strategies cannot be directly tested in humans without major 
risks. Animal models allow for in-depth in vivo study of multi-
ple anatomic reservoirs and allow for manipulation of various 
immune cell populations to understand their role in infection 
and persistence. The most commonly used animal models for 
cure research are humanized mice and NHPs. Although neither 
model perfectly recapitulates HIV infection in humans, each 
can be tailored to address questions critical to cure research.

OVERVIEW OF HUMANIZED MOUSE MODELS

Most modern humanized mouse models are produced by 
transplantation of human CD34+ hematopoietic stem-progen-
itor cells (HSPCs) and/or human tissues into one of several 
different strains of immunodeficient mice [12]. Depending 
on the specific model, systemic or local reconstitution with 
human hematopoietic cells can include human B cells, natu-
ral killer cells, T cells, monocytes, macrophages, and dendritic 

S U P P L E M E N T  A R T I C L E

© The Author 2017. Published by Oxford University Press for the Infectious Diseases Society 
of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
DOI: 10.1093/infdis/jiw637

aC. C. N. and M. M. are co–first authors. G. S. and J. V. G. contributed equally to this study.
Correspondence: J.  Victor Garcia, PhD, Division of Infectious Diseases, Center for AIDS 

Research, University of North Carolina at Chapel Hill, School of Medicine, CB# 7042, Genetic 
Medicine Bldg, 120 Mason Farm Rd, Chapel Hill, North Carolina 27599- 7042 (victor_garcia@
med. unc.edu).



In Vivo Models of HIV Persistence • JID 2017:215 (Suppl 3) • S143

cells. Only specific strains of mice support human T-cell devel-
opment when transplanted with human CD34+ HSPCs. In 
these strains, human T cells develop in the mouse thymus. It 
is unclear how or if these human T cells are educated in the 
mouse thymus [13–15]. When humanized mice are engineered 
by implanting human thymus and liver tissue, a functional 
human thymus results, and developing T cells are educated 
on human thymic epithelial cells, allowing for restriction by 
human leukocyte antigens (HLAs) I and II [16, 17]. Bone mar-
row–liver–thymus (BLT) mice are unique in that they receive 
an autologous bone marrow transplant in addition to human 
thymic tissue where T-cell progenitors can be educated in the 
context of HLAs [18, 19].

STRENGTHS AND LIMITATIONS OF CURRENT 
HUMANIZED MOUSE MODELS

All currently available humanized mouse models are capable 
of replicating HIV, and replication takes place in human cells 
present in peripheral blood and tissues. Both innate and adap-
tive immune responses to HIV have been demonstrated in these 
models [12, 19–23], and HIV infection responds to the same 
drugs that are used when treating human patients [24–30]. 
As with any animal model used for biomedical research, there 
are limitations to their use in HIV studies. Some limitations 
are intrinsic to the size and biology of the animal, and these 
include the relatively small volume of blood plasma that can be 
obtained for viral load analysis, the limited amount of periph-
eral blood cells that can be used for in vitro functional analysis, 
and the relatively short lifespan of the animal. However, human-
ized mice can be considered a useful accelerated model for the 
rapid evaluation of interventional therapies. Other limitations 
include those related to the nature of the xenografts between 
humans and mice. The structure of the lymph node tissues in 
humanized mice is not identical to those in humans, and some 
animals develop a wasting disease [13, 31]. Such concerns have 
been largely addressed by using new immunodeficient strains of 
mice [32]. Despite the fact that most humanized mouse mod-
els have demonstrated highly effective adaptive T-cell immune 
responses, their B cell functions are not optimal and are cur-
rently being improved [12, 13, 33, 34]. Still, the current mod-
els have been used extensively to test the efficacy of multiple 
immune-based approaches to control viral replication and to 
eliminate HIV-infected cells in vivo [29, 35–37].

HIV PERSISTENCE IN SEVERE COMBINED 
IMMUNODEFICIENCY-HUMAN THYMUS/LIVER 
IMPLANTED MICE

McCune et al first described SCID-hu thy/liv mice as a model for 
the study of human hematolymphoid differentiation and function 
[38]. Namikawa et al then showed these mice to be susceptible to 
HIV-1 infection [38], and Brooks et al followed with the demon-
stration of HIV latency during thymopoiesis [39]. In the latter 

study it was shown that CD4/CD8 double-positive thymocytes are 
targets of HIV-1 infection and that latently-infected, single-positive 
CD4+ T cells result from transcriptional silencing of the HIV pro-
moter that occurs during T-cell development. Ex vivo induction 
experiments resulted in virus production, which led the authors to 
conclude that HIV latency could be established in thymocytes and 
that this could contribute to systemic viral persistence. Moreover, 
in this model, latently HIV-infected cells were shown to be reacti-
vated ex vivo with prostratin and interleukin 7 (IL-7) [40, 41] and 
were used to demonstrate the ability of immunotoxins to eliminate 
latently infected cells that had been reactivated [42].

HUMAN IMMUNODEFICIENCY VIRUS PERSISTENCE 
IN T CELL–ONLY MICE

Two limitations of the SCID-hu thy/liv model are that these mice 
possess very few human T cells outside the human thymic organ-
oid and that infection of the thymic organoid results in very low 
levels of plasma viremia. The introduction of a new strain of 
immunodeficient mouse has expanded the utility of the tissue 
implant model by allowing for increased levels of peripheral and 
systemic reconstitution with human T cells. Implantation of thy/
liv tissue into NOD/SCID Common Gamma Chain Knockout 
(NSG) mice results in the development of a thymic organoid 
that is similar to that in SCID-hu thy/live mice [43]. NSG thy/
liv mice, however, have significant levels of human T cells in all 
tissues analyzed, including peripheral blood, spleen, thymus, 
lymph nodes, bone marrow, liver, and lung. This model is dis-
tinguished from NSG mice transplanted with human CD34+ 
hematopoietic stem/progenitor cells by the complete absence of 
human antigen-presenting cells. NSG thy/liv mice lack human 
B cells, monocytes, macrophages, or dendritic cells, thereby 
receiving the functional designation of T cell–only mice (ToM). 
T cell–only mice are not only susceptible to HIV infection but 
also support high levels of viral replication and lifelong viremia 
if untreated. Consistent with the systemic distribution of human 
CD4+ T cells, HIV-infected cells can be found in all tissues exam-
ined. As in patients, ART suppresses viremia in these mice, and 
treatment interruption results in viral rebound [43]. In an exper-
iment to determine if HIV latency is established in this model, 
cells obtained from infected and suppressed mice were harvested 
from multiple tissues, and resting CD4+ T cells were isolated for 
ex vivo induction assays. Indeed, it was shown that ToM estab-
lish HIV latency with a similar frequency to that seen in patients 
[43]. ToM represent a significant advance over the original thy/
liv implant model that permits studies of T cells in the complete 
absence of human antigen-presenting cells.

HUMAN IMMUNODEFICIENCY VIRUS PERSISTENCE 
IN RAγ2/IL2RY DOUBLE KNOCKOUT MICE

Double knockout (DKO) mice are humanized by a transplant 
of human CD34+ HSPCs, and they efficiently replicate HIV fol-
lowing intravenous or vaginal exposure [28, 44–47]. It has been 
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demonstrated that ART regimens can suppress viral replication 
in these mice, and that when there is breakthrough, drug-resis-
tant viruses can be identified [48]. Furthermore, when ART is 
interrupted, rapid viral rebound and loss of peripheral CD4+ T 
cells result. Together, these data demonstrate that DKO mice 
recapitulate critical aspects of HIV infection.

Chaudhary et al have also investigated the establishment of 
HIV latency in these mice [49]. By isolating resting CD4+ T cells 
from tissues of both untreated and ART-suppressed infected 
mice and stimulating them in the culture, HIV production was 
consistently detected. Furthermore, their analysis showed that 
latency was established at a frequency between 2 and 12 infec-
tious units per million (IUPM) resting CD4+ T cells.

HUMAN IMMUNODEFICIENCY VIRUS PERSISTENCE 
IN BONE MARROW–LIVER–THYMUS MICE

In addition to implantation of human thymus and liver tissue, 
BLT mice receive a human bone marrow transplant of autolo-
gous hematopoietic stem cells [19]. Along with T-cell develop-
ment described in the thy/liv implant models previously, due to 
bone marrow engraftment, BLT mice develop virtually all other 
human hematopoietic cell types, including lymphocytes, NK 
cells, monocytes, macrophages, and dendritic cells. Moreover, 
human cells in BLT mice are distributed throughout all organs, 
including bone marrow, lymph nodes, spleen, thymus, liver, 
lung, digestive tract, and male and female reproductive tracts 
[19, 23, 26, 50, 51]. The distribution of human HIV target cells 
in mucosal sites renders BLT mice susceptible to rectal, vaginal, 
and oral HIV infection. Mucosal or parenteral exposure to HIV 
results in systemic infection [23–25, 27, 32, 51, 52]. Human 
immunodeficiency virus infection is readily detected in plasma 
using standard viral load assays. Systemic viremia is followed by 
T-cell activation and CD4+ T cell depletion, hallmarks of HIV 
infection in humans.

Pharmacokinetic studies of plasma drug levels in BLT mice 
[26, 37] have established ART drug combinations consisting of 
tenofovir, emtricitabine, and raltegravir that suppress virus in 
plasma to levels that are below detectable limits. As in humans, 
therapy interruption results in rebound viremia to levels that 
match those before treatment. Furthermore, the study of sup-
pressed BLT mice demonstrates the presence of latently infected 
cells at a frequency of approximately 8 infectious units per 
million resting CD4+ T cells [26]. When cell-associated viral 
RNA levels in the tissues of BLT mice are analyzed during ART 
treatment, there is a rapid initial decrease that plateaus 28 days 
after the initiation of ART. Moreover, administration of immu-
notoxin-conjugated antibodies targeting HIV env results in an 
additional decrease in tissue viral RNA levels and infected cells 
[37]. BLT humanized mice serve as an excellent platform to 
investigate HIV persistence in vivo with well-established and 
fully validated methodology for the accurate measurement of 
RNA and DNA reservoirs, as well as the quantitative analysis 
of latently infected resting CD4+ T cells. BLT mice are therefore 
poised to serve as a valuable model to evaluate novel approaches 
to eliminate HIV-infected cells in tissues and to test new eradi-
cation approaches.

IN VIVO EVALUATION OF HUMAN 
IMMUNODEFICIENCY VIRUS CURE STRATEGIES IN 
HUMANIZED MICE

A tremendous amount of work has been performed in human-
ized mice evaluating the utility of antibodies to combat HIV 
infection. Recently discovered antibodies have broad in vitro 
neutralization activity, but when evaluated in vivo in human-
ized mice for their ability to control infection, they were shown 
to provide only short and variable reduction in peripheral blood 
plasma viral loads [36]. It was shown that sustained viral repli-
cation in the face of anti-HIV antibodies was associated with 
mutations mapped to the respective antibody specificity [36]. 
When combinations of three different antibodies were used 
to treat infected humanized mice similar results followed, but 
it was subsequently found that a combination of 5 antibodies 
resulted in a dramatic drop in plasma viral load to undetectable 
limits. These results were obtained in all animals treated, and the 
suppression was maintained for up to 60 days [29]. Alternative 
approaches to deliver antibodies have also been evaluated in 
humanized mice. Using adeno-associated virus (AAV) vectors, 
sustained levels of antibody delivery have been demonstrated in 
vivo in mice [53–55]. It is of note that administration of single 
antibodies by AAV delivery in vivo results in more robust sup-
pression in humanized mice than does intermittent dosing [29].

Because latently infected cells do not express viral antigens, 
they are not expected to be recognized by the immune system 
or any engineered immunotherapy [56–58]. Engagement of 
the immune system or immune-based approaches to elimi-
nate infected cells requires the induction of expression of HIV 

Table 1. Comparison of Humanized Mice and Nonhuman Primates for the 
In Vivo Evaluation of Cure Strategies

Parameter huMice NHPs

Demonstrated HIV latency in T cells during ART Yes Yes

Tissue reservoirs similar to humans Yes Yes

Platform for testing treatment interruption and viral 
rebound

Yes Yes

Platform for testing novel HIV induction (kick) strategies Yes Yes

Platform for testing novel HIV kill strategies                              Yes          Yes

Anatomy similar to humans No Yes

Susceptibility to HIV infection Yes No

Susceptibility to SIV infection No Yes

T-cell responses to HIV Yes Yes

Modes of transmission routes similar to humans Yes Yes

Responsive to anti-HIV drugs used in humans Yes Yes /No

Responsive to anti-HIV antibodies Yes Yes

Abbreviations: ART, antiretroviral therapy; HIV, human immunodeficiency virus; huMice, 
humanized mice; NHP, nonhuman primates; SIV, simian immunodeficiency virus.
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antigens, a process known as latency reversal. Three latency 
reversing agents (LRAs) were evaluated in humanized mice 
for their ability to prevent or delay viral rebound: vorinostat, 
I-BET151, and CTLA-4 [35]. The LRAs were administered indi-
vidually or in combination to infected humanized mice that had 
been suppressed with a combination of antibodies (3BNC117, 
10–1074, and PG16). Individual inducers had no effect on viral 
rebound as 31 of 33 mice rebounded. On the other hand, 57% 
of animals that received a combination of all 3 inducers failed to 
rebound, suggesting a possible reduction in the HIV reservoir 
[35].

HUMAN IMMUNODEFICIENCY VIRUS REPLICATION 
IN MYELOID-ONLY MICE

Most latency and cure studies have focused on T cells as the major 
HIV reservoir in vivo. Macrophages have long been considered 
to be significant targets of HIV infection, but their contribution 
to persistence has not been fully established [59]. Studies on the 
role of macrophages during the course of HIV infection are con-
founded by the abundance of human T cells that can be engulfed 
by macrophages. Honeycutt et  al developed a novel humanized 
mouse model designated myeloid-only mice (MoM) in which the 
only targets of HIV infection are human myeloid cells [60]. With 
this model, it was demonstrated that, in the absence of human 
T cells, macrophages can sustain robust HIV infection. Human 
immunodeficiency virus replication in vivo in macrophages was 
confirmed by detection of viral RNA in the plasma and in all tissues 
analyzed, and HIV antigen was detected in tissue macrophages. In 
addition, electron microscopy showed HIV virion budding from 
bone marrow macrophages. Notably, HIV DNA and RNA were 
readily detected in the brains of infected MoM, and p24-expressing 
macrophages were detected throughout the brain. Moreover, it was 
demonstrated that infected macrophages isolated from MoM can 
establish de novo infection in uninfected animals [60].

NONHUMAN PRIMATE MODELS OF SIMIAN 
IMMUNODEFICIENCY VIRUS PERSISTENCE

Nonhuman primate models have been used extensively for 
studies of HIV/AIDS pathogenesis and vaccines, but have to 
date been relatively underutilized in the area of HIV cure. The 
model of simian immunodeficiency virus (SIV) infection of 
macaques is well-established, robust, and possesses many simi-
larities with HIV infection in terms of transmission, acute/early 
infection events, viral and CD4+ T-cell dynamics, establishment 
of reservoirs, and disease progression and is widely used as an 
excellent animal model for HIV infection [61]. Historically, 
a major limitation of the SIV/macaque model to study virus 
reservoirs has been the lack of optimized ART regimens con-
sistently suppressing virus replication below detectable limits. 
However, new ART combinations and formulations can now be 
used in SIV-infected rhesus macaques (RMs, Macaca mulatta), 

cynomolgus macaques (CMs, Macaca fascicularis), and pigtail 
macaques (PTMs, Macaca nemestrina). Several groups have 
demonstrated consistent suppression of plasma viremia with 
viral dynamics that replicate those of HIV-infected patients 
started on ART [62–65], thus allowing the NHP to be used as 
a translational animal model for HIV cure studies. In addition, 
our labs and others have worked at developing and adapting 
assays measuring the SIV reservoir, including polymerase chain 
reaction–based assays measuring total, or integrated, SIV DNA 
[66] and cell culture assays estimating the frequency of latently 
infected cells carrying replication-competent SIV [67, 68].

NONHUMAN PRIMATE MODELS TO CHARACTERIZE 
THE DYNAMICS OF ESTABLISHMENT AND 
MAINTENANCE OF HUMAN IMMUNODEFICIENCY 
VIRUS RESERVOIR

Early Seeding of Simian Immunodeficiency Virus Reservoir

One of the main barriers to HIV eradication is the rapid seed-
ing of the viral reservoir very early following infection. In 2014, 
a study provided definitive evidence of the early establishment 
of SIV reservoir using RM initiated on suppressive ART on 
days 3, 7, 10, or 14 after intrarectal SIVmac251 infection [65]. 
Although treatment on day 3 abrogated the induction of SIV-
specific humoral and cellular immune responses and prevented 
the emergence of viral RNA in the plasma and proviral DNA 
in the peripheral blood mononuclear cells, detectable levels of 
SIV DNA were found in the lymph nodes (LNs) and colorectal 
mucosa of these monkeys. Moreover, following ART cessation 
after 24 weeks of fully suppressive therapy, virus rebounded in all 
animals, although animals treated on day 3 exhibited a delayed 
viral rebound compared with the RMs treated at later time 
points. Consistent with human studies, this experiment suggests 
that, although early ART initiation can reduce the reservoir size, 
delay/reduce the viral rebound following ART interruption, or 
slow disease progression [69–73], ART alone, even initiated 
early after infection, is not sufficient to prevent the establishment 
of HIV latency or eliminate latently infected cells [74].

Role of CD8+ T Cells in Maintaining Virus Suppression on Antiretroviral 

Therapy

Several lines of evidence indicate that CD8+ T cells control virus 
replication during untreated HIV/SIV infection, including the 
postpeak decline of viremia when the antigen-specific CD8+ 
T cells expand [75, 76], the association between certain major 
histocompatability complex class I alleles and disease progres-
sion [77–83], or the increased viremia following experimentally 
induced CD8+ T-cell depletion in SIV-infected RMs [84, 85]. 
However, little is known on the role of CD8+ T cells during ART. 
We recently showed in 13 ART-treated, SIV-infected RMs that 
experimental depletion of CD8+ T cells resulted in increased 
virus levels in both plasma and lymphoid tissues in all animal 
studied and that repopulation of CD8+ T cells (but not CD8+ NK 



S146 • JID 2017:215 (Suppl 3) • Nixon et al

cells) was associated with reestablishment of virus control[86].
These results demonstrate a role for CD8+ T cells in controlling 
virus production during ART and confirm the importance of 
exploring immunotherapeutic approaches in ART-treated, 
HIV-infected individuals.

NONHUMAN PRIMATE MODELS TO CHARACTERIZE 
THE CELLULAR AND ANATOMICAL DISTRIBUTION 
OF HUMAN IMMUNODEFICIENCY VIRUS RESERVOIR

Siman Immunodeficiency Virus Persistence in Long-lived CD4+ T Memory 

Stem Cells

The best-characterized HIV-1 reservoir and main barrier to a 
cure consists of a small population of latently infected resting 
memory CD4+ T cells carrying integrated, transcriptionally 
silent, but replication-competent HIV. This latent reservoir 
involves several subsets of memory CD4+ T cells at distinct dif-
ferentiation stages with different half-lives and phenotypic and 
functional properties that contribute differentially to the HIV 
reservoir. On long-term ART, central memory (TCM) and tran-
sitional memory (TTM) CD4+ T cells have been shown to be the 
main contributors to the HIV reservoir. More recently, it has 
been shown that the CD4+ T memory stem cells (TSCM), T cells 
that are uniquely able to both self-renew and differentiate into 
all other memory T cell subsets [87–90], disproportionally con-
tribute to the total HIV reservoir in patients on long-term ART 
despite their small contribution to the overall CD4+ T-cell pool 
[91]. In the RM model of SIV infection, our group showed high 
levels of SIV DNA in the CD4+ TSCM of untreated monkeys [92]. 
Moreover, we showed that, although the frequency of infection 
of TTM and TEM declined approximately 100-fold following ART 
initiation in both blood and lymph nodes, it remained stable 
in the TSCM and TCM compartments [93]. The observed stable 
level of virus in CD4+ TSCM following ART initiation supports 
the hypothesis that these cells are a critical contributor to SIV 
persistence.

Critical Role of Germinal Center CD4+ T Follicular Helper Cells in Simian 

Immunodeficiency Virus Persistence

In untreated HIV and SIV pathogenic infections, CD4+ T fol-
licular helper cells (TFH) are the major site of viral infection 
and replication [94–96]. Several factors might contribute to 
this high frequency of infection of the TFH, including (1) a high 
permissiveness to infection [97, 98], (2) the presence of virions 
bound to the surface of the adjacent follicular dendritic cells 
[99–102], (3) low frequencies of virus-specific cytotoxic T lym-
phocytes in the B follicles [103–105], and (4) expansion/accu-
mulation of the TFH in the germinal centers during infection 
[96, 106]. In the RM model, the first description of TFH showed 
an accumulation of these cells in the LNs during chronic SIV 
infection, sustained by a constant flow of activated CD4+ T cells 
entering the B-cell follicles [107]. Consistent with other studies, 
our work on SIV-infected RMs has suggested that a decrease 

in follicular regulatory T cells (TFR) in chronic SIV infection 
might contribute to this accumulation of TFH in the LNs [108]. 
Interestingly, productive SIV infection of elite controller (EC) 
RMs have been shown to be restricted to CD4+ TFH [109]. On 
ART, normalization of TFH functions and numbers is incom-
plete, and high levels of SIV RNA have been shown to persist in 
the LNs of ART-suppressed, SIV-infected RMs [110]. Moreover, 
a recent study showed that PD-1+ TFH are the major source of 
replication-competent and infectious HIV-1 in treated avi-
remic individuals [111]. Additional to the factors listed herein, 
reduced penetration and suboptimal concentration of ART in 
the LNs have also been suggested as potential causes of HIV/
SIV persistence in the LNs [112].

Simian Immunodeficiency Virus Persistence in the Gastrointestinal Tract

The NHP models have played a critical role in the description of 
HIV pathogenesis in the gastrointestinal tract by demonstrating 
a massive loss of mucosal CD4+ T cells early in SIV infection, 
with specific depletion of intestinal Th17 and Th22 CD4+ T cells, 
damages to the gut barrier integrity, and development of micro-
bial translocation [113–117]. Antiretroviral therapy fails to fully 
restore intestinal immunity and integrity, and the gut mucosa 
represents a major site of HIV/SIV persistence on ART and a 
source of persistent chronic activation [118–121]. A recent study 
in RMs showed that SIV infection induced profound frequency 
changes and functional impairments of the colorectal Th17 and 
Th22 cells that ART failed to restore [122]. Additionally, the 
study showed that interleukin 17 (IL-17)– and interleukin 22 
(IL-22)–producing T cell numbers and function were predictive 
of residual immune activation and SIV persistence.

Simian Immunodeficiency Virus Persistence in the Central 

Nervous System

Significant rates of HIV-associated neurocognitive disorders per-
sist in ART-suppressed patients [123–125]. Given the difficulty in 
obtaining tissues from the human central nervous system (CNS), 
SIV infection of macaques provides a good model to study neu-
rological HIV infection and has demonstrated the persistence 
of SIV DNA in brain tissues and cerebrospinal fluid [126–130]. 
Additionally, data obtained in PTMs suggest that immune escape 
variants might be archived in the brain and reemerge after ART 
interruption [131]. The NHP models afford the best opportunity 
to further characterize SIV persistence in the CNS to design ther-
apeutic approaches specifically targeting the CNS reservoir.

IN VIVO EVALUATION OF HUMAN 
IMMUNODEFICIENCY VIRUS CURE STRATEGY IN 
NONHUMAN PRIMATES

Hematopoietic Stem Cell Transplant in Antiretroviral Therapy–Treated 

Siman Immunodeficiency Virus–Infected Rhesus Macaques

The single case of functional HIV cure reported to date is an HIV-
infected individual (the “Berlin patient”) who developed leuke-
mia and received myeloablative chemotherapy and an allogeneic 
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hematopoietic stem cell transplant (HSCT) from a Δ32ccr5 
homozygous donor [132, 133]. To better understand the factors 
that have contributed to this apparent cure, we conducted, in 
ART-suppressed, SIV-infected RMs, a controlled test of the con-
tribution of myeloablative total body irradiation and autologous 
HSCT to the viral reservoir clearance [134]. Myeloablative total 
body irradiation followed by infusion of autologous hemato-
poietic stem cells collected before infection was performed in 3 
RMs infected with a chimeric simian-human immunodeficiency 
virus (SHIV) and treated with suppressive ART for 5–8 weeks. 
The irradiation eliminated 94%–99% of the circulating CD4+ T 
cells, and a successful engraftment of the HSCT was observed 
in all animals. However, a rapid rebound of plasma viremia was 
observed in 2 of the 3 transplanted RMs following ART inter-
ruption, and the third animal was sacrificed at 2 weeks after ART 
interruption with undetectable viremia but detectable virus in 
lymphoid tissues. This study indicates that the massive reset of 
the hematopoietic compartment is not sufficient to eliminate the 
virus reservoir in the setting of short-term ART but provides a 
new platform to investigate HIV eradication strategies in RMs.

Reversing Simian Immunodeficiency Virus Latency

A key approach to cure HIV infection is to purge the reservoir 
through a “shock and kill” strategy, where HIV transcription 
is reactivated, allowing the immune system to clear the cells 
expressing reactivated virus. Recent clinical trials that focused 
on reactivating latent gene expression with histone deacetyl-
ase inhibitors (HDACi) such as Vorinostat, Panobinostat, and 
Romidepsin [135–139] or with disulfiram [140] demonstrated 
increased levels of plasma and/or cell-associated HIV RNA but 
failed to reduce the latent reservoir. The possibility to achieve 
sustained suppression of plasma viremia in ART-treated, SIV-
infected macaques allows the testing of different LRAs in this 
model. Results similar to those obtained in clinical trials were 
seen using Vorinostat or Romidepsin in ART-suppressed, SIV-
infected RMs, with increase in viral production but detectable 
levels of SIV RNA and DNA in blood and tissues on ART fol-
lowing Vorinostat treatment or absence of difference in plasma 
viral rebound following ART cessation in the Romidepsin-
treated animals compared with untreated controls [141, 142]. 
Combinatorial strategies will likely be required to effectively and 
comprehensively purge the HIV reservoir. These approaches 
could include HDACis, histone methylation inhibitors, protein 
kinase C agonists, bromodomain inhibitors, or toll-like recep-
tor agonists. Given the incomplete knowledge about cellular 
and anatomical distribution of the reservoir and toxicity of new 
LRAs, the use of NHP models will be critical to screen com-
pounds aimed at reactivating the latent reservoir.

Targeting Intestinal Mucosa Immunity

Due to the persistence of HIV/SIV infection and immune 
dysfunction in the gut mucosa under ART, therapeutic 

interventions aimed at restoring intestinal integrity and immu-
nity have been proposed as part of HIV cure research. To that 
extent, a combination of probiotics and prebiotics were admin-
istered to ART-treated, SIV-infected PTMs, which resulted in 
an improved reconstitution and functionality of CD4+ T cells in 
the colon and a reduced fibrosis [143]. Several immune-based 
interventions have also been evaluated. Administration of IL-7 
to ART-treated, SIV-infected RM has been shown to improve 
peripheral CD4+ T-cell restoration [144]. In a recent study in 
ART-treated, SIV-infected RMs, administration of IL-21 led to 
a better restoration of intestinal Th17 and Th22 cells and to a 
reduction of intestinal and systemic immune activation [63]. 
Interestingly, a sustained reduction in plasma viremia and in 
the frequency of CD4+ T cells harboring replication-competent 
SIV was observed in IL-21–treated animals. These results sug-
gest that IL-21 treatment may represent a promising immune-
based intervention in the HIV cure armamentarium.

Blocking Immune Inhibitory Pathway

Coinhibitory receptors, also called immune checkpoint mole-
cules, are overexpressed by T cells during HIV/SIV infection 
and are associated with immune exhaustion. Among these mol-
ecules, PD-1 has been of central interest, and its blockade has 
been shown to enhance cellular and humoral immune responses 
and reduce SIV production in RMs [145]. A  study in ART-
treated, SIV-infected RMs suggests that blockade of PD-1 can 
enhance T-cell responses and slow plasma viremia rebound fol-
lowing ART interruption [146]. The model of ART-suppressed 
NHPs will permit the exploration of other inhibitory pathway 
blockades targeting notably CTLA-4, LAG-3, TIM-3, or TIGIT.

SUMMARY

Although neither humanized mouse nor primate models per-
fectly mirror HIV disease in humans, there are a multitude of 
ways in which these 2 models complement each other and syn-
ergize to generate a robust and multifaceted research platform 
for in vivo research in HIV cure strategies. Currently, neither 
model allows for the in-depth type of analysis that is performed 
on human leukophoresis products due to their sheer volume. 
It is important to note the differences in sample size availabil-
ity between the 2 models. The NHP model certainly allows for 
larger samples to be obtained (ie, blood, plasma, and tissue 
biopsy) over a longer time course than is currently possible with 
humanized mice. However, humanized mice allow for more 
frequent sampling of entire animals with a full complement of 
individual tissues.

Perhaps the most apparent distinction between these models is 
the presence in humanized mice of the human primary cell targets 
of HIV infection. Specifically, although humanized mice do not 
recapitulate the entirety of the human being, they certainly pos-
sess human cells that represent the natural targets of HIV infec-
tion in vivo. Nonhuman primates do not possess human cells but 
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are a natural in vivo systemic model of viral immunodeficiency. It 
follows that all studies in NHPs must be performed with SIV and 
its derivatives (including HIV/SIV chimeras or SHIVs), whereas 
studies in humanized mice can be performed with highly rele-
vant HIV and its natural targets. Another significant distinction 
between humanized mice and NHPs is their different lifespan. 
The lifespan of humanized mice is shorter than that of NHPs. 
Although this allows for fast initial modelling in mice, it falls to 
the NHP models to generate data regarding long time-course 
experiments. It is also important to be cognizant of the fact that 
reagents designed for use in humans in most cases can be directly 
applied to humanized mouse models, whereas they might require 
modification for use in NHPs, even more so when targeting SIV. 
These therapeutic reagents include, but are not limited to, mono-
clonal antibodies, engineered bispecific antibodies, and other 
immunomodulatory protein constructs. Importantly, there is a 
significant push to implement cell- and gene therapy–based HIV 
cure strategies. These 2 models compliment each other and syner-
gize for in vivo testing of such approaches to treat HIV infection.

Finding a cure for HIV/AIDS is a daunting enterprise that 
will require the use of informative animal models in which novel 
advances can be evaluated for safety and efficacy. Nonhuman pri-
mate and humanized mice represent the 2 best in vivo platforms 
currently available to carry out this important work. The natural 
complementarity of both systems will benefit from careful coor-
dination and harmonization of approaches and reagents to obtain 
maximum progress and fast translation into clinical practice.
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