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Abstract

The Copas parametric model is aimed at exploring the potential impact of publication bias via 

sensitivity analysis, by making assumptions regarding the probability of publication of individual 

studies related to the standard error of their effect sizes. Reviewers often have prior assumptions 

about the extent of selection in the set of studies included in a meta-analysis. However, a Bayesian 

implementation of the Copas model has not been studied yet. We aim to present a Bayesian 

selection model for publication bias and to extend it to the case of network meta-analysis where 

each treatment is compared either to placebo or to a reference treatment creating a star-shaped 

network. We take advantage of the greater flexibility offered in the Bayesian context to incorporate 

in the model prior information on the extent and strength of selection. To derive prior distributions, 

we use both external data and an elicitation process of expert opinion.
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1 Introduction

Possibly the greatest threat to the validity of a systematic review is the presence of 

publication bias which, broadly speaking, is defined as the tendency in journals to publish 

studies showing significant results [1]. The use of registries for trials, change in editorial 

policies of the journals (i.e. publication of all high-quality studies regardless their 

conclusion) and a meticulous search for unpublished studies in a systematic review process 

are suggested safeguarding strategies against the effects of publication bias [2]. A plethora 
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of statistical methods to detect and adjust for publication bias once the review has been 

completed are also available. A common characteristic of all strategic and statistical 

approaches is however that they can be used to minimize the effects of publication bias but 

not eliminate it.

Available statistical methods range from simple inspection of the funnel plot to carrying out 

formal tests and fitting statistical model [2–4]. Meta-regression, an extension of meta-

analysis where the effect size is written as a linear function on a measure of its precision or 

variance is often applied to test for funnel plot asymmetry. A statistically significant 

regression slope indicates funnel plot asymmetry and suggests that there are differences 

between small and large studies which may or may not be caused by publication biases. 

Such regression models have also been used to adjust the pooled estimate for publication 

biases by focusing on the prediction the regression model gives for studies with (infinitely) 

small standard errors [3]. A non-parametric method that also attempts to adjust results for 

publication bias, while estimating the number of unpublished studies, is the trim-and fill 

method [5,6]. The basic idea of the method is the correction of the asymmetry of the funnel 

plot via the addition of studies and it is based on the assumption that asymmetry is solely 

attributed to publication bias. Both methods have been proven to give poor results as 

unexplained heterogeneity increases or the number of studies decreases but generally the 

regression-based methods outperform the trim-and-fill method [3]. Nevertheless, the trim-

and-fill method remains very popular; its popularity is probably due to the fact that, unlike 

regression methods, it directly relates to the intuitive interpretation of the publication bias as 

a case of ‘missing studies’.

An alternative approach to the publication bias problem, which addresses directly the issue 

of missing studies, is offered by selection models. The idea behind this class of models is 

that the observed sample of studies is considered to be a ‘biased’ sample which has been 

produced via a specific selection process. Different authors have considered different 

selection processes in their modelling. Specifically, two different classes of weight functions 

have been suggested. One class suggests that the likelihood a study is available/published 

(i.e. selected) is a function of the p-value obtained under the hypothesis that there is not a 

significant treatment effect [7–9]. Copas and colleagues introduced further sophistication by 

assuming the selection process (study publication) is a function of both p-value and effect 

size [10–12]. This work is based on Heckman’s two stage regression model which has been 

well documented in the area of econometrics [13]. The process of study selection is 

described by introducing a latent variable which is described as the ‘propensity of 

publication’ and is correlated with the study effect size. A regression model is assumed to 

model the propensity as a function of the study variance. Importantly, this model is weakly 

identified since we do not know the number of unpublished studies and consequently it is 

not clear how to model the ‘propensity for publication’. What is being adopted in practice is 

a sensitivity analysis and the probability of a study being published is computed under 

various possible scenarios. The model, first introduced by Copas [11] has been evaluated in 

several subsequent papers. It has been shown that the Copas selection model is superior to 

the trim-and-fill method [14]. However, it has been shown that the Copas selection model 

may not fully eliminate bias and that regression-based approaches might be preferable as 

they do not require a sensitivity analysis [15]
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Despite the promising performance and the elegance of the selection models, the approach 

has not received much attention in medical applications. This could be attributed to the fact 

that parameterization of the model involves quantities that are difficult to interpret clinically 

(the parameters of the propensity function), the fitting of the model requires specialized 

software clinicians are not familiar with (although software routines available in S-Plus [16] 

and R [17], [18] have become available) and the choice of the propensity score values to be 

used in the sensitivity analysis maybe difficult to make. In this paper we consider a fully 

Bayesian implementation of this selection model. By including prior beliefs about the 

probability of publication for a study in the analysis, the estimation of parameters in the 

Copas selection model becomes tractable; and this is one of the main advantages of the work 

presented here.

There has been an explosion of interest in network meta-analysis recently due to the ability 

of the approach to answer clinically relevant questions such as which treatment is superior 

when more than two options exist. This creates the need to develop publication bias tools 

that can be used in this extended meta-analytical framework. Perhaps the closest published 

consideration of this is an attempt to model publication bias in multi-arm trials in indirect 

comparisons[19].

Since, network meta-analysis is often implemented in a Bayesian framework using the 

WinBUGS software[20] it is desirable to develop a compatible modelling approach to 

address publication bias in this environment. The aim of this paper is to provide a Bayesian 

implementation of the Copas selection model using informative priors and extend the idea in 

the case of a meta-analysis that involves multiple interventions. We restrict ourselves to a 

specific but not uncommon network structure where all treatments are compared to a 

common comparator (often placebo or usual care) and all trials have two arms.

The paper is organized as follows. First, the Copas selection model is revisited from a 

Bayesian perspective and model variations are presented in Section 2.1. Extensions for 

multiple treatments where each treatment is compared to the same reference (placebo) 

creating a star-shaped network, are presented in Section 2.2. Alternative sources to inform 

prior distributions regarding the selection process are discussed in Section 2.3 (external, 

empirical evidence and expert opinion). Section 3 presents an application on a network that 

evaluates the effectiveness of 12 antidepressants compared to placebo and illustrates the 

various model alternatives [21].

2 Methods

2.1 Bayesian selection model for two treatment pairwise meta-analysis

The selection model assumes that there is a population of studies which have been 

conducted in the area of interest. Let us assume that there are N published studies (indexed 

with i) that report an estimated treatment effect denoted by yi and a standard error denoted 

by si. In the presence of publication bias these studies are a non-random sample of all studies 

that have been conducted on the topic of interest. In building the selection model Copas and 

Shi assumed that very large studies have a probability of being published very close to one, 

reflecting the fact that sponsors and investigators who conduct big studies will make sure 
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that the results will be disseminated and that journals tend to trust large studies for 

publication [12]. On the other hand, small studies have a small probability of publication. 

On the top of publication bias, selective reporting of the outcomes within studies might also 

operate and will result in biased meta-analysis results. As with publication bias, selective 

reporting is likely to be more severe in smaller rather than in larger studies; large studies are 

more likely to have a protocol or to be submitted to a high-profile journal in which reviewers 

ask more persistently for the major outcomes.

If the effect size yi is correlated with the probability of a study to be published (which is a 

function of the study size), then bias arises. Therefore, the model assumes that for a given 

sample size the probability of publication is a monotonic function of the effect size; if 

negative values of the effect size indicate a significant treatment effect then the probability 

of a study being published is a decreasing function of the effect size. In summary, the model 

suggests that the probability of publication is both a function of the treatment effect size yi 

and the study precision as reflected by si.

2.1.1 Model structure—In a random-effects meta-analysis model it is assumed that 

each observed effect size yi is drawn from a normal distribution with mean value θi, the 

mean relative treatment effect in the study, and variance . In conventional meta-analysis it 

is assumed that the number of participants in each study i is large enough for the sample 

variance  to be an accurate estimate of the true within-study variance 

(1)

Across studies the effects θi are related via a normal distribution with an overall mean effect 

size μ and heterogeneity variance τ2

(2)

In the presence of a selection process, we assume there is a latent continuous variable zi 

(propensity score) underlying each study so that when zi > 0 the study i is published and 

hence yi is observed. The propensity score depends on the size of the study (as expressed by 

the standard error si) and it is positively correlated with effect size yi so that studies with 

larger and more precise effects have more chances to be published.

This can be modelled by assuming that the two random variables yi and zi follow a truncated 

bivariate normal distribution

(3)

where IA is an indicator function which takes value 1 if expression A is true and 0 otherwise.
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The expected mean of zi is set as ui = f(si) where f(si) is a function of the standard error. 

Copas and Shi define . The parameter α controls the overall proportion of 

published studies with Φ(α) being the marginal probability of publishing a study with 

infinite standard error. The parameter β controls the dependence of the probability of 

publication on the standard error; β is expected to be positive to reflect the fact that the 

larger the standard error the less the probability the study is published. Section 2.1.2 

elaborates further on the interpretation of parameters α and β.

The observed effect sizes and the propensity score are correlated with correlation ρ = 

corr(yi,zi); this reflects the belief that the propensity for publication is associated with the 

observed effect size. Copas and Shi derived estimates for the expected value and the 

variance of yi when by numerically maximizing the likelihood function for given values of α 
and β. The derived expression for the variance takes into account that the publication 

process has an impact on the resulting within-study variances. These expressions play a key 

role in the Copas and Shi methodology[10]. However, we take a different approach by using 

informative priors for α and β and estimate all parameters using Markov Chain Monte Carlo 

(MCMC) methods.

Sampling from the joint distribution of yi and zi could be accomplished by rejection methods 

i.e. repeatedly sampling from the bivariate normal distribution and keeping those draws that 

meet the truncation constraints. Generally, for a multivariate normal random variable, all 

conditional and marginal distributions are normal. For a truncated bivariate normal 

distribution only the conditional (but not marginal) distributions are truncated normal [22]. 

Additionally, in this specific case where truncation refers only to zi, the marginal distribution 

of zi for zi > 0 is a truncated normal distribution (see Appendix). Consequently, the bivariate 

normal distribution (3) can be approximated by sampling from the marginal truncated 

distribution  and then sampling from yi conditional on zi as yi | zi ~ N(E(yi | 

zi), var(yi | zi)) where (E(yi | zi) = θi + ρsi (zi−ui) and .

2.1.2 Model interpretation—The probability that a specific study i with standard error 

si is published is equal to

(4)

This provides us with an interpretation of parameters α and β as those parameters that 

control the marginal probability that a study with standard error si is published. Parameter α 
controls the overall proportion of studies published and parameter β is a discrimination 

parameter, discriminating the probabilities of publication between studies with different 

standard errors. If β = 0 and α is a large number (such as α = 10) then the probability of any 

study being published is Φ(10) = 1 irrespective of its standard error meaning that that is that 

there is no publication bias. The larger the value of β, the more intensive the dependence of 

the selection process on the study sample size. It is expected that β will be positive so that 

very large studies (with si being very small) are most likely to be accepted for publication. 
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This is formally explored in section 2.3.1. Note that variations of the model described above 

may result from different specifications of the function f (si). Setting f (si) = α + βsi we can 

have a less ‘steep’ association between the standard error and the probability of publication. 

In this parameterization it is expected that in the presence of publication bias β will be 

negative. Copas and Shi suggested a likelihood ratio statistic to evaluate if the adjusted 

model gives a good fit to the funnel plot. The test actually tests the hypothesis H0 : β = 0 and 

in the special case of no heterogeneity it is equivalent to Egger’s test [23].

If large positive values of the effect size signify a better treatment effect, then positive values 

of ρ will result in positive and large values of zi and then, the meta-analysis of the available 

studies will be overestimating the true mean μ, which is indicative of publication bias. If ρ = 

0 then yi and zi are independent and yi has no effect on the study being published or not, 

therefore the only selection process will depend on the size of the study alone.

The importance of interpreting the selection models in terms of the estimated number of 

unpublished studies has been highlighted [5,6]. The inverse of Φ(ui) gives us the expected 

number of studies with standard error si that have been conducted. By summing up the 

expected number of studies for each observed standard error we get an estimate of the total 

number of studies, published and unpublished, conducted on the topic of interest

The model is fitted in a Bayesian framework using MCMC to obtain posterior distributions 

for all parameters of interest. This offers the advantage that uncertainty intervals can be 

obtained for all quantities of interest including the total number of studies TS. The posterior 

distribution of the correlation coefficient ρ with respect to the null and the change in 

treatment effect μ can be monitored to infer whether publication bias is present and how 

much it affects the results. If the posterior distribution for ρ lies away from zero there is a 

strong indication that the effect size of a study is correlated with its probability of being 

published.

2.2 Selection model with multiple treatments

Assume multiple treatments involved in the meta-analysis, each compared to a common 

comparator creating a star-shaped network of evidence of the form presented in Figure 1 

(which is described in Section 3). Let T denote the number of treatments in the analysis. 

Assume there are nj studies comparing treatment j to a common comparator with j = 1,…, T 

and  the total number of studies. Then, the model is a simple multi-treatment 

adaptation of the model presented above. We assume that the effect size of the i-study 

involving treatment j is denoted by  and it follows a normal distribution  with 

. The selection model is  where  and  are correlated 

as before with correlation ρj. Considerations need to be made regarding the selection model 

parameters (αj, βj, ρj), and the heterogeneity parameters τj.
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2.2.1 Selection model parameters for multiple treatments—There are as many 

pairs of selection model parameters (αj, βj) as treatment comparisons in the data set. Three 

approaches are considered in this paper to model the selection parameters:

• Common selection model: All treatment comparisons are assumed to have the 

same susceptibility to publication bias (αj, βj) = (a, β).

• Group-specific selection model: Treatment comparisons can be categorized in l 
groups of various degrees publication bias. Then, denoting with c(j) the group 

that treatment j belongs to the parameters follow prior distributions 

 and .

• Treatment-specific selection model: Each treatment has different susceptibility to 

publication bias  and .

Similar assumptions could be made for the correlation parameters ρj; here we assume equal 

parameters ρj = ρ ∀ j.

2.2.2 Heterogeneity for multiple treatments—If publication bias is present it would 

impact on the inferences regarding the overall treatment effects as well as on the 

heterogeneity. It has been demonstrated using a simple weight function that very strong 

assumptions are needed to revise heterogeneity estimates in the presence of publication bias 

and that tests for heterogeneity are also affected [24]. It has also been suggested that it is not 

realistic to disentangle the effects of heterogeneity and publication bias unless large meta-

analyses are considered [25].

Depending on the context, assumptions can be made regarding the heterogeneity across 

treatment comparisons; it may be assumed that it is different across comparisons or similar 

(i.e. τj = τ). The assumption of equal heterogeneity parameters is difficult to defend but the 

estimation of different τj is problematic when few studies contribute to a comparison. 

Alternatively we may assume that heterogeneities are exchangeable across the different 

treatments through a hierarchical random effect model, i.e. drawn from a common 

distribution

This model was described as the unstructured heterogeneity model by Lu and Ades [26]. 

Our default approach is the equal heterogeneities model, with priors discussed in section 

2.3.1.

2.3 Prior specification for model parameters

Since the model is fitted within a Bayesian context, all parameters are treated as random 

variables and are given prior distributions. Model parameters μ, τ, ρ, α, and β. A non-

informative normal distribution is assumed for μ (μ ~ N(0,1000)) and a uniform ρ ~ U(−1, 1) 

for the correlation which is also assumed to be minimally informative. Other choices were 
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also considered for prior information on the correlation parameter. As part of a sensitivity 

analysis we employed informative Beta priors (such as ρ ~ Beta(3,3)) and a uniform prior 

U(1,1) on the Fisher transformation of ρ. Both priors assign less weight on the boundaries 

and are appropriate when we have prior information regarding the direction of publication 

bias.

2.3.1 Deriving informative prior distributions for α and β—In order to derive the 

distribution for the observed effect sizes the values of a and β are required. These parameters 

connect to the probability of publication of studies with various precisions. In the model 

presented by Copas and Shi a and β are fixed values rather than parameters and the authors 

suggested to identify a range of (a,β) parameters which cover all reasonable 

probabilities[12] and explore the impact of the range of values in a sensitivity analysis. In 

the Bayesian paradigm, we treat a and β as random variables with statistical distributions 

and the uncertainty in them is propagated through into the adjusted pooled treatment 

estimate. To achieve this, one can set a lower and an upper bound to the probability of 

publication. These two probabilities, denoted as Plow and Plarge, can be interpreted as the 

probabilities of publication for the study with the largest and smallest standard error. Here 

we often identify Plow and Plarge as referring to the study with the smallest and largest 

sample size (assuming that the variance in the outcome would be comparable across 

studies). The reason the prior information is included via specification of Plow and Plarge is 

that we believe it is easier to provide prior knowledge on the distribution of the probabilities 

rather than on the selection parameters themselves which are difficult to interpret. Then (a,β) 

can calculated from the inequalities

The inequalities above hold for the standard errors we observe in the meta-analysis 

constrained by the assumption that the selection probability cannot decrease as the standard 

error decreases. This forces the upper bound to refer to the study with the smallest standard 

error smin and the lower bound to refer to the study with the largest standard error smax. So, 

there is an ‘one to one’ relationship between the pairs of variables (α, β) and (Plow, Plarge) 

and setting up the distributions of the two probabilities, we can derive the distributions of a 
and β as

In order to obtain prior distributions for Plow ~ U(L1, L2) and Plarge ~ U(U1, U2) external 

evidence might be available or expert opinion might be collected. Reviewers need to 

establish plausible values for the intervals (L1, L2) and (U1, U2) which refer to the 

probabilities for publication of a study with the largest and the lowest standard error 

respectively. Here we consider two possible sources of evidence that can be applied.

1. Registries of studies: In the meta-analysis of randomized controlled trials it is 

possible to get an estimation of the total number of unpublished studies by 
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looking at registries of protocols such as the FDA (US Food and Drug 

Administration) database, the websites of pharmaceutical companies etc. Then, 

an estimate of the number of published studies out of the total registered by 

sample size can provide priors for Plow and Plarge. Note that what is required 

from registries is only the number of studies that have been carried out and their 

sample size, not their results.

2. Expert opinion: Reviewers may ask experts in the field to provide estimates of 

the probability for a study of given sample size to be published and identified for 

inclusion in the review. This approach has the advantage that the completeness 

and type of the trial search can be taken into account in the formulation of priors. 

For example if the review has included studies identified by searching sites of 

pharmaceutical industries, the transparency policy of each company and the 

usefulness of their websites can and should be taken into account when forming 

prior beliefs about the completeness of the database at hand.

Any of the model parameters described in section 2.2.1 can be estimated from registry data 

or expert opinion. Expert opinion might be a more viable option for treatment-specific 

selection parameters as one would need much detailed external information to be available 

from registries. In cases where both sources of information are available (registry data and 

expert opinion), priors can be built using their combination. However, if the two sources 

disagree and provide different priors combination will be problematic and can lead into 

unrealistic priors.

2.3.2 Approximately non-informative prior distributions for the heterogeneity 
parameter—Various non-informative priors have been suggested to model heterogeneity. 

The half-normal distribution is a popular choice for variance parameters in a hierarchical 

model. However, for heavy-tailed data, the half-normal distribution may give a poor 

approximation and other models such as a half-t distribution could be considered. The 

impact of assuming different priors in the context of meta-analysis has been examined by 

Lambert et. al. who investigated 13 different priors and revealed that the impact of the prior 

distribution is significant for meta-analyses with only five studies or when heterogeneity is 

close to the boundary at zero[27]. Gelman also explored prior specification for variance 

parameters and concluded that Inverse-Gamma priors, though conditionally conjugate, 

behave poorly if they are vague (having very small shape and scale values) and when true 

heterogeneity is low [28]; he suggested using uniform, half-t or half-Cauchy prior. As 

publication bias can manifest itself as heterogeneity, we will explore the impact of various 

prior specifications in the results of the selection model, including τ ~ N(0,100)Iτ>0, τ ~ 

U(0,30), τ2 ~ IG(0.1,0.1) and τ2 ~ IG(0.01,0.01). Our default model assumes τ ~ N(0,100) 

Iτ>0.

1 Implementation of the model

The model was fitted in OpenBUGS (an open source version of WinBUGS) using Markov 

Chain Monte Carlo methods [20]. A particular challenge in using this software environment 

for the model fitting is that there is no closed-form expression for the inverse of the 
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cumulative distribution of a standard normal distribution. Therefore we programmed a 

closed form approximation [29]

All results pertain to 100 000 sample iterations taken after 10 000 burn-in iterations. The 

model OpenBUGS code and data are available in http://www.mtm.uoi.gr (under ‘Material 

from Publications’).

3 Application

3.1 Description of the data

Turner and colleagues compared the published results regarding the randomized controlled 

trials for 12 antidepressants compared to placebo to the corresponding results from trials 

submitted to the FDA and found evidence of bias towards results favouring the active 

intervention (Figure 1)[21]. Briefly, there are 73 studies with results as reported to the FDA 

(74 originally but two of them were subsequently combined) used for the licensing of 

antidepressants drugs between 1987 and 2004. The outcome was improvement in depression 

symptoms and was measured using the standardized mean difference (SMD). The authors 

found that 50 out of the 73 studies were subsequently published with their reported results 

sometimes being different to those reported in FDA database. From the 38 FDA studies with 

statistically significant results only one was not published; whereas from the 36 FDA with 

non-statistically significant results only three were published and another 11 were published 

with results conflicting those presented in the FDA report [30]. The dataset has also been 

used previously in evaluating regression-based methods of adjusting for publication bias 

[31].

The data set of the 50 published studies is our ‘analysis data set’. To form priors for Plow and 

Plarge we need information regarding the proportion of ‘large’ (for Plarge) and ‘small’ (for 

Plow) published studies out of the total carried out. One source of information is the FDA 

registry; to form the priors only the number of registered studies and their sample size are 

required as described in section 2.3.1. The FDA dataset contains more than the minimum 

information necessary to form priors; the study outcomes as extracted by Turner et al are 

also available. Therefore, the meta-analysis from the 73 registered studies can be used as a 

‘reference standard’ to comment on the performance of the selection model when external 

data or expert opinion is used to derive priors.

3.2 Selection model for head-to-head meta-analysis: Active antidepressant versus 
Placebo

We first applied the model considering all antidepressants as a single active treatment whose 

effectiveness is evaluated against placebo. To estimate Plow and Plarge we use only external 

data, namely the FDA database. We split the studies into four intervals of approximately 

equal width according to the standard error. Studies with large standard errors are used to 

estimate the lowest probability of publication, Plow, whereas studies with small standard 

Mavridis et al. Page 10

Stat Med. Author manuscript; available in PMC 2017 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.mtm.uoi.gr


errors are used to estimate the largest probability of publication, Plarge. The fourth group 

defines the ‘small’ studies group with standard errors larger than 0.29 and is used to estimate 

Plow whereas the first group defines the ‘large’ studies group with standard errors less than 

0.15 and is used to estimate Plarge. Then the average Plow and Plarge were estimated as the 

proportion of studies that were included in both published and FDA dataset (0.4 and 0.8 

respectively). To account for uncertainty we considered a 5% variability from the average 

probability values thus Plow ~ U(0.35,0.45) and Plarge ~ U(0.75,0.85).

Table 1 shows the posterior mean values for α and β for each selection model, the meta-

analysis estimates from the FDA data (‘reference’ standard), the published studies and the 

two selection models. For selection model 1, the mean effect is closer to the FDA reference 

effect size. The posterior values of the correlation coefficient ρ suggest that there is a 

positive and possibly strong correlation between effect sizes and the probability of 

publication. Note that the trim-and-fill method yields an overall treatment effect 0.35 (0.31, 

0.39) and an estimated number of 18 unpublished studies. The estimate μ using meta-

regression on the variance is 0.29 (0.23, 0.35). The wide interval for the regression-based 

method reflects the uncertainty caused by the fact that the extrapolated effect size 

corresponds to a standard error that is far away from the observed ones.

Figure 2 shows the scatter plot of yi − θi (where θi is the underlying study-specific effect 

size adjusted for publication bias) versus the standard error (left panel) for selection model 

1. It seems that bias tends to increase with standard error and that most biases are positive 

suggesting the effect sizes have been overestimated. The second plot (right panel) suggests 

that smaller studies with larger standard errors tend to yield larger effect sizes and significant 

results. Vertical lines are used to indicate the overall treatment effects using the FDA dataset, 

the published set of studies, a regression-based adjustment and the selection model.

Figure 3 depicts the prior and posterior distributions for parameters α, β and ρ estimated 

from selection model 1 with Plow ~ U(0.35,0.45) and Plarge ~ U(0.75,0.85). Although 

informative priors are given to α and β, the parameters are partly informed from the data. 

The flat prior of the correlation parameter ρ is updated considerably. Its posterior 

distribution lies away from zero implying that the published effect sizes are positively 

correlated with the propensity for publication. Using a more informative prior like Beta or 

uniform on the Fisher transformation resulted to the same posterior mean ρ with more 

narrow credible intervals.

Variations of selection model 1 for different values of Plow and Plarge do not seem to impact 

a lot on the estimated summary effects. When the prior probabilities for publication drop the 

summary estimates decrease whereas the uncertainty and the number of total studies 

increase (Appendix Table 1). We further explored the impact of various prior distributions 

for the heterogeneity parameter in both selection models 1 and 2 (Appendix Table 2). 

Posterior heterogeneity and total number of studies vary for different model assumptions. 

The estimated heterogeneity parameter becomes substantially larger when an inverse-gamma 

prior distribution is assumed. However, there is no autocorrelation between MCMC draws 

when an inverse-gamma prior is assumed. Also, in line with Gelman’s remark we could not 

assign very small values for the parameters of the inverse-gamma (i.e. τ2 ~ IG(0.001,0.001) 
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that would ensure non-informativeness as this yielded a posterior density we cannot sample 

from [28].

3.3 Sensitivity analysis for network meta-analysis

One can differentiate between the effectiveness of the interventions (via network meta-

analysis) and their susceptibility to publication bias (as outlined in section 2.2.1). In the 

common selection model the effectiveness parameters are assumed to be treatments-specific 

(μj) but the selection parameters are fixed across treatments (αj,βj) = (α,β) with α,β 
estimated from the FDA data (Plow ~ U(0.35,0.45) and Plarge ~ U(0.75,0.85)). For group-

specific and treatment specific selection models we employed expert opinion to derive the 

probability priors for each category and treatment.

In the group-specific selection model we identified l=3 groups of drugs with different 

degrees of publication bias. A psychiatrist with experience in antidepressant trials and 

systematic reviews on major depression (AC) categorized the 12 treatments into three groups 

(c1, c2, c3) according to similarities in the policy of the manufacturing companies and 

transparency (Table 2). For each of the three groups the expert was then asked to fill in the 

probabilities of publication estimating percentages for two different scenarios, studies with 

an overall sample size of 400 or 100 participants. This rating was carried out without 

considering results from Turner et al. 2008 [21]. The two probabilities refer to, broadly 

speaking, Plarge and Plow and a variation of 0.05 was employed to derive the intervals.

In the treatment-specific model nine experienced psychiatrists were given the sample sizes 

(as extracted from our data for each treatment) and were asked to fill in columns 3 and 5 in 

Table 3 with the corresponding probabilities that a study comparing the specific 

antidepressant to placebo is published. Table 3 shows the average probabilities for each 

drug. As only one study for bupropion was available, the sample sizes from the FDA data 

were used (3 studies).

Table 4 shows the estimated effect sizes for each treatment estimated from each selection 

model assuming there is a common heterogeneity parameter across treatments. It is clear 

that all treatment effects with the exception of fluoxetine are overestimated in the published 

data compared to those computed from FDA. This is particularly evident for the studies in 

the ‘high risk of bias’ group. The effectiveness of fluoxetine is reduced beyond the estimate 

from the FDA data; this can be explained by the fact that all studies involving fluoxetine are 

published but the expert’s opinion in Tables 2 and 3 considered that studies involving 

fluoxetine are possibly missing. Similarly, Paroxetine is placed in the ‘low risk of bias’ 

group (Table 2) but only 10 out of the 16 studies registered with the FDA are published. This 

results to an adjusted effect for Paroxetine that is less than the estimated from the FDA 

dataset when a group-specific selection model is assumed (Table 4 column 5).

The studies registered with FDA appear to be more heterogeneous than the published studies 

(τ is 0.061 and 0.041 respectively) although their 95% credible intervals overlap. The group-

specific selection model gives a larger number of missing studies. The correlation coefficient 

ρ suggests similar positive values for all three approaches confirming that the propensity for 

publication is positively correlated with the effect size. Bupropion does not seem to have a 
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significant effect probably because there is only one published study comparing bupropion 

to placebo and there is not enough power to detect a significant treatment effect.

Table 5 shows the estimated effect sizes for each treatment for each selection model 

assuming heterogeneities are exchangeable across treatments through a hierarchical model 

as described in section 2.2.2. The estimates are similar to those shown in Table 4 but the 

95% Credible Intervals are wider as they reflect the fact that heterogeneities are modelled 

separately for each treatment which also increases the uncertainty in ρ. Consequently, 

bupropion, fluoxetine, paroxetine CR, sertraline, venlafaxine are no longer associated with 

statistically significant effects as there are very few studies comparing these antidepressants.. 

The 95% credible intervals for ρ do not include zero indicating that the effect sizes are 

positively correlated with the propensity for publication. The overall mean heterogeneity is 

much larger than the one observed when a common heterogeneity is assumed (Table 4).

4 Discussion

In this paper we presented a flexible Bayesian implementation of the Copas selection model 

to account for publication bias in meta-analysis. A selection model addresses publication 

bias in an intuitive and elegant way as it directly relates probabilities of publication for a 

study with the study’s effect size and precision. To provide bias adjusted estimates, the 

Copas selection model requires prior assumptions to be made and therefore should be 

viewed as a form of sensitivity analysis. However, when fitted within a Bayesian framework 

as in our approach, the range of values to consider in the sensitivity analysis is summarized 

in the prior distribution. The model we presented can be applied when there are suspicions 

that the available dataset is a selected sample, in which case prior assumptions for the 

probability of publication for ‘small’ and ‘large’ studies need to be made. This information 

can be taken from registries of trials. The number of registered trials and their sample size, 

information easily retrieved, suffices to construct priors. Alternatively, expert opinion can be 

obtained, as described in our methods. Another important advantage of the Bayesian 

implementation of the model is that it can be easily combined with network meta-analysis 

models, giving great flexibility to incorporate various assumptions for the susceptibility of 

bias in different treatment comparisons.

A main challenge in the proposed methodology lies in the evaluation of the alternative 

selection models. The Deviance Information Criterion (DIC) is often used as a model 

selection criterion in a Bayesian setting; the more parsimonious model is indicated by lower 

DIC value. However, DIC values are not directly comparable between models that contain 

different number of data points or missing data [32]. An alternative could be to use the 

estimated total number of studies as criterion; the model that approximates at best the 

number of studies included in a trial registry can be viewed as the most suitable. Such a 

criterion is very appealing intuitively. However, it is often questionable whether the trial 

registries are themselves a complete body of studies and whether they can be used as a 

reference for model selection. In our data there were 23 unpublished studies but there could 

be studies not registered with the FDA. Moreover, differences between meta-analyses of 

published and unpublished studies are not solely attributed to publication bias but also to 
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distortion of the study results; in our data 11 studies were published with results 

contradicting those registered with the FDA.

The total number of estimated studies is expected to be larger than the published number of 

studies as the former is based on the assumptions made about Plow and Plarge. Therefore, 

even if all studies were observed, the selection model would imply that there would be still 

unpublished studies but it would not find a relationship between effect size and its standard 

error. A posterior distribution of ρ that gives little likelihood to zero is an indication of the 

presence of publication bias. When fitting a selection model to the FDA dataset with the 

Plow and Plarge as in Table 1 we get an estimated number of published and unpublished 

studies equal to 147 with a 95% CrI (144,153) and ρ=0.474 (−0.059,0.905). The fact that the 

credible interval for ρ is wide reflects the uncertainty on how effect sizes are correlated with 

their probability of being published and the fact that zero is included in the credible interval 

suggests there might not be any correlation between effect sizes and the propensity for 

publication.

In our application, priors from the FDA and expert’s opinion contradict for some 

interventions. This could be attributed to several reasons including the small number of 

studies per treatment, the fact that studies were collected in a wide time-span (from 1987 to 

2004) and to the fact that sample size is not the only factor affecting the quality of the study 

and its probability of getting published. It should also be noted that the elicitation of expert 

opinion took place after the study by Turner et al was published [21]. As the psychiatrists 

involved in the prior elicitation were aware of the conclusions of this study their judgment 

might have been influenced by it. Still, disagreement between the FDA prior distributions 

and the expert opinion was present for fluoxetine suggesting the formulation of the priors 

was not purely a translation of the findings of the Turner study.

Recently simple regression models based on a measure of study precision have been 

proposed to adjust for publication bias by extrapolating to a study of size that is assumed 

free of publication biases[3]. Such models are simpler than the selection model proposed 

here, containing only one extra parameter over the standard meta-analysis model but the 

underlying selection model assumed is not explicit. It would be interesting to compare the 

performance of the two approaches. Further, there is some evidence that selection in the 

antidepressants dataset is predominantly driven by p-value (e.g. by inspecting the contour 

enhanced funnel plots in Moreno et al[33]) hence it would also be interesting to compare the 

performance of simpler, p-value only based selection models on this dataset.

The selection model adopted here connects the probability of publication for a study to its 

standard error by assuming a regression model. Similarly, the propensity for publication 

could be linked to other regressors such as study characteristics that relate to the risk of bias 

(blinding, allocation concealment etc.) that may influence the summary treatment effect via 

publication or other routes. Lower quality studies tend to be smaller and it is often assumed 

that sample size can be viewed as a single proxy to several characteristics which impact via 

publication mechanism and can explain heterogeneity in the effect sizes. Sensitivity analysis 

models for publication bias that account for complex selection processes associated with 

various trial and journal attributes have been previously presented [34,35]. Extensions to 
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Bayesian framework of these models will provide an important additional tool in the 

evaluation of the robustness of the meta-analysis conclusions.

An important limitation of the presented framework is that it applies to the case of a star-

shaped network; extensions of the model are needed for the case of a full network. The 

direction of the selection process was clear in our database and tends to suppress studies that 

do not favour the active treatment. This will not be the case in a full network where 

assumptions about the direction of bias in head-to-head trials need to be built. Moreover, the 

model should account for different selection processes between head-to-head and multi-arm 

trials. In the present star network, statistical evaluation of the assumption of consistency was 

not possible. Detection of inconsistency as the disagreement between direct and indirect 

estimates is possible only in ‘closed loops’. Application of the selection model in a full 

network will enable exploration of the association between selection in some or all 

comparisons in the network and inconsistency.

Finally, the assessment of model fit in a Bayesian framework requires further work. Prior 

specification is of critical importance and the impact of prior distributions for selection 

parameters and heterogeneity τ should be investigated. A simulation study and a large scale 

empirical evaluation might be useful in revealing the properties of the method to identify 

publication bias when it exists or in its absence. Using realistic scenarios (such as those 

described in the empirical study by Schwarzer et al [14] and Carpenter et al [18]) and a large 

range of priors, information on bias and coverage probabilities of intervals shall shed further 

light on the usefulness and sensitivity of the Bayesian version of the Copas selection model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Star network of evidence for the twelve antidepressants
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Figure 2. 
Panel A plots the bias yi − θi versus standard error si where θi is the underlying study-

specific effect size adjusted for publication bias. Panel B plots the (observed) effect size yi 

versus the standard error si. The solid line is the treatment effect estimated from the 73 

studies registered with the FDA, The dashed line on the left is the treatment effect estimate 

by regressing effect size on its variance weighted by the standard error, the dashed line on 

the right is the treatment estimate by using Copas selection model with  and the 

dashed-dotted line is the unadjusted estimated treatment effect by the 50 published studies
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Figure 3. 
Prior (dashed lines) and posterior distributions (solid lines) for parameters α, β and ρ under 

the selection model  when the 50 published studies are considered
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Table 1

Estimates (SMD) and 95% Confidence Intervals for treatment effect μ, heterogeneity τ and total number of 

studies NS for the FDA data, the published data and the two selection models for the published data with 

priors for selection parameters derived from the FDA data.

f(si) ρ μ τ NS

FDA 0.309 (0.271,0.352) 0.052 (0.002,0.122) 73

Published data 0.409 (0.365,0.463) 0.042 (0.002,0.106) 50

Selection model 1 −0.693 + 0.161/si 0.806 (0.521,0.985) 0.348 (0.305,0.393) 0.054 (≅ 0,0.118) 86 (83,92)

Selection model 2 1.483 − 5.342 × si 0.786 (0.440,0.989) 0.365 (0.322,0.409) 0.054 (≅ 0,0.113) 76 (73,81)
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Table 2

Expert’s categorization, probabilities of publication by sample size for each bias group

Group according to expected publication bias Antidepressant
Plow Plarge

n=100 n=400

Low risk of bias cl buproprion, escitalopram, paroxetine, paroxetine CR 80% 95%

Medium risk of bias c2 citalopram, fluoxetine, sertraline, venlafaxine and venlafaxine XR 70% 85%

High risk of bias c3 duloxetine, mirtazapine and nefazodone 50% 70%
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Table 3

Expert’s prior probabilities of publication for studies of given sample size by drug and estimated selection 

parameters

Drug name n Plow n Plarge

Bupropion 250 83% 350 97%

Citalopram 100 64% 350 94%

Duloxetine 100 48% 300 87%

Escitalopram 250 81% 400 94%

Fluoxetine 40 38% 350 93%

Mirtazapine 80 41% 150 72%

Nefazodone 90 43% 200 73%

Paroxetine 20 49% 350 98%

Paroxetine CR 200 86% 400 98%

Sertraline 90 69% 350 97%

Venlafaxine 90 67% 300 96%

Venlafaxine XR 200 79% 250 93%
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Table 4

Estimated effect sizes (SMDs), heterogeneity τ and number of trials NS and correlation ρ for the FDA dataset, 

the published set of studies and the three selection models. It is assumed that the heterogeneity is the same 

across treatments. Credible intervals are given in parentheses.

FDA Published Common selection Group-specific selection Treatment-specific selection

Bupropion μ 0.18 (0.03,0.35) 0.27 (0.02,0.52) 0.21 (-0.06,0.43) 0.21 (-0.04,0.45) 0.22 (-0.01,0.45)

Citalopram μ 0.24 (0.09,0.39) 0.31 (0.18,0.46) 0.25 (0.10,0.38) 0.25 (0.11,0.37) 0.26 (0.14,0.38)

Duloxetine μ 0.30 (0.19,0.4) 0.40 (0.30,0.51) 0.35 (0.26,0.45) 0.34 (0.24,0.44) 0.36 (0.27,0.45)

Escitalopram μ 0.31 (0.18,0.44) 0.35 (0.22,0.49) 0.33 (0.21,0.44) 0.35 (0.21,0.47) 0.34 (0.22,0.46)

Fluoxetine μ 0.27 (0.11,0.41) 0.27 (0.13,0.40) 0.19 (0.05,0.33) 0.18 (0.05,0.31) 0.20 (0.07,0.33)

Mirtazapine μ 0.35 (0.21,0.35) 0.56 (0.36,0.81) 0.42 (0.27,0.58) 0.44 (0.29,0.61) 0.42 (0.29,0.55)

Nefazodone μ 0.26 (0.12,0.4) 0.46 (0.29,0.68) 0.34 (0.20,0.48) 0.35 (0.19,0.53) 0.34 (0.20,0.47)

Paroxetine μ 0.42 (0.30,0.53) 0.60 (0.46,0.73) 0.43 (0.29,0.56) 0.34 (0.19,0.52) 0.46 (0.35,0.58)

Paroxetine CR μ 0.31 (0.13,0.51) 0.35 (0.19,0.51) 0.32 (0.16,0.45) 0.33 (0.17,0.50) 0.33 (0.18,0.48)

Sertaline μ 0.25 (0.10,0.40) 0.42 (0.25,0.61) 0.37 (0.18,0.52) 0.37 (0.21,0.53) 0.39 (0.23,0.55)

Venlafaxine μ 0.40 (0.26,0.54) 0.49 (0.36,0.63) 0.41 (0.29,0.55) 0.42 (0.29,0.54) 0.44 (0.30,0.55)

Venlafaxine XR μ 0.39 (0.21,0.58) 0.51 (0.31,0.72) 0.44 (0.26,0.61) 0.44 (0.25,0.62) 0.44 (0.28,0.59)

τ 0.061 (0.013,0.12) 0.041 (≅ 0,0.083) 0.042 (0.01,0.102) 0.045 (≅ 0,0.108) 0.036 (≅ 0,0.102)

TS 73 50 92 (85,100) 130 (109,168) 82 (80,86)

ρ 0.78 (0.41,0.96) 0.73 (0.37,0.94) 0.78 (0.41,0.96)
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Table 5

Estimated effect sizes (SMDs), average heterogeneity γ , number of trials NS and correlation ρ for the FDA 

dataset, the published set of studies and the three selection models. It is assumed that the heterogeneity is the 

same across treatments. The hierarchical model with dependent priors is assumed. Credible intervals are given 

in parentheses.

FDA Published Common selection Group-specific selection Treatment-specific selection

Bupropion SR μ 0.18 (-0.27,0.64) 0.25 (-2.05,2.53) 0.22 (-2.17,2.62) 0.21 (-2.12,2.60) 0.19 (-2.10,2.39)

Citalopram μ 0.23 (-0.01,0.48) 0.32 (0.06,0.61) 0.25 (0.05,0.47) 0.25 (0.05,0.44) 0.27 (0.05,0.47)

Duloxetine μ 0.30 (0.17,0.42) 0.41 (0.25,0.55) 0.35 (0.23,0.48) 0.34 (0.21,0.47) 0.36 (0.23,0.49)

Escitalopram μ 0.31 (0.01,0.60) 0.35 (≈ 0,0.73) 0.33 (0.02,0.63) 0.35 (≈ 0,0.72) 0.35 (≈ 0,0.68)

Fluoxetine μ 0.26 (-0.08,0.60) 0.32 (-0.01,0.70) 0.23 (-0.07,0.58) 0.20 (-0.07,0.49) 0.23 (-0.04,0.55)

Mirtazapine μ 0.35 (0.14,0.57) 0.58 (0.34,0.82) 0.43 (0.22,0.66) 0.44 (0.24,0.65) 0.41 (0.23,0.62)

Nefazodone μ 0.26 (0.05,0.46) 0.45 (0.12,0.78) 0.35 (0.09,0.63) 0.35 (0.10,0.60) 0.35 (0.12,0.59)

Paroxetine μ 0.43 (0.29,0.58) 0.59 (0.42,0.76) 0.43 (0.26,0.64) 0.31 (0.14,0.53) 0.46 (0.31,0.62)

Paroxetine CR μ 0.32 (-0.64,1.28) 0.37 (-0.61,1.38) 0.30 (-0.70,1.23) 0.33 (-0.61,1.31) 0.33 (-0.55,1.21)

Sertaline μ 0.25 (0.04,0.45) 0.42 (-0.56,1.44) 0.36 (-0.64,1.33) 0.37 (-0.50,1.31) 0.39 (-0.50,1.31)

Venlafaxine μ 0.40 (0.18,0.63) 0.51 (0.26,0.78) 0.44 (0.18,0.71) 0.42 (0.19,0.66) 0.44 (0.23,0.69)

Venlafaxine XR μ 0.41 (-0.20,1.02) 0.51 (-0.46,1.50) 0.43 (-0.58,1.32) 0.44 (-0.60,1.44) 0.42 (-0.56,1.35)

TS 73 50 92 (88,95) 130 (109,167) 83 (80,85)

γ 0.121 (≅ 0,0.42) 0.134 (≅ 0,0.46) 0.138 (≅ 0,0.48) 0.137 (≅ 0,0.50) 0.133 (≅ 0,0.46)

ρ 0.80 (0.37,0.99) 0.81 (0.37,0.99) 0.83 (0.37,0.99)
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