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Abstract

Background—The assumption of consistency, defined as agreement between direct and indirect
sources of evidence, underlies the increasingly popular method of network meta-analysis. No
evidence exists so far regarding the extent of inconsistency and the factors that control its
statistical detection in full networks of interventions.

Methods—In this paper the prevalence of inconsistency is evaluated using 40 published networks
of interventions involving 303 loops of evidence. Inconsistency is evaluated in each loop by
contrasting direct and indirect estimates and by employing an omnibus test of consistency for the
entire network. We explore whether different effect measures for dichotomous outcomes are
associated with differences in inconsistency and evaluate whether different ways to estimate
heterogeneity impact on the magnitude and detection of inconsistency.

Results—Inconsistency was detected in between 2% and 9% of the tested loops, depending on
the effect measure and heterogeneity estimation method. Loops that included comparisons
informed by a single study were more likely to show inconsistency. About one eighth of the
networks were found to be inconsistent. The proportions of inconsistent loops do not materially
change when different effect measures are employed. Important heterogeneity or overestimation of
the heterogeneity was associated with a small decrease in the prevalence of statistical
inconsistency.

Conclusions—The study suggests that changing effect measure might improve statistical
consistency and that a sensitivity analysis to the assumptions and estimator of heterogeneity might
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be needed before concluding about the absence of statistical inconsistency, particularly in
networks with few studies.

Keywords

mixed-treatment comparison; multiple treatments meta-analysis; loops; heterogeneity; odds ratio;
coherence

1. Introduction

To inform health-care decision making the comparison of many relevant interventions is
required. A commonly encountered problem in evaluating the efficacy of multiple
interventions is the lack of trials (or very few available) that directly compare the treatments
of interest. In such cases indirect evidence can be used via a common comparator. Bucher et
alt were early proponents of the use of indirect evidence in meta-analysis when head-to-
head evidence is not available. The application of indirect comparison rests on the
assumption of transitivity, requiring that the pairwise comparisons are similar in factors
which could affect the relative treatment effects.

An extension of conventional meta-analysis is network meta-analysis. Network meta-
analysis is used to combine the results of clinical trials that undertake different comparisons
of treatments2->. The method involves the simultaneous analysis of both direct comparisons
within trials and indirect comparisons across trials. When combining the results of direct and
indirect comparisons, the extent to which they are consistent (in agreement) with each other
should be examined. Network meta-analysis is most justifiable under an assumption of
consistency between different sources of evidence. The evaluation of evidence inconsistency
is therefore an important aspect in network meta-analysis. In a network of treatments,
different pairwise comparisons can form “evidence cycles’, also called ‘loops’, within which
inconsistency can be evaluated®.

Empirical studies have examined the prevalence of inconsistency between direct and indirect
comparisons. Song et al.”8 carried out an empirical study applying the Bucher method and
assuming different heterogeneity parameters in every comparison within each loop. They
evaluated inconsistency in 112 loops of evidence formed by studies comparing pairs of three
treatments and concluded that inconsistency was detected in 14% of the networks®. In a
response to comments on their article, Song et a/.? alternatively assumed that all
comparisons within each triangular loop share the same amount of heterogeneity and they
observed that inconsistency was reduced to 12%. However, no empirical evidence exists
regarding the prevalence of inconsistency in more complex networks, primarily because no
omnibus test was available until recently to evaluate the assumption of consistency in a
network as a whole. A general model to detect inconsistency has been proposed, and called
design-by-treatment interaction model?. Inconsistency can be viewed not only as the
disagreement between direct and indirect estimates in a loop, but also as the disagreement
between studies involving different sets of treatments.

In a network of trials the detection of inconsistency can be hampered by the presence of
heterogeneity. A large heterogeneity variance in the treatment effects leads to greater
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uncertainty in estimates of the mean effect sizes, and statistical inconsistency is less likely to
be detected. The estimation of the heterogeneity variance can vary under different methods
(e.g. DerSimonian and Laird, restricted maximum likelihood11), which subsequently affects
the ability to detect inconsistency. Assumptions about the heterogeneity being the same in
different parts of the network or the same in the entire network may similarly impact on the
detection of inconsistency. However, as factors that cause heterogeneity can also cause
inconsistency, complete separation of the two is not always possible. In summary, large
heterogeneity increases the chances of inconsistency being present, but decreases the
chances of detecting it.

Both the presence and the detection of inconsistency may be affected by the use of different
effect measures. Empirical studies have shown that ratio measures (odds ratios and risk
ratios) are less heterogeneous than absolute effect measures (such the risk difference) and
that the risk ratio for adverse outcomes is less likely to be heterogeneous than that for
beneficial outcomes!2:13, These differences depend on the extent of variation in baseline risk
across studies. If baseline risks are substantially different in different parts of a loop, then the
underlying inconsistency may be greater for some effect measures than others; if baseline
risks vary substantially within each comparison, then more or less heterogeneity may be
present, depending on the effect measure, with the same consequences as discussed in the
previous paragraph. Caldwell ef a/. have also considered the choice of different effect
measures in network meta-analysis and concluded that the choice of measure should be
based on physiological understanding of the outcome and, if possible, after considering the
model fit4,

The aim of this paper is to evaluate empirically the prevalence of inconsistency in published
networks of interventions that compare at least four treatments, and to examine the extent to
which this is acknowledged by the authors of the meta-analyses. We further aim to
investigate the statistical considerations that might influence the statistical detection of
inconsistency in these complex networks of evidence. We also explore whether different
effect measures for dichotomous outcome data are associated with differences in
inconsistency, and whether different ways to estimate heterogeneity impact upon the
magnitude and detection of inconsistency.

2. Methods

To assess inconsistency in a network we use two methods. The first method evaluates
inconsistency in all closed loops of evidence formed by three or four treatments within each
network, by contrasting direct with indirect estimates of a specific treatment effect. Bucher
et al. described the method in an early paper! and we will refer to it, and its extensions
employed in this paper, as the ‘loop-specific approach’. The second method evaluates
whether a network as a whole demonstrates inconsistency by employing an extension of
multivariate meta-regression that allows for different treatment effects in studies with
different designs (the ‘design-by-treatment interaction approach’)10. To exemplify the idea
of the design-by-treatment interaction approach, consider a network of evidence constructed
from an ABC three-arm trial and an ABCD four-arm trial. Both ABC and ABCD trials are
inherently consistent. However, the two studies are considered to have different designs and
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design inconsistency reflects the possibility that they might give different estimates for the
same comparisons they make (AB, ACand BO).

We chose the loop-based approach as it is simple and can be easily applied without
specialised software in a frequentist setting, and is so far the most commonly applied
approach. Moreover, the results obtained from this method can be compared directly with
findings from other empirical studies®. We chose the design-by-treatment interaction
approach as it is the only approach of which we are aware that does not require arbitrary
assumptions on inclusion of trials with more than two treatment arms. It provides a
generalization to the method earlier proposed by Lu and Ades®. Both the loop-specific and
the design-by-treatment interaction approaches are employed under various effect measures
for dichotomous outcome data and various estimators for the heterogeneity variance.

2.1 Loop-specific approach

Inconsistency can be evaluated as the disagreement between different sources of evidence
within a closed loop. In each network of treatments we identified all triangular loops (closed
paths involving three different treatments) as well as all quadrilateral loops (closed paths
involving four different treatments).

We first estimate treatment effects of all pairwise comparisons in each loop using standard
meta-analysis. Consider for example the triangular loop ABC formed by treatments A, B, C
with available comparisons AB, ACand BC. Let y; 45 be the observed effect size (e.g. log-
odds ratio) of treatment B relative to treatment A in study / with an estimated variance

v; ag. Under the random-effects model the observed treatment effect y; 45 is modeled as

Yiap=Hap +5i,AB +Eian

where f4pis the mean of the distribution of the underlying effects of Brelative to A, &; ap
is a random effect for study 7and &; 45 is the within-study sampling error. Similarly, for the
other two comparisons in the loop:

Yiac “Hac +6z:,Ac +E, a0
Yipe “Hpe +5zﬂ,B(7 +E€, po

To estimate all direct relative effects within the triangular loop ABC we performed a
random-effects meta-analysis for each available comparison. Under the random-effects
model it is assumed that

5i,ABNN (07 Tf[}) ’ 51?ACNN (O’ TfO) ’ 0

€ap~N (0¥ Ey‘,,ACNN 0,

i,AB | i,AC )

2

where rfB, 7. and Tﬁc are the heterogeneity variances in the Bvs.A, Cvs.Aand C vs.B

comparisons, respectively. The variances v; 45 Vvjacand v;gcare assumed known and
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uncorrelated with the effect sizes. We discuss assumptions about the heterogeneity variances
in section 2.4.

Within each available loop, we evaluated whether the consistency assumption®

Hpc=Hac =~ Hap

holds. Since in a single loop there may be only one inconsistency, the inconsistency estimate
(/F) for the loop ABC s defined as®1°

fFABC:ﬂRG - ('aAC 7'aAB)
with 52 = Var (ﬂBO) + Var (,&Ac) + Var (ﬂAB) ,

IF ype

Under the null hypothesis that there is no inconsistency (Hp: /Fagc = 0) the approximate test
can be obtained as

We define a loop as statistically inconsistent when 124 > 1.9616.

A similar process is followed for all quadrilateral loops formed by four different head-to-
head comparisons. However, if the quadrilateral loop is formed by two or more triangles,
then only the triangles are evaluated. Since a multi-arm study is inherently consistent in an
evidence loop, it causes complications and we therefore exclude the comparison that is most
frequent within the loop. This can impact on the summary treatment effects and
subsequently on the evaluation of inconsistency for a network with many multi-arm studies.

The loop-specific approach was carried out in software R 2.13.2 17 using the jifplot.fun
function, which is available online (in http://www.mtm.uoi.gr/ under ‘How to do an MTM”).

2.2 Design-by-treatment interaction approach

Loop inconsistency refers to a difference between direct and indirect estimates for the same
comparison. However, the presence of multi-arm trials in a network of evidence complicates
the evaluation of loop inconsistency, since loops formed within multi-arm trials are
necessarily consistent. Consider for example a network comprising some AB studies, some
AC studies and some three-arm ABC studies. Note that only two of the three possible
treatment effects are sufficient to fully specify the results of the three-arm studies. If the two
effects include the BC comparison, then loop inconsistency might be observed by
contrasting it with an indirect estimate constructed from the other two groups of studies. On
the other hand, if the two effects from the three-arm studies are AB and AC, then an
evaluation of inconsistency would not take place. To overcome these problems, a different
type of inconsistency has been proposed, known as design inconsistency. This refers to the
differences in the estimated effect sizes for the same comparison from studies that involve

Int J Epidemiol. Author manuscript; available in PMC 2017 May 01.


http://www.mtm.uoi.gr/

s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Veroniki et al.

Page 6

different sets of treatments. The design-by-treatment interaction model is an extension of the
previous approach assessing not only ‘loop inconsistency’ but also “‘design inconsistency’.

Consider a network consisting of treatments in the set 7={A, B, C, D, ...} including
different studies that compare subsets of 7 named “‘designs’ and denoted by des=1, ...,
Des. Let Tyeq, With Ty € 7, define the set of treatments in design des. The dataset includes
in total NV studies, where each design des is present in ny. studies indexed /=1, ... , Mges

The network meta-analysis model is defined as a multivariate random-effects meta-analysis.
Assume A is an arbitrarily chosen reference treatment and 7 is some treatment in the set
Toes={B, C, D...}. The observed effect size y.s ; 470f treatment 7 relative to treatment A
of study /with design des is modelled under the consistency assumption as

Yaesiar =M ar +5des,i,AT TE fesiar 1)

The inconsistency model is an extension of model (1) and is defined as a multivariate
random-effects meta-regression with additional covariates for the different designs:

Yiesiar—Har +6des.i./lT +Ichs,AT TE o i AT (2)

where /Fyes 47 represents inconsistency in comparison A7 for design des, which may
correspond with either design or loop inconsistency. As described in detail elsewhere8.19
not all possible /7,5 47 Covariates are required, since otherwise the model is
overparameterised. For designs that do not include the reference treatment, a data
augmentation technique is applied!?. This is basically imputing data for arm A that contains
a very small amount of information, such as 0.01 successes out of 0.1 individuals. The study
random errors are normally distributed eg4e5 ,~MQ0,S)), where S;is the within study variance-
covariance matrix.

5des,iNN (0, 2)

where X is the between studies variance-covariance matrix involving the heterogeneity
variance for each treatment comparison. We discuss the structure of X in section 2.4.

If a design-by-treatment interaction model has /independent inconsistency parameters, then

under the null hypothesis 77,: 77, = . . . = TF;=0, the joint statistical significance of the /
inconsistency parameters is tested by the xf-test

)

W=~}
j=1

~2
gj

We estimated inconsistency by fitting model (2) in STATA using the mvmeta command0,
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The design-by-treatment interaction approach estimates inconsistency in the entire network,
whereas the loop-specific approach evaluates each loop separately. It is therefore impossible
to infer about the level of agreement between the two methods. We arbitrarily considered a
network to be inconsistent under the loop-specific approach if at least 5% of its loops are
inconsistent in order to describe how the two methods perform.

2.3 Effect measures

We restrict our investigation of inconsistency to dichotomous outcomes. We consider four
effect measures; the odds ratio (OR), the risk difference (RD), the risk ratio of beneficial
outcomes (RRB) and the risk ratio for harmful outcomes (RRH). It has been shown that the
choice of the effect measure can impact on the heterogeneity variancel213, which
subsequently might impact on the estimation of inconsistency.

2.4 Estimation of the heterogeneity

Let us define as rf(y the heterogeneity in the Yvs.X comparison. We made assumptions
about these heterogeneity variances, and we address first the loop-specific approach.
Consider the network defined by two triangular loops, ABC and BCD, informed by AB, AC,
BC, BDand CD comparisons. Heterogeneity might be present in each comparison, and the
amount of heterogeneity is estimated either by considering the loop to which the comparison
belongs (common within-loop heterogeneity) or by considering the entire network (common

within-network heterogeneity). Under the common within-loop heterogeneity (7'1200],)
approach all comparisons in a particular loop have the same amount of heterogeneity; ABC
loop: 72 =72 =T =Tioy 1 BCDI0OP: T2 =T2 =T2 =Tir,p 2 AsSUMiNg a common
within-loop heterogeneity allows comparisons that have been addressed by only one study to
‘borrow strength’ from the rest of the comparisons included in the loop. When all

comparisons involved in a loop are informed by a single study, we set rfoop equal to zero.

Note that in our analyses, Tfoap may be different for the same comparison when it is involved
in different loops.

In the design-by-treatment interaction model, we assume that all comparisons in the network
share the same heterogeneity variance (common within-network heterogeneity), i.e.

2 2 2 2 2

— — P— — — —_— 2 i i
T =T o =T =T =Top= """ =T SUpPOse the total number of treatments included in a

network is p, the variance-covariance matrix for the random effects is therefore given by

1. 1)2

Z(p—l)x(p—1):Tth .o
12 ... 1

In general, when the number of studies included in a meta-analysis is large, the
heterogeneity parameter is more precisely estimated20. Therefore, it is likely that 72,08

more precise than %?Oap. Assuming a common heterogeneity variance impacts also on the
precision of the summary effects, and consequently on power for detecting inconsistency.
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For example, it is possible that the heterogeneity in a specific loop ABC is smaller than the
heterogeneity in the rest of the network. Assuming the same heterogeneity in the network
will then decrease precision for the summary estimates of the ABC loop and may therefore
decrease the power to detect inconsistency. Similarly, assuming common within-network
heterogeneity introduces heterogeneity in loops involving comparisons informed by a single
study, decreasing the chance of identifying the presence of inconsistency. Although the
assumption of the common within-network heterogeneity can underestimate the prevalence
of substantial inconsistency, it allows a more accurate representation of how the effects are
being combined in a network meta-analysis.

The heterogeneity variance (2) can be estimated by a variety of methods?. The
performance of the different estimators can differ in terms of bias and mean squared error
(MSE), and they can over- or under-estimate the true heterogeneity variance. As
heterogeneity may affect the estimation of inconsistency, we evaluate inconsistency under
different estimators of 2. We apply the different estimation methods under the OR measure.
In the loop-based approach we used the DerSimonian and Laird (DL)21:22, restricted
maximum likelihood (REML)21:23 and Sidik-Jonkman (SJ)2* methods. We include the DL
method because it is frequently used in random-effects meta-analysis and is the default
estimator in STATA metan command?® and RevMan26. The DL estimator performs well for
small values of 2, but underestimates the true heterogeneity variance when 72 is large or the
number of studies is relatively small producing a large negative bias?4:27:28, The popular
REML method is less biased than the DL method (except for small values of 72 that the
methods are comparable)11:29 | but underestimates 72 when data are sparse2%:39, The less
popular SJ estimator has been shown to overestimate 72 when the true heterogeneity
variance is relatively small3!. The SJ method is one of the best methods when the true
heterogeneity variance is large producing small bias and substantially smaller than the DL
estimator1:24, Between the three estimators the DL method is less variable in terms of the
MSE in meta-analysis with small to moderate heterogeneity!1.

In the design-by-treatment interaction model only DL, maximum likelihood (ML)?132 and
REML21.23 estimators of T are available. We apply the ML and REML methods, since the
DL method is not appropriate when the augmentation technique is applied®. The ML
method underestimates 2 when the number of studies is small to moderate producing a
relatively large amount of negative bias!1:23, It has been shown that the REML method is
less biased with larger MSE than the ML method11:29,

2.5 Other methods to evaluate inconsistency

Several other methodologies to evaluate consistency have been outlined in the literature (for
a review see NICE DSU Technical Support Document 433). The methods can be broadly
categorised into methods that contrast direct and indirect evidence for a particular
comparison within a network (as the loop-specific approach outlined above) and methods
that evaluate inconsistency in a network as a whole (such as the design-by-treatment model).
Methods in the former category are useful to locate sources of inconsistency whereas
methods in the latter category provide global tests.
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One of the drawbacks of the loop-based method is that inferences in loops are not
independent, because different loops of the network share the same studies. To overcome
this, Caldwell er a/34 introduced a chi-squared test for the special case that all loops in the
network share a single comparison. However, this can be applied only to specific parts of the
network, and again yields multiple tests if all pieces of the network need to be tested.
Another drawback of the loop-based approach is that indirect evidence is restricted to the
information provided from a single loop. It is preferable to compare the direct evidence with
the indirect estimate from the entire network, as is the approach taken in the node-splitting
method proposed by Dias er a/3%. The node-splitting approach is computationally intensive
and to our knowledge has not yet been automated, making it impractical for large networks.
All three methods outlined above are sensitive to the parameterization of multi-arm studies,
and do not offer obvious ways to infer about network consistency. Among all the methods,
the loop-based approach is, despite its shortcomings, to date the most popular approach to
evaluate inconsistency.

When network meta-analyses are fit within a Bayesian framework, investigators often
contrast models with and without the consistency constraints with respect to fit and
parsimony3®. This provides a global test for the plausibility of consistency in the entire
network, but inferences are again sensitive to the parameterization of multi-arm studies. The
design-by-treatment interaction model is the only method that provides an omnibus test, can
be fit in a frequentist setting and provides results insensitive to the parameterisation of multi-
arm studies819, Models that do not account for design inconsistency (such as those
presented in Lu and Ades3’ and Lumley38) are special cases of the design-by-treatment
interaction model.

2.6 Searching for network meta-analyses and data extraction

We searched in PubMed for research articles including networks with at least four
treatments and dichotomous primary outcomes. We searched for articles published between
March 1997 and February 2011 in which any form of indirect comparison was applied,
according to their titles or abstracts. The search code we used was ‘(network OR mixed
treatment* OR multiple treatment* OR mixed comparison* OR indirect comparison* OR
umbrella OR simultaneous comparison*) AND (meta-analysis)’.

We extracted data regarding the year of publication, the methods applied for the indirect
comparison, the number of studies and the number of arms the studies included, as well as
the total number of interventions involved in each network. From each network we extracted
the trial data for the primary outcome (as stated in the text or, if this was unclear, defined as
the first outcome presented). We preferred data presented in 2 x 2 tables rather than as effect
sizes and precisions, when both formats were reported. The extracted trial data include the
name of each trial, as well as the number of events, the sample size and the treatment in
every arm of each trial included in the network.
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3 Results
3.1 Database

Eight hundred and seventeen relevant articles were initially identified and after the screening
process we ended up with 40 networks. The full process is shown in the flow chart of Figure
1. The authors evaluated the assumption of inconsistency using appropriate statistical
methodology in 15 (38%) networks. Out of these 15 networks, inconsistency for at least one
comparison in the analysis was reported in 10 (67%). The most prevalent method (18%) of
evaluating inconsistency was the loop-based approach. A large proportion of investigators
(23%) seemed to be aware of the consistency assumption but used inappropriate methods to
evaluate it, such as comparisons of direct and network estimates (Appendix Table 1).

Twenty-five (63%) networks used OR, 13 (33%) used /R, one (2%) used all of the three
OR, RRand RD, and one (2%) used a hazard ratio. In only seven publications (18%) did the
authors explain why they chose the employed effect measure. The median number of studies
per network is 23, ranging from 9 to 111. The number of treatments compared ranged from
4 to 17 with a median of 6. Thirty-three networks included three-arm trials and nine
included four-arm trials. The number of included three-arm trials per network ranged from 0
to 12, whereas the number of included four-arm trials ranged from 0 to 6. The total number
of loops obtained from the 40 networks is 303 and ranged from 1 to 70 per network. The
characteristics of these networks are described in detail Appendix Table 2.

3.2 Loop-specific approach

3.2.1 Inconsistency under the four effect measures for binary data—Out of the
total of 303 loops, 23 were found to be inconsistent (8%) when analysed as OR, 26 (9%) as

RRH, 29 (10%) as RRB and 29 (10%) as RD, for common within-loop heterogeneity (%%oop)
estimated using the DL method. Table 1 provides these results along with results under the

assumption of common within-network heterogeneity (72, ) which we discuss later. When

we changed from one effect size to another under %ﬁwp, some consistent loops became
inconsistent and vice versa. Such changes were mostly observed between OR vs. RD and
OR vs. RRB. Eleven (4%) consistent loops under OR changed to inconsistent under /D,
whereas 5 (2%) loops that deviate from consistency under OR changed to consistent when
RDis employed (see Table 1). The percentage of inconsistent loops was comparable across
the four effect measures (McNemar test under the within-loop heterogeneity; OR vs. RRH: P
=0.505, OR vs. RRB: P=0.239, OR vs. RD. P=0.211). In Appendix Table 3 we provide
the inconsistency estimates under the four scales for all loops, along with their standard
errors and z-scores.

Our database includes 203 loops with at least one comparison being informed by a single
study. Inconsistency was more likely to be found in such loops. For example, in the network
of Elliot39 we identified two inconsistent loops under the OR scale, which share the same
comparison including only one study. It is possible that in such cases inconsistency is
introduced by this particular study. Of the 203 loops 19 (9%) were found to be inconsistent
under OR, whereas from the 100 remaining loops with comparisons including two or more

Int J Epidemiol. Author manuscript; available in PMC 2017 May 01.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Veroniki et al.

Page 11

studies only 4 (4%) were inconsistent (£ = 0.154). The respective percentages of
inconsistent loops for the other effect measures were 18 (9%) versus 8 (8%) (£ =0.972)
under RRH, 21 (10%) versus 8 (8%) (£=0.657) under KRB and 20 (10%) versus 9 (9%) (P
=0.977) under RD.

A similar picture was observed when a common within-network heterogeneity parameter

(#2,,) was assumed, although the overall inconsistency rate dropped. Out of the 303 loops,
we detected 16 (5%) inconsistent loops under OR, 19 (6%) under RRH, 18 (6%) under RRB
and 16 (5%) under RD (see Table 1). In Appendix Table 4 we provide the inconsistency
estimates under the four effect measures for all loops along with their standard errors and z-
scores. Again, there were no important differences in inconsistency between the four effect
measures (McNemar test under the within-network heterogeneity; OR vs. RRH. P=0.371,
ORvs. RRB. P=0.789, OR vs. RD. P=1).

Comparing the Tl200p and 72, approaches we concluded that there are important differences
in the number of inconsistent loops between the two methods, especially when OR, RRB or
RD are applied (McNemar test under the common within-loop heterogeneity versus the
common within-network heterogeneity; OR: P=0.023, RRH: P=0.096, RRB: P=0.010,
RD: P=0.004). In Appendix Table 5 we provide the number of /F£with a 95%ClI

incompatible with zero under the four effect measures when we assume either Tfoop or 72, .

In Figure 2 the Pvalues for the loop-specific approach are presented under the common
within-loop and the common within-network heterogeneity for the three pairs of effect
measures; OR vs. RD, OR vs. RRH and OR vs. RRB. The two-sided Pvalues are displayed
on the fourth root scale?®41, Among all six panels, agreement seems to be higher between
ORand RRH as seen by less scatter around the equality line and a smaller number of
discordant points. This is likely to be due to most outcomes being rare rather than common,
so that ORis closer to RRHthan to RRB. Heterogeneity estimates are in better agreement
between OR and RRH (under the within-network heterogeneity:

mean (|T§RH - T2R|/T2R> =52%, mean (|T§RB - TgR|/T§R) =63%,

mean (lTﬁD - Tfm\/T?)R) =90%; under the within-loop heterogeneity:

mean <|T§RH - TiRVT(Q)R) =51%, mean (|Tfm3 - T(Q)R|/T(2)R> =79%,

2 2 2 R . .. .
mean (lTRD - TOR\/TOR> =97%). In general, no substantial differences in inconsistency

were observed between the effect measures.

3.2.2 Inconsistency under different estimators for the heterogeneity parameter
—In Table 2 we present the number of inconsistent loops under the three heterogeneity

estimators for Tﬁmp, as well as under the REML method for 72, ., using the OR effect
measure. We observed that both DL and REML methods led to a greater number of
inconsistent loops than the SJ method. This is because under certain circumstances the first
two methods underestimate 72 whereas SJ overestimates the true heterogeneity variance. As
noted earlier, we observed that inconsistency was more frequent in loops that include

comparisons informed by only one study (Table 2). Under the assumption of a common
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within-loop heterogeneity, 19 (9%) out of the 203 loops with at least one comparison
informed by a single study were found to be inconsistent under DL, whereas only 4 (4%)
were inconsistent of the remaining 100 loops (P=0.154). The respective percentages under
the REML and SJ estimators are 18 (9%) versus 3 (3%) (£=0.099) and 12 (6%) versus 2
(2%) (P=0.217). However, assuming a common within-network heterogeneity the respective
inconsistent loops were 4 (2%) versus 12 (12%) (P=0.001) under REML. The evaluation of

inconsistency assuming 72, and REML in comparisons described by a single study

decreases the inconsistency rate by 7% compared to leoop. This is because the amount of
within-network heterogeneity in most inconsistent loops, and particularly those that include

at least one comparison informed by a single study, is larger than leoop.

There was no evidence that inconsistency differs statistically among the three estimators
when assuming a common within-loop heterogeneity (comparison of inconsistent loops with
at least two studies per comparison: DL vs. REML: P=1, DLvs.SJ: P=0.679, SJ vs. REML.:
P=1; comparison of inconsistent loops with at least one comparison informed by a single
study: DL vs. REML: P=1, DLvs.SJ: P=0.262, SJ vs. REML: P=0.343). However,
inconsistency differs substantially between the common within-loop and the common
within-network approach under the REML method (comparison of inconsistent loops with at
least two studies per comparison: £=0.035; comparison of inconsistent loops with at least
one comparison informed by a single study: £=0.003).

In Figure 3 we compare the estimated heterogeneity variance on the log scale under the DL,
REML and SJ methods, showing that the SJ method is associated with larger values of
heterogeneity variance, leading to fewer inconsistent loops than the other two methods.

Among the three estimation methods, SJ is less likely to estimate leoop equal to zero
(comparison of inconsistent loops when the within-loop heterogeneity is estimated equal to
zero; DL vs. REML: P=0.586, DL vs. SJ: P=0.062, REML vs. SJ: £=0.011) (see Table 2).

For each loop, we compared the /£ and its Pvalue with the estimated heterogeneity variance

for each loop (%?Oap) under the three estimators (see Appendix Figure 1). We observe that,
irrespective of the estimation method used, the magnitude of inconsistency increases slightly
as the estimated heterogeneity variance increases. Conversely, lower values of the
heterogeneity variance are associated with a greater chance of identifying /£ with a 95%ClI
incompatible with zero, though the correlation coefficients between the Pvalue or /Fand the

heterogeneity variance are very small (correlation coefficients for 7z versus »2: rp; = 0.14

rremr = 0.15, rs;=0.29; correlation coefficients for Pvalue of 7z versus ~2: rp, = 0.13,
reemt = 0.13, rgy=0.04).

The median /£ under the common within-loop heterogeneity (77,,,) and the DL estimator

was 0.34 with an interquartile range (0.15, 0.79). A histogram of the estimated /£ is given in
Figure 4.
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3.3 Design-by-treatment interaction approach

On applying the design-by-treatment interaction approach, the ML Wald tests for analyses of
ORYyielded 8 inconsistent networks out of the 40 networks (20%), whereas 11 (28%) of the
networks were found to display inconsistency when analysed using each of the three effect
measures RRH, RRB and RD (all pairwise comparisons between OR vs. RRH, RRBor RD
for inconsistent networks under the ML estimator using the McNemar test produced P=
0.371). The REML Wald test indicated 5 (13%), 6 (15%), 7 (17%) and 5 (13%) inconsistent
networks under OR, RRH, RRB and RD, respectively (all pairwise comparisons between
OR vs. RRH or RD for inconsistent networks under the REML estimator using the
McNemar test produced P =1, whereas OR vs. RRB produced £=0.617) (see Appendix
Table 6 and Appendix Table 7). Comparing the REML with the ML method, the former
yielded fewer inconsistent networks (12% to 17% depending on effect measure) than the
latter (20% to 28% depending on effect measure), but there were no important differences
(McNemar test under the comparison of ML estimator versus the REML estimator; OR: P=
0.248, RRH: P=0.074, RRB: P=0.1336, RD. P=0.041) (see Appendix Table 8). This is
probably because the ML method estimated slightly smaller values of the heterogeneity
variance than the REML in almost all networks and under all effect sizes.

For fourteen networks (35%) we could not find any indication in the published articles that
the authors evaluated the assumption of consistency. Four out of these networks were found
to be inconsistent when we applied the design-by-treatment interaction model using the
REML method and the OR scale. That one in three of the meta-analysis authors did not
examine consistency is a cause of concern, since conclusions from combining direct and
indirect evidence may not be valid when consistency does not hold.

In Figure 5 we present a plot of the heterogeneity variance estimated under the consistency
and inconsistency models considering both ML and REML methods under the OR effect
measure. On average the consistency models display higher heterogeneity than the
inconsistency models, accounting probably for inconsistency in the data.

3.4 Comparing loop-specific and design-by-treatment interaction model
In Table 3 we compare the number of inconsistent networks under the loop-specific

approach with 72, "and the design-by-treatment interaction approach when the ORis
considered, assuming that if at least 5% of the loops are inconsistent then the network is
inconsistent. The design-by-treatment interaction approach suggested fewer inconsistent
networks (13%) than our ad hoc approach based on loop-specific assessments (20%). One
network was inconsistent under the design-by-treatment interaction model while it was
consistent with the loop-specific approach. That network was associated with design

inconsistency, which was not accounted for in the loop-based method.

4 Discussion

Evaluation of consistency is an important task in network meta-analysis*2. Protocols of
network meta-analysis should ideally describe the methods for such an evaluation and
outline the strategy that is to be followed if important inconsistency is detected. In this study

Int J Epidemiol. Author manuscript; available in PMC 2017 May 01.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Veroniki et al.

Page 14

we undertook a large-scale empirical evaluation of the prevalence of inconsistency, focusing
both on closed loops of evidence within a network and on entire networks of interventions.

Our study confirms previous assumptions that heterogeneity plays an important role in the
statistical detection of inconsistency. We found that lower heterogeneity was associated with
higher rates of detected inconsistency, but the estimated magnitude of inconsistency is lesser.
This suggests that heterogeneity might account for some disagreement between various

sources of evidence. The use of 2, in the loop-specific approach provides a fair reflection

of heterogeneity“3 and decreases the prevalence of inconsistency compared with T,zoop. We
further found that in some cases inconsistency might be reduced when changing the effect
measure, but in general the three scales for dichotomous data present the same inconsistency
rates. It has been shown that a poor choice of the measurement scale, i.e. analysing data on a
‘preferred’ scale rather than on the *best’ scale (a scale where the treatment effects can be
assumed to be linear), can increase the probability of finding inconsistency!?. It is advisable
to choose the appropriate scale, relying on both type of outcome data and mathematical
properties, and then transform the results to an alternative scale to aid interpretation.

Inconsistency was detected in 2% to 9% of the tested loops, depending on the effect measure
and heterogeneity estimation method, and about one eighth of the networks were found to be
inconsistent. We regard the two methods used in the paper as complementary methods rather
than competing ones. The identification of inconsistency in a network of evidence as a
whole using the design-by-treatment interaction approach provides an omnibus test and
should lead to a careful examination of all parts of the network. It is advisable to employ
methods that can indicate which piece of evidence is responsible for this disagreement (e.g.
the ‘loop-based method’ used here, the ‘node-splitting” method3® or the chi-squared test if
possible34) alongside the evaluation of the network as a whole33, If inconsistency is found,
exploration of its possible causes is a key component of network meta-analysis and can raise
research and editorial standards by shedding light on the strengths and weaknesses of the
body of evidence?2.

When few studies are included in a loop, the choice of the heterogeneity estimator might
impact on inferences about inconsistency. The presence of a comparison informed by a

single study was associated with higher prevalence of inconsistency when Tﬁ,op was
employed. This is in line with findings from a recent simulation study** and previous
empirical evidence8. Such cases should prompt further investigation of the comparability of
studies in the loop, although the finding might be indicative of data extraction errors. The
use of several techniques (e.g. predictive cross-validation) is probably required to decide
whether the study is a statistical outlier*®. Results from statistical tests should however be
interpreted with caution: the absence of statistical inconsistency does not provide
reassurance that the network meta-analysis results are valid. The assumption of consistency
should always be evaluated conceptually by identifying possible effect modifiers that differ
across studies#2:46,

In the present study we evaluated articles included in PubMed and we restricted the analysis
to dichotomous outcomes. Other network meta-analyses, such as those undertaken in
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technology appraisals for the National Institute for Health and Clinical Excellence (NICE) in
the UK, are not included. We expect our findings regarding choice of effect measure and
statistical techniques to be generalizable, although it is unclear whether our findings
regarding prevalence of inconsistency are relevant to these settings. An empirical study for
continuous outcomes will be needed to infer about possible differences in inconsistency
between mean differences, standardized mean differences and ratios of means.

The findings of our study can be used to inform the development of strategies to detect and
address statistical inconsistency. Results from methods we examined appear to be sensitive
to the estimation method and to assumptions made about heterogeneity. Consequently,
caution is needed when over-conservative or over-liberal estimation approaches are
employed for the heterogeneity parameter, and often a sensitivity analysis might be
necessary. Further empirical evidence is needed to evaluate the performance of other
methods to detect inconsistency not included in this article. More importantly, understanding
of the power of both approaches under different assumptions regarding the heterogeneity
parameter would benefit from an extensive simulation study.
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Appendix Figure 1.

The left-hand side panels represent a plot of inconsistency estimate (;7) versus the
heterogeneity variance (»2) and the right-hand side panels correspond to a plot of the Pvalue
of /E versus -2. Inconsistency is estimated under the common within-loop heterogeneity
variance and under the DerSimonian and Laird (DL), restricted maximum likelihood
(REML) and Sidik-Jonkman (SJ) methods.

Appendix Table 1

Characteristics of included networks regarding the assessment of inconsistency in the
original reviews

Assumption of Inconsistency
id Network consistency was Method to detect inconsistency reported as
evaluated present

Model comparison in fit and parsimony -
1 Ades! Unclear unclear whether this was specific to the Unclear
assumption of consistency
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Assumption of

Inconsistency

i etwor consistency was ethod to detect inconsistenc reported as
id N k i % Method to d i i y ported
evaluated present
2 Ara? No Not reported Not reported
. * Comparison of network estimates to direct
3
3 Baker Inappropriate method estimates No
4 Ballesteros* Yes Loop-based approach No
5 . * Comparison of network estimates to direct
5 Bangalore: Inappropriate method estimates No
6 Bansback® No Not reported Not reported
7 Bottomley’ No Not reported Not reported
8 Brown8 Yes Loop-based approach No
9 Bucher® Yes Loop-based approach No
10 Cipriani®® Yes Loop-based approach Yes
11 Dias!! Yes Node-splitting & back-calculation Yes
12 Eisenberg!? No Not reported Not reported
13 Elliott!3 Yes Lumley’s method Yes
14 Govan!4 No Not reported Not reported
15 . * Informal comparison of the results to
15 Hofmeyr Inappropriate method previously conducted meta-analyses No
16 Imamural® No Not reported Not reported
: * Comparison of network estimates to direct
17
17 Lam Inappropriate method estimates No
T . * Informal comparison of the results to
18 Lapitan Inappropriate method previously conducted meta-analyses No
19 Lu (1)%® Yes Lu and Ades model No
20 Lu ()1 Yes Model comparison in fit and parsimony No
21 | Macfayden 22 No Not reported Not reported
22 Middleton?3 No Not reported Not reported
23 Mills2 Yes Loop-based approach No
24 Nixon2® No Not reported Not reported
25 Picard26 No Not reported Not reported
26 Playford?’ Yes Loop-based approach No
27 Psaty28 Yes Lumley’s method Yes
29 - * Informal comparison of the results to
28 Puhan Inappropriate method previously conducted meta-analyses No
: * Comparison of network estimates to direct
31
29 Roskell (1) Inappropriate method estimates No
30 . * Comparison of network estimates to direct
30 Roskell (2) Inappropriate method estimates Yes
31 Salliot32 No Not reported Not reported
32 Sciarretta3? Yes Lu and Ades model Yes
33 | Soares-Weiser3 No Not reported Not reported
34 Thijs3® Yes Lumley’s method No
35 Trikalinos3® Yes Lumley’s method Yes
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Assumption of

Inconsistency

id Network consistency was Method to detect inconsistency reported as
evaluated present

36 Virgili®? Yes Loop-based approach No

28 . * Informal comparison of the results to
37 Wang Inappropriate method previously conducted meta-analyses No
Model comparison in fit and parsimony -
38 Welton3® Unclear unclear whether this was specific to the Unclear
assumption of consistency
39 Woo*0 No Not reported Not reported
40 yutt No Not reported Not reported

*
Some systematic reviews compared estimates from meta-analysis to the estimates obtained from network meta-analysis.
We consider this to be an inappropriate method to evaluate consistency.

Hok

Inconsistency has been previously assessed?1

Aok

Inconsistency has been previously assessed20
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Appendix Table 5

Page 28

Number of consistent loops that become inconsistent when applying the common within-

loop heterogeneity (%lzoop) ) estimated under the DerSimonian and Laird method and

network heterogeneity (#2, ) estimated under the restricted maximum likelihood method.

ntw:

RDis the risk difference measure, RRH is the risk ratio for harmful outcomes, RRBis the

risk ratio for beneficial outcomes and OR is the odds ratio.

IF under 72
loop Percentage out of the
total 303 loops
OR
Consistent | Inconsistent
Consistent 280 7 95%
i 0,
OR Inconsistent 0 16 5%
Percentage out of the total 303 0 o
loops 92% 8%
RRH
Consistent 275 10 94%
i 0,
RRH Inconsistent 3 16 6%
Percentage out of the total 303
~2 91% 9%
IF under Totw loops
RRB
Consistent 273 13 94%
RRB Inconsistent 2 16 6%
Percentage out of the total 303
loops 90% 10%
RD
Consistent 273 15 95%
RD Inconsistent 2 14 5%
Percentage out of the total 303 o o
loops 90% 10%
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Number of consistent networks that become inconsistent when changing from one effect size
to another and vice versa, under the design-by-treatment interaction model and the restricted
maximum likelihood (REML) and maximum likelihood (ML) estimators of the
heterogeneity variance. RD is the risk difference measure, RRH is the risk ratio for harmful
outcomes, RRB is the risk ratio for beneficial outcomes and OR is the odds ratio.

IF under ML Percentage
out of the
total 40
RRH RRB RD networks
Consistent | Inconsistent | Consistent | Inconsistent | Consistent | Inconsistent
Consistent 28 4 28 4 28 4 80%
i 0,
OR Inconsistent 1 7 1 7 1 7 20%

Percentage

out of the 0 o o 0 o o

total 40 2% 28% 2% 28% 2% 28%

networks

IF under REML
RRH RRB RD
Consistent | Inconsistent | Consistent | Inconsistent | Consistent | Inconsistent
Consistent 33 2 32 3 32 3 87%
i 0,
OR Inconsistent 1 4 1 4 3 2 13%

Percentage

out of the N o o o o o

total 40 85% 15% 83% 17% 87% 13%

networks

Appendix Table 8

Number of consistent networks that become Inconsistent and vice versa, when heterogeneity
is estimated under the maximum likelihood (ML) or the restricted maximum likelihood
(REML) method. Inconsistency is investigated under the design-by-treatment interaction
model for all four effect sizes. RDis the risk difference measure, RKRH is the risk ratio for
harmful outcomes, RRB is the risk ratio for beneficial outcomes and OR is the odds ratio.

IF under ML
OR Percentage out of the
f— total 40 networks
Consistent | Inconsistent
Consistent 32 3 87%
OR Inconsistent 0 5 13%
Percentage out of the total 40
IF under REML 9 networks 80% 20%
RRH
Consistent 29 5 85%
RRH Inconsistent 0 6 15%
Percentage out of 2% 28%
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the total 40 networks
RRB
Consistent 29 4 83%
RRB Inconsistent 0 7 17%
Percentage out of the total 40 o 0
networks 2% 28%
RD
Consistent 29 6 87%
i 0,
RD Inconsistent 0 5 13%
Percentage out of the total 40 o o
networks 2% 28%
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Key messages

A challenge in network meta-analysis is that there may be inconsistency
between direct and indirect evidence for a particular treatment comparison.

Based on empirical examination of a large sample of published network meta-
analyses, inconsistency occurs in 2%-9% of triangular and quadrilateral loops
of evidence about three and four treatments and in one in eight networks of
multiple treatments.

The choice of the heterogeneity estimation method will impact to a small
extent on the detection and estimation of inconsistency.

Lower statistical heterogeneity is associated with more chances to detect
inconsistency but the estimated magnitude of inconsistency is lower.

Evidence loops that include comparisons informed by a single study are more
likely to show inconsistency.
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115 excluded:
11 discussing/comments/
letters/case series
66 no indirect comparisons
13 studies < nr of treatments
3 indirect in the naive
4 methodological. 10 not only RCTs
2 diagnostics. 1 genetic
4 unclear comparisons
1 not meta-analysis

817 abstracts
identified in
PubMed

Page 38

253 full articles

564 excluded:
no treatments
2 treatments
no indirect comparisons
discussing/commentary papers

138 included in database

(12 triangles. 44 star networks. 82 networks )
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duplicates

v

47 networks with binary data
(in the form of 2X2 table)

43 networks with
binary data

v

Figure 1.

41 different networks with
binary data

4 excluded:
no available data

Flow chart of the process of selecting articles describing network analyses.
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Figure 2.
Plot of the two sided P values of /£ (fourth-root scale) for ORvs. RD, ORvs. RRHand OR

vs. RRB effect measures under the DerSimonian and Laird method for rfoop and the

restricted maximum likelihood for 72, . The solid diagonal line indicates equality, the
dashed diagonal line is the regression line and the two dotted horizontal and vertical lines
represent the P=0.05 threshold lines. RDis the risk difference measure, RRH is the risk ratio
for harmful outcomes, RRBis the risk ratio for beneficial outcomes and OR is the odds
ratio.
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Figure 3.
Comparison of the estimated heterogeneity variance under the DerSimonian and Laird (DL),

restricted maximum likelihood (REML) and Sidik-Jonkman (SJ) methods on the log scale
when applying the loop-specific approach (common within-loop heterogeneity variance,

Tibep) in the 303 loops.
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Figure 4.
Histogram of the absolute values of the inconsistency factors (/£) for the OR effect measure

estimated under the common within-loop heterogeneity variance, Tfoop, estimated with the
DerSimonian and Laird method.
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Figure 5.

PI?)t of heterogeneity estimates from the consistency model against heterogeneity estimates
from the inconsistency model under the design-by-treatment interaction approach, along
with the equality line. Heterogeneity is estimated under maximum likelihood (1st panel) and
restricted maximum likelihood (2nd panel) methods when the effect measure is the odds
ratio (OR).
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Table 1
Number of consistent loops (C) that become inconsistent (I) when changing from one effect size to another

and vice versa, assuming both common within-loop heterogeneity (?zzoop> estimated under the DerSimonian

and Laird method and network heterogeneity (? fnw) estimated under the restricted maximum likelihood

method. RD is the risk difference, RRH the risk ratio for harmful outcomes, RRB the risk ratio for beneficial
outcomes and OR the odds ratio.

~2
IF under Tloop
RRH RRB RD Percentage out of the total 303 loops
Cc 1 C | C |
C 274 6 268 | 12 | 269 | 11 92%
OR
| 3 20 6 17 5 18 8%
Percentage out of the total 303 loops | 91% | 9% | 91% | 9% | 91% | 9%
~2
IF under 7,
RRH RRB RD Percentage out of the total 303 loops
C | C | C |
C 283 3 278 8 278 8 94%
OR
| 2 15 7 10 9 8 6%
Percentage out of the total 303 loops | 94% | 6% | 94% | 6% | 95% | 5%
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Table 2

Frequency of Inconsistent loops under the DerSimonian and Laird (DL), restricted maximum likelihood
(REML) and Sidik-Jonkman (SJ) estimators for the heterogeneity variance. Inconsistency is estimated under
the log odds ratio scale using the loop-specific approach for both common within-loop heterogeneity (%lzoop)

and network heterogeneity (#2, ). The number of inconsistent loops is provided when %lzoop or 2, isequal

ntw

to zero, as well as when the closed loop involves one study in at least one comparison.

Estimator of 2 | Inconsistent loops | Inconsistent loops with %\lzoop =0 Inconsistent loops iggmg;??sg:wdy in at least one
%2
loop
DL 23 (8%) 14 (5%) 19 (9%)
REML 21 (7%) 18 (6%) 18 (9%)
sJ 14 (5%) 5 (2%) 12 (6%)
Total loops 303 303 203
Tt
REML 17 (6%) 5 (2%) 5 (2%)
Total loops 303 303 203
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Table 3

Number of consistent networks that become inconsistent under the loop-specific and design-by-treatment
interaction approach when the effect measure is the odds ratio. The common within-network heterogeneity
(#2,,,) is estimated with the restricted maximum likelihood method. Under the loop-specific approach the

networks that involve at least 5% inconsistent loops out of their total loops are considered as inconsistent. We
define as ‘C’ the consistent networks and as ‘I’ the inconsistent networks.

ie ~2 Percentage out of the total
Loop-specific approach - Totw 40 networks
C |
2 C 30 4 85%
Design-by-treatment interaction approach- Totw
| 2 4 15%
Percentage out of the total 40 networks | 80% | 20%
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