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Abstract

Genetic studies of complex traits have mainly identified associations with non-coding variants. To 

further determine the contribution of regulatory variation, we combined whole genome and 

transcriptome data for 624 individuals from Sardinia in order to identify common and rare variants 

that influence gene expression and splicing. We identified 21,183 expression quantitative trait loci 

(eQTLs) and 6,768 splicing quantitative trait loci (sQTLs), including 619 novel QTLs. We 

identified high-frequency QTLs and evidence of selection near genes involved in malarial 
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resistance and increased multiple sclerosis risk, reflecting the epidemiological history of Sardinia. 

Using family relationships, we identified 809 segregating expression outliers (median z-score of 

2.97), averaging 13.3 genes per individual. Outlier genes were enriched for proximal rare variants, 

providing a new approach to study large-effect regulatory variants and their relevance to traits. Our 

results provide insight into the effects of regulatory variants and their relationship to population 

history and individual genetic risk.

INTRODUCTION

Human migration and rapid population expansion have led to an abundance of population 

and individual-specific genetic variation1–5. Within protein-coding regions of the genome, 

multiple studies have identified numerous rare loss-of-function alleles6–11 that affect 

monogenic disorders and, to a lesser extent and especially in founder populations, common 

diseases and complex traits12–14. Most of the variants associated with complex traits are 

found outside protein-coding regions, however, and their functional consequences remain 

elusive. Large studies of gene expression have greatly advanced our ability to identify 

functional variation in non-coding regions of the genome15–17, and many of these variants 

have been connected to common genetic diseases18,19. However, few studies to date have 

had access to whole genome sequencing data, family relationships, and auxiliary complex 

trait data from research participants. Such data has the potential to empower the assessment 

of population and individual-specific consequences of regulatory variants.

To overcome this, we sequenced RNA isolated from the white blood cells of 624 individuals 

from the founder population of Sardinia. The Sardinian population has several advantages: 

their DNA includes the bulk of mainland European DNA variation, but due to a period of 

relative isolation for >10,000 years, many alleles have been added, and many old and novel 

variants have reached dramatically higher frequencies which should improve power to detect 

associations between those variants and traits such as gene expression20–22. In addition, the 

SardiNIA study cohort has been extensively genotyped and phenotyped and consists of both 

unrelated and related individuals23. By combining RNA-seq data with whole genome 

sequencing data, we discovered expression and splicing quantitative trait loci (e/sQTLs) that 

are specific to the isolated Sardinian population. As this is the first e/sQTL study to integrate 

both whole genomes and transcriptomes from multiple families, we developed a framework 

that leverages these family relationships in order to identify large-effect rare regulatory 

variants. We identified extreme gene expression outliers that segregate within these families 

and investigate the distribution and associated functional annotations of putatively causal 

rare variants as well as their influence on individual disease risk. This approach enhances 

ongoing studies of loss-of-function variants by demonstrating a new approach to identifying 

and studying large-effect alleles.

RESULTS

Expression and splicing quantitative trait discovery in Sardinia

The 624 participants, all from four towns in the Lanusei Valley in the Ogliastra region of 

Sardinia, were enrolled from a cohort of 6,921 in the SardiNIA longitudinal study of 
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aging24. The entire SardiNIA cohort was genotyped using the Cardio-MetaboChip, 

ImmunoChip, exomeChip, and OmniExpress arrays. A subset of 2,120 Sardinians were 

additionally whole-genome sequenced at low coverage (average four-fold), producing an 

integrated map of ~15 million SNPs after imputation. This cohort and imputation pipeline 

has been previously described20,23,25. For RNA, we sequenced a median of ~59 million 51 

bp paired-end reads per participant (over 36 billion reads in total). After quantification and 

quality control, 15,243 and 12,603 genes were sufficiently expressed for eQTL and sQTL 

analyses, respectively (Table 1). To account for confounding factors that can reduce power to 

discover cis-QTLs, we performed hidden factor correction with PEER26. We were able to 

identify and remove factors correlated with gender, age, various blood cell counts, and 

sequencing (Supplementary Figure 1, Supplementary Table 1).

To discover eQTLs, we tested the association of genotype with expression level for all 

variants within ±1 Mb of a target gene’s transcription start site (TSS) for all individuals with 

genetic data in the integrated map (n = 606). At a false discovery rate (FDR) of 5%, we 

identified eQTLs for the majority of tested genes (Table 1). We then used a forward-stepwise 

regression approach to characterize the number of independent eQTLs per gene (see 

Methods). We found that approximately half of all protein-coding and lncRNA transcripts 

were influenced by at least two independent eQTLs; miRNAs, however, were mostly 

associated with a single eQTL (Table 2). At the extreme, we found a single protein-coding 

gene, ITGB1BP1, affected by 14 independent eQTLs. ITGB1BP1 encodes an integrin 

binding protein that is implicated in upstream regulation of immune-critical TNF/NF-kB 

transcriptional regulation. We also identified a lncRNA of unknown function, NBPF1, that 

was affected by 11 independent eQTLs (Supplementary Table 2). In total, we mapped at 

least one eQTL for 73% of tested genes, corresponding to 11,167 primary eQTLs. Our 

forward-stepwise regression analysis identified an additional 10,016 secondary eQTLs for a 

total of 21,183 eQTLs (Table 2). We observed that both primary and secondary QTLs were 

enriched in diverse functional annotations (Supplementary Figure 2; Supplementary Tables 

3–4).

To discover sQTLs, we tested the association of genotype with the ratio of known transcript 

abundances calculated using Cufflinks27. At an FDR of 5%, we observed significant sQTLs 

for nearly half of the protein-coding genes and lncRNAs we tested. In total, this is over a 

thousand more sQTLs than previously reported15,17. In comparison to eQTLs, we found that 

protein-coding genes and lncRNAs were less likely to have multiple independent sQTLs 

(Table 2); however, we found five protein-coding genes that were influenced by as many as 

seven independent sQTLs (Supplementary Table 5). Notably, two of these genes affect 

transcription and splicing itself, and are expected to impact the immune system. These genes 

include: POLR2J2, which encodes one of two nearly identical polymerase II subunit genes 

known to produce alternative transcripts; and SMN1, whose product functions in the 

assembly of the spliceosome. The other three sQTL genes are directly related to immune 

function: the non-classical class I heavy chain paralog HLA-G; the class I heavy chain 

receptor HLA-C; and ITGB1BP1. The ITGB1BP1 gene, which has 8 exons that extend over 

16 kb and are spliced into 21 isoforms, had extreme numbers of both independent eQTLs 

and sQTLs, suggesting that it is a large mutational target for modulators of expression. 

While less pervasive than eQTLs, we mapped at least one sQTL for 41% of tested genes, 
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corresponding to 5,120 primary sQTLs. Our forward-stepwise regression analysis identified 

an additional 1,648 secondary sQTLs for a total of 6,768 sQTLs (Table 2).

We compared our forward-stepwise regression approach to an alternative method 

implemented in the MLMM software package28 that uses a stepwise mixed-model 

regression with forward inclusion and backward elimination in order to identify independent 

associations. Both approaches resulted in a similar number of independent eQTL 

associations (Supplementary Table 6) and sQTL associations (Supplementary Table 7) that 

were largely consistent with our original findings (see Supplementary Note). Furthermore, 

we performed simulations to assess the impact of statistical noise and missing SNPs on our 

independent association analyses. We ran our pipeline on simulated expression traits where a 

single, randomly selected SNP in the ±1 Mb region of each gene explained 25% of the trait’s 

variance (we did this for each gene where at least one eQTL was found in the original 

analysis). Only a small fraction of these simulations resulted in multiple independent 

associations compared to the actual analysis (Supplementary Table 8). We repeated this 

simulation a second time but excluded the randomly chosen causal SNP from the 

association-mapping phase. While we observed more independent associations relative to 

the first analysis (Supplementary Table 9), the similarity between the results of these 

simulations and the consistency observed between our pipeline and MLMM suggest our 

approach is identifying independent associations and is robust to statistical noise and 

residual LD blocks near these genes.

Comparison of Sardinia and European eQTLs identifies novel functional and trait-
associated variants

We next measured the replication of Sardinian QTLs with European QTLs found in LCLs 

(GEUVADIS15) and whole blood (Depression Genes and Networks17; DGN). For Sardinian 

eQTLs that were tested in each study, the replication rate was 92% in DGN and 72% in 

GEUVADIS, reflecting the high-degree of sharing of common European alleles within 

Sardinia (Supplementary Table 10). For sQTLs, the replication rate was 72% in DGN and 

76% in GEUVADIS. Additionally, we tested eQTLs and sQTLs found in either DGN or 

GEUVADIS for replication in the Sardinia cohort and found that between 89–92% of eQTLs 

and 70–97% of sQTLs replicated (Supplementary Table 11). Replication could not be tested 

for 2,568 eQTLs and 1,152 sQTLs found in Sardinia because the SNPs were either absent in 

Europe or only present at a minor allele frequency below 1%. Of these QTLs, 437 eQTLs 

and 182 sQTLs were novel in Sardinia when compared to the 1000 Genomes, dbSNP, 

UK10K, and ExAC databases, representing new and/or previously uncaptured functional 

variation.

We first observed that novel eQTLs were depleted from known disease genes 

(Supplementary Figure 3). To determine if these novel eQTLs were associated with traits 

measured in Sardinia, we tested all 437 novel eQTL variants for associations with 15 blood 

cell measurements in the whole SardiNIA cohort (N ≈ 6,000; Supplementary Table 12). We 

identified 5 associations (5 traits and 4 variants, in total) that were significant after 

correcting for multiple testing (p-value < 8.8 × 10−6). For each association, we then retested 

the trait association for all variants within ±4 Mb of the target gene to identify the subset of 
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loci where both the Sardinia-specific eQTL variant and the top trait-associated variant within 

this region were in high LD (r2 > 0.8). We identified a Sardinia-specific eQTL for 

ARHGDIB that was also linked to the top trait-associated variant for neutrophil percentage, 

which is also Sardinia-specific (Supplementary Figure 4; top neutrophil percentage variant 

chr12:g.14190223T>C, p-value = 3.8 × 10−6; top eQTL, chr12:g.15553026G>T p-value = 

7.69 × 10−6, r2 = 0.86). We further performed an eQTL/trait colocalization analysis with 

eCAVIAR29 and observed strong local colocalization between the ARHGDIB eQTL and 

both neutrophil and lymphocyte percentages (Supplementary Figure 5). Within this locus, 

only 3 of 14 variants that passed our LD filter have been previously reported outside of 

Sardinia (allele frequencies in Europe below 0.002). Of note, one of these variants (chr12:g.

15095546G>C, p-value = 3.85 × 10−6, r2 with top neutrophil signal = 0.84) is a nonsense 

mutation that had been observed only once in the ExAC database but has a frequency >1% 

in Sardinia, with the direction of effect on expression consistent with nonsense-mediated 

decay. ARHGDIB presents a biologically plausible target for this association as it is a multi-

function protein with a central role in inhibition of cell migration, and ARHGDIB−/− mice 

show changes in lymphocyte expansion and survival in culture30.

Sardinia eQTLs exhibit founder population effects and evidence of selection

As genetic analyses in founder populations like Sardinia are expected to have increased 

statistical power based on relatively low genetic heterogeneity and shared environment21, we 

compared the observed impact of Sardinian eQTLs to European eQTLs. Using an identical 

pipeline and controlling for various differences in study parameters, we regenerated 

European eQTLs from the DGN and GEUVADIS studies (see Methods). When comparing 

eQTLs between these studies and Sardinia, we observed increased correlation between 

expression and genotype for Sardinian eQTLs (Figure 1A). This could reflect founder 

population effects or reduced technical noise in our study. As allele-specific expression 

signals have been demonstrated to be more robust to technical noise, we also compared 

Sardinian allele-specific expression QTLs (aseQTLs) to European aseQTLs31. We observed 

an increased correlation of genotype and allelic expression for Sardinia aseQTLs, similar to 

the trend we observed for eQTLs and consistent with a founder population effect (Figure 

1B).

To identify eQTLs where founder effects, genetic drift, or selective pressures have 

significantly influenced the prevalence of these alleles in Sardinia, we first compared the 

Sardinian allele frequencies of eQTLs and sQTLs with the corresponding European allele 

frequency reported by the 1000 Genomes Project5. We found that 11% of significant eQTLs 

were differentiated at an allele frequency greater than 10% (Figure 2A). In addition, we 

observed longer tracts of linkage disequilibrium (LD) decay in Sardinians conditioned on 

the extent of allelic differentiation for eQTLs versus non-eQTLs (Figure 2B). Furthermore, 

ten of the top 1% of differentiated eQTLs showed evidence of hard selective sweeps 

(integrated haplotype scores |iHS| > 2.5), consistent with a proportion of these eQTLs having 

undergone recent positive selection32,33 (Supplementary Figure 6, Supplementary Table 13).
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Highly differentiated eQTLs are enriched for malaria and multiple sclerosis genes

We next tested whether two epidemiological factors present in Sardinia were reflected 

among highly differentiated eQTLs. Until the mid-twentieth century, the Sardinian 

population suffered high mortality rates due to malaria34,35, and continues to have a higher 

prevalence of multiple sclerosis (MS) relative to other Caucasian populations in the 

Mediterranean basin36,37. Indeed, we identified a significant enrichment for known malarial 

resistance genes (p-value = 0.0015) and genes associated with MS (EBI/NHGRI GWAS 

Catalog nominal p-value = 1.84 × 10−5 and ImmunoBase nominal p-value = 1.17 × 10−8) 

among the top 1% of differentiated eQTLs (mean allele frequency difference of ~17%) 

(Figure 2C–D, Supplementary Table 14). MS had the highest enrichment among 354 traits 

tested from the EBI/NHGRI GWAS catalog and among 19 traits tested from the 

ImmunoBase catalog (Figure 2D, Supplementary Figure 7). Furthermore, GWAS hits for 

MS show evidence for co-localization with eQTLs identified in Sardinia, suggesting that 

regulation of these genes mediates the association signals at these loci (Supplementary Table 

15).

One of the most differentiated eQTLs was associated with expression levels of the BAFF 
gene (p-value = 8.051 × 10−12, ΔAFSRD-EUR = 0.25), which is known to be involved in the 

response and survival to malaria infection38–40 and has unique evolutionary history in 

Sardinia (Steri et al, submitted). We also identified several regulatory variants for the CR1 
gene whose product is involved in complement activation and immune complex formation 

during malaria infection41,42. CR1 has two eQTLs (chr1:g.207275799G>A and chr1:g.

207667190G>C) and 9 sQTLs. The eQTL at chr1:g.207667190G>C is highly differentiated 

between Sardinia and Europe (ΔAFSRD-EUR = −0.25) (Supplementary Figure 8). Among the 

9 sQTLs associated with CR1, two of them are highly differentiated: chr1:g.207681501C>G 

(ΔAFSRD-EUR = 0.42) influences the abundance of ENST00000367051 and chr1:g.

207716099A>C (ΔAFSRD-EUR = 0.43) influences the abundance of ENST00000529814. 

Both sQTLs are tightly linked and in high LD (r2 = 0.99 and 0.95) with a variant at chr1:g.

207757515A>G that has been previously associated with erythrocyte sedimentation rate in 

the SardiNIA cohort43.

Finally, as ΔAF itself does not account for background selection near genes, we used an 

alternative method to define differentiated Sardinia eQTLs based on FST values (see 

Supplementary Note). Differentiated eQTLs identified with this method were similarly 

enriched near genes associated with malaria (p-value = 4.91 × 10−5, Supplementary Table 

16) and near MS loci (Figure 2D), with MS being the most significantly enriched trait in 

both the EBI/NHGRI GWAS catalog (nominal p-value = 2.11 × 10−3, Supplementary Table 

17) and ImmunoBase (nominal p-value = 7.41 × 10−5, Supplementary Table 18).

Heritable patterns of extreme gene expression in families

Beyond the unique history of the Sardinia population, the availability of family relationship 

data in the SardiNIA cohort provided an opportunity to identify the impact of rare, large-

effect regulatory variation. Specifically, we developed a likelihood ratio test to identify 

patterns of extreme gene expression that segregated in families (Figure 3A; see Methods). 

We tested 61 Sardinian trios for the 15,243 genes included in our eQTL analyses and 
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identified 809 genes where a parent and child are both expression outliers (median z-score = 

2.97) at an FDR of 10% (Figure 3B). On average we found 13.3 shared gene expression 

outliers per child.

Several lines of evidence suggest shared expression outliers are not due simply to parent-

offspring shared environment. There was little correlation of gene expression between the 

outlier parent and the non-outlier partner (Pearson r = 0.20) (Figure 3D). Additionally, 

mothers and fathers were equally likely to be the outlier parent (p = 0.20), regardless of the 

sex of the child (p = 0.83) (Supplementary Figure 9). In addition, we used a separate method 

to identify outliers based on z-scores alone and found that approximately 10% of the average 

child’s extreme expression outliers were shared with one parent alone and the remaining 

90% are likely not caused by genetics44 (Supplementary Figure 10). These results are 

concordant with Tabassum et al44 who found ~100 expression outliers per individual that 

could be largely explained by extrinsic factors, e.g. cell type proportions.

We found almost twice as many shared under-expression outliers (529 outliers, 65%) as 

over-expression outliers (280 outliers, 35%), consistent with observations of the effects of 

random substitutions in promoters and enhancers in massively parallel reporter assays45–47. 

Furthermore, since rare variants tend to be heterozygotic and thus only influence one allele, 

we hypothesized that outlier parents and children would be enriched for allele-specific 

expression compared to non-outlier controls. We found that allele-specific expression was 

significantly enriched in outlier individuals for both under- and over-expression outliers 

(adjusted Wilcoxon rank-sum p-value = 6.0 × 10−6) (Figure 3C). This is likely a 

conservative estimate of the true enrichment, given the inherently low levels of read depth in 

under-expression outliers that limits the ability to measure allelic effects in outlier genes. 

These allelic effects were consistent between outlier parents and children (Pearson r = 0.84) 

but not with the other, non-outlier parent (Figure 3D). The strength of the outlier effect was 

also significantly associated with the enrichment of allele-specific expression (Spearman ρ = 

0.338, p-value < 1 × 10−6), reflecting the capacity of allele-specific effects to impact total 

expression (Figure 3E).

Rare variants can underlie extreme gene expression in families

Using the combination of whole genome data and family relationships, we were able to 

characterize potential causal variants underlying expression outliers. We first identified 

3,464 rare variants (Sardinia MAF < 1%) that were located in 250 kb windows adjacent to 

the transcription start site (TSS) and end site (TES) of outlier genes and were 

unambiguously transmitted from the outlier parent to the outlier child (i.e. the variant was 

heterozygous in both the outlier parent and child and the other parent was homozygous for 

the reference allele). We also identified an equivalent set of 245,165 rare variants in the same 

genomic loci that were unambiguously transmitted between non-outlier parents and their 

children. We found at least one shared rare variant for 509 of the outlier genes (63%), with 

an average of 6.8 variants shared by outliers versus 4.0 shared by non-outliers (enrichment = 

1.71, 95% confidence interval 1.65 – 1.77). Of interest, rare variants shared by outlier 

individuals were concentrated within 5 kb of the TSS (enrichment = 3.61, 95% confidence 

interval 2.96 – 4.24) and TES (enrichment = 3.00, 95% confidence interval 2.44 – 3.54) 
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(Figure 4A) of outlier genes, similar to what has been observed for common regulatory 

variation48. Furthermore, rare variants shared by outliers were enriched in multiple 

functional annotations49 (Figure 4B, Supplementary Figure 11). For variants in the 50 kb 

window adjacent to the TSS, this enrichment was most notable in splice donor/acceptor sites 

(log odds = 4.05, p-value = 2.52 × 10−7) and regions associated with active transcription, 

including promoters (log odds = 0.91, p-value = 8.8 × 10−9) and enhancers (log odds = 0.42, 

p-value = 0.0094) (enrichment data for different genomic window sizes is provided in 

Supplementary Tables 19–20). We further investigated whether other carriers of these 

variants had the same outlier expression profile as the parent-child pairs. We analyzed 2,912 

variants (84% of the 3,464 outlier variants) that were heterozygous in at least four 

individuals in the cohort, regressing outlier gene expression on genotype at the rare variant 

position. The largest and most significant of these genotype-expression associations for both 

over- and under-expression outliers were concentrated at the TSS of outlier genes (Figure 

4C). Additionally, we found that metrics of conservation (GERP, PhyloP) and predicted 

functional relevance (FitCons, CADD) all discriminated the most significant associations 

(Figure 4D)50–53.

Based on these observations, we developed a strict set of rules to distinguish putatively 

causal rare variants by prioritizing variants that were close to the TSS or likely involved in 

splicing, highly conserved, and replicated their effects in the larger population (see 

Methods). We identified candidate causal variants for 30 outlier genes (Supplementary Table 

21), including five rare splicing variants. One of these splicing variants, chr12:g.

121570899G>T, is found at the first exon-intron boundary of the P2RX7 gene, which codes 

for a ligand-gated ion channel responsible for ATP-dependent lysis of macrophages. While 

chr12:g.121570899G>T is rare in all European populations including Sardinia, where it is 

most frequent with a MAF = 0.009% (Supplementary Table 22), it has been previously 

shown to disrupt proper splicing of P2RX7, leading to an elongated transcript that is 

subsequently degraded by nonsense-mediated decay and results in mono-allelic 

expression54. As expected, all carriers of chr12:g.121570899G>T (n = 12) in the Sardinia 

cohort under-expressed P2RX7 and all reads showed the same allele. While the other 

splicing variants have not been characterized, we saw similar trends for all five splicing 

variants suggesting that all of these putative splicing variants are effectively null alleles 

(Figure 5).

Because the SardiNIA cohort has been extensively phenotyped, we were able to test for the 

association of rare variants with measured traits. Of the 30 putatively causal variants, 11 

were associated with the expression of genes near significant GWAS loci. Of these, five 

genes (SPECC1, GLB1, CADM1, BRI3BP, and ANXA5) were associated with traits 

measured in the Sardinia cohort. However, we found no significant association between the 

five candidate variants for these genes and their matched GWAS traits (Supplementary Table 

23). Furthermore, we found no significant relationship between expression levels of these 

genes and their matched GWAS trait (Supplementary Table 23), suggesting that either the 

gene is not involved in the trait or that dosage is not a critical factor. We next searched for 

outlier genes that have established roles in the manifestation of rare clinical traits. We were 

able to identify three outlier genes associated with clinical traits in our database: VPS13D is 

known to repress interleukin-6 (IL6) production; TSSC1 suppresses osteolysis; and 
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mutations in POMGNT1 disrupt dystroglycan and can interfere with skeletal muscle 

function. For each gene, we tested the genotype of the candidate rare variant with levels of 

the appropriate trait and then for the overall association between gene expression and the 

trait. We were, however, unable to find any significant evidence for association 

(Supplementary Table 24), consistent with recent observations in British-Pakistani cohorts 

for association testing of rare protein-coding variants in trait-associated genes6,55. While we 

were unable to identify any direct association between rare variants and clinical traits, we 

did observe a modest enrichment of outliers in potential disease genes and a marked 

enrichment of outlier genes in loss-of-function intolerant genes relative to common eQTLs 

(Supplementary Figure 12).

DISCUSSION

Our study focused on identifying the effect of population and individual-specific regulatory 

variants in Sardinia. We identified hundreds of novel or highly differentiated regulatory 

alleles and observed that these alleles reveal novel trait associations and reflect the island’s 

epidemiological history of multiple sclerosis and malaria. By combining whole genome 

sequencing data with transcriptomes from many families, we were able to identify patterns 

of outlier gene expression and implicate the functional role of rare regulatory variants56–59. 

While such observations have previously been limited to unrelated individuals58,59, we were 

able to identify hundreds of genes with large heritable effects and candidate rare regulatory 

variants. Relating the effects of candidate rare regulatory variants to phenotypes remained a 

significant challenge, comparable to systematic efforts to identify the phenotypic 

consequences of rare, protein-coding loss-of-function alleles. However, we observed that 

outlier expression effects were more prevalent in genes intolerant of loss-of-function 

variation, consistent with their increased potential for important individual consequences.

As gene expression assays complement whole-genome sequencing, discovery of population-

specific and rare, large-effect regulatory variants will enable the generation of new 

hypotheses to understand the molecular etiology of diverse disorders44 and increase our 

understanding of the utility of different genes as potential therapeutic targets. In particular, 

identifying extreme patterns of gene expression can be used to provide a more nuanced view 

of genic dosage tolerance than revealed by naturally occurring knockouts. We anticipate that 

large catalogs of rare, large-effect regulatory variants, found in either isolated populations or 

families, will yield new opportunities for clinical interpretation of the non-coding genome, 

precision health, and our understanding of genome biology.

Data availability statement

The RNA sequencing data that supports the findings of this study has been deposited in the 

European Genome-phenome Archive (EGA) under accession number EGAS00001002105 

(https://www.ebi.ac.uk/ega/datasets/EGAD00001003102). The whole-genome sequencing 

data used in this study has been deposited in dbGaP under accession number 

phs000313.v3.p2 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000313.v3.p2).
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Code availability

All code used to generate figures and identify outliers is available at http://

montgomerylab.stanford.edu/resources/ under the heading “Supplemental pages for 

manuscripts.”

URLs

eQTL, sQTL, and ASE data, http://eqtlsdownload.irgb.cnr.it and http://

montgomerylab.stanford.edu/resources/sardinia.html; Kinship R package, http://www.inside-

r.org/packages/kinship; European Genome-phenome Archive, https://www.ebi.ac.uk/ega/

home; MERLIN, https://csg.sph.umich.edu/abecasis/Merlin/; Ever-seq, https://

code.google.com/archive/p/ever-seq; BWA, http://bio-bwa.sourceforge.net/; Picard, http://

broadinstitute.github.io/picard/; STAR, https://github.com/alexdobin/STAR; RSeQC, http://

dldcc-web.brc.bcm.edu/lilab/liguow/CGI/rseqc/_build/html/; EPACTS, http://

genome.sph.umich.edu/wiki/EPACTS; MLMM, https://github.com/Gregor-Mendel-Institute/

mlmm; vcftools, https://vcftools.github.io/index.html; selscan, https://github.com/szpiech/

selscan; eCAVIAR, http://genetics.cs.ucla.edu/caviar/; PEER, https://github.com/PMBio/

peer; OrphaNet, http://www.orphadata.org/; OMIM, http://www.omim.org; ExAC, http://

exac.broadinstitute.org/

ONLINE METHODS

Study population and sample acquisition

Our study was performed on a subset of 624 participants from the larger SardiNIA cohort. 

All 624 participants live in the Lanusei Valley in the Ogliastra region of Sardinia. 

Participants represented a mixture of related individuals, including 61 complete trios, and 

unrelated individuals (n = 188; Supplementary Figure 13). Whole genomes for 606 of these 

samples were available from a previous published study20. For each participant, leukocytes 

were isolated from whole blood using the LeukoLOCK™ fractionation kit and RNA was 

extracted using TRI Reagent® (Ambion #AM9738) and isolated using the PureLink® RNA 

Mini Kit (Ambion #12183018A). The quantity and the integrity of isolated RNA samples 

was evaluated using the Agilent Technologies 2100 Bioanalyzer platform with the RNA 

6000 LabChip® kit (Agilent #5067-1511) - samples with an RNA integrity number (RIN) 

less than 7.5 were discarded. Poly-A+ RNA was isolated from 4μg of high-quality total 

RNA samples through two rounds of positive selection and purification using magnetic 

beads following the TruSeq RNA Sample Preparation manual (Illumina #15015050).

Sequencing library preparation, alignment, and quality control

Prior to library preparation, we added one of two ERCC RNA Spike-in Control Mixes 

(Ambion #4456740) to 288 samples at a 1:625 final dilution in order to assess the uniformity 

of library preparation across samples. Purified RNA samples were then processed into 

indexed, paired-end cDNA libraries using the TruSeq RNA-Seq Library Preparation Kit. 

Following purification, amplification, and cleanup, cDNA libraries were quantified using the 

Agilent Technologies 2100 Bioanalyzer with the Agilent DNA 1000 assay (Agilent 

#5067-1504). Sample-specific cDNA libraries were then pooled to obtain equimolar 
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concentrations and loaded on to a paired-end flow cell using the Illumina cBot System and 

the TruSeq PE Cluster Generation kit v3 (Illumina #PE-401-3001). 51 bp paired-end reads 

were generated on an Illumina HiSeq 2000 using TruSeq SBS v3 reagents (Illumina 

#FC-401-3001). De-multiplexed FASTQ files were generated and aligned to the hs37d5 

reference genome supplemented with ERCC spike-in sequences using STAR (version 

2.2.0c)60. Three of the 627 samples were discarded due to extreme GC-content biases, and 

we observed several other well-known technical biases that we ultimately correct for 

(Supplementary Figure 14). A full description of library preparation and quality control 

procedures is available in the Supplementary Note.

Quantification and normalization of gene, isoform, and allele-specific expression

Gene levels were quantified using HTSeq61 (0.5.4p5) over the GENCODE v14 annotation; 

counts were converted to FPKMs27,62 and variance stabilized using DESeq63 (1.10.1). We 

then ran PEER26 (v1.3) in order to identify and remove confounding factors. The number of 

hidden factors to remove was decided by empirically optimizing our ability to discover 

eQTLs on a random subset of 1,500 genes. eQTLs were mapped using Merlin64 on PEER 

residuals after removing k hidden factors (we tested various k in the range of 0 to 100, see 

Supplementary Note) – we found that removing 30 hidden factors maximized our power to 

discover eQTLs (Supplementary Figure 1). We attempted to identify the biological or 

technical sources of these hidden factors; many corresponded to known technical biases like 

GC-content, 3′ and 5′ biases, etc. (Supplementary Table 1). We additionally filtered out 

non-autosomal genes, genes with a mean FPKM less than 0.3 across all 624 samples, and 

genes with an FPKM of 0 in 50% or more of the 624 samples. Ultimately we mapped 

eQTLs for 15,243 genes that passed these filters. Isoform quantification was performed for 

these 15,243 genes using Cufflinks27 (v2.1.1). Isoform proportions were computed as the 

ratio of the isoform FPKM relative to the sum of FPKMs for all the isoforms for each gene. 

We then filtered out genes with only one expressed isoform and where the isoform ratios did 

not follow a normal distribution (see Supplementary Note). For the 606 samples where 

whole genome data was available, allele-specific expression (ASE) data was generated using 

samtools65 (v1.2) mpileup and quantified as the deviation of the reference allele ratio from 

0.5. We only considered heterozygous sites with at least 30 reads and where both the 

reference and alternate allele comprised at least 2% of all supporting reads. We additionally 

restricted our analyses to sites with an ENCODE mappability score equal to one. Finally, we 

excluded ASE data for 49 genes that showed significantly biased trends in allelic effects 

across individuals in our study, the DGN cohort, or the GEUVADIS cohort (Supplementary 

Table 25; Supplementary Figure 15).

Quantitative trait loci (QTL) mapping

We used an integrated map of ~15 million SNPs for the 606 genotyped samples to map 

eQTLs and sQTLs using Merlin64 (v1.1.2). We excluded variants that were not in Hardy-

Weinberg equilibrium (HWE p-value < 1 x 10−6), had a MAF < 1% in the 606 samples, or 

had an imputation R2 less than 0.3. Expression values (either expression residuals or isoform 

ratios) were standardized using Merlin’s inverse normal option. For each gene and isoform, 

we tested the association of the trait with all cis variants within 1 Mb from the transcription 

start site (TSS) of the gene. We estimated the overall false discovery rate (FDR) by 
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permutation (see Supplementary Note). We additionally calculated adjusted p-values by 

selecting the top association for each gene/isoform, applying a gene-level Bonferroni 

correction, and applying the Benjamini-Hochberg procedure66 to the collection of top 

associations. Independent gene/isoform QTLs were identified by forward step-wise 

regression, in which significant QTLs were iteratively regressed out until the next best QTL 

was no longer significant at an FDR of 5% (Supplementary Figure 16). We also identified 

independent QTLs using MLMM28, a stepwise linear mixed model approach, and found 

similar results to our Merlin-based pipeline (Supplementary Tables 6–7). Additionally, we 

performed simulations in order to show that our independent QTL results were not a result 

of statistical noise, residual LD, and genotyping errors. Specifically, we repeated the 

following simulation ten times. For each gene with at least one eQTL, we chose a common 

SNP (MAF > 5%) within 1 Mb of the TSS to explain 25% of the gene expression variance in 

the simulated trait. We then ran our Merlin-based pipeline to detect independent eQTLs on 

the simulated expression traits, iteratively regressing out significant SNPs. We repeated these 

simulations a second time, excluding the randomly selected causal SNP from the association 

stage. We then compared the number of independent eQTLs identified in the real data versus 

the simulated datasets (Supplementary Tables 8–9).

We mapped aseQTLs by computing the Spearman correlation of allelic imbalance in the 

15,243 expressed genes with the genotype of nearby cis variants (within 1 Mb of the 

heterozygous site). Genotypes at cis variants were encoded as 0 (samples homozygous for 

the reference or non-reference allele) or 1 (heterozygous samples). In order to compare 

effect sizes across studies, we identified eQTLs and aseQTLs in 188 unrelated Sardinians 

and compared them with a randomly chosen subset of 188 unrelated individuals in DGN17 

and GEUVADIS15. eQTLs in the unrelated 188 individuals for each cohort were 

recalculated using Matrix eQTL67. We estimated the reproducibility of Sardinian eQTLs 

using the π1 statistic68 after re-processing each dataset with our pipeline (Supplementary 

Tables 10–11, 26). A full description of how we controlled for power differences across 

studies is available in the Supplementary Note.

Co-localization of GWAS and eQTL signals

Co-localization analyses were performed with eCAVIAR29 using default parameters. 

eCAVIAR calculates a posterior probability that two association signals overlap (CLPP 

score), accounting for linkage disequilibrium in the study population where the two signals 

are measured. The supplied LD was computed with vcftools (for the GWAS signals outside 

of Sardinia, we used LD calculated for European genotypes in the 1000 Genomes Project). 

For the ARHGDIB co-localization analyses, associations with neutrophil and lymphocyte 

percentages were calculated within SardiNIA. For the co-localization analysis between 

multiple sclerosis GWAS and eQTL associations, we used the GWAS data provided by the 

International Multiple Sclerosis Genetics Consortium69 and the primary eQTL association 

data from Sardinia (i.e. the association for each SNP without adjusting for conditionally 

independent eQTLs). We calculated the CLPP score for the identified MS gene as well as 

nearby genes (±1 Mb of the GWAS SNP) and report the rank of the identified gene in the list 

of all genes tested for that GWAS locus (Supplementary Table 15). For the 21 genes we 

tested, 14 of the target genes had the highest evidence of co-localization versus background 
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and 3 had the second highest evidence of co-localization. Only two genes showed very little 

evidence of co-localization (CD6 and CTD-2006C1.2).

Allelic differentiation, selection, and disease association

Analysis of allelic differentiation and selection was carried out on a subsample (n = 691) of 

the SardiNIA cohort for which phased genotyped data was already available20 and on data 

from the 1000 Genomes Phase 35. Integrated haplotype scores (iHS) were computed using 

the selscan70 software on common variants (MAF ≥ 1%) that passed QC filters (see 

Supplementary Note). The delta allele frequency for Sardinian QTLs, ΔAFSRD–EUR, was 

computed as the deviation between the Sardinian MAF and the European MAF (as 

computed by the 1000 Genomes project). We then tested for the enrichment of different 

eQTLs near significant GWAS loci. Briefly, we identified significant eQTL in high LD with 

significant GWAS SNPs (r2 greater than 0.8). For each GWAS trait, we then built a 2x2 

count table where the rows separated differentiated eQTLs from non-differentiated eQTLs 

and the columns separated eQTLs in LD with a GWAS SNP and eQTLs not in LD with a 

GWAS SNP. We then performed a Fisher’s exact test on each GWAS contingency table, 

where a significant p-value after Bonferroni correction for the number of traits tested 

implicated an enrichment of differentiated eQTLs for the GWAS trait relative to all 

significant eQTLs in Sardinia (Supplementary Table 14). We repeated these analyses using 

different thresholds for differentiation (ΔAFSRD–EUR greater than 0.05, 0.10, 0.15, 0.20, and 

0.25) (Supplementary Figure 7). We identified novel eQTLs in Sardinia by excluding SNPs 

recorded in other SNP databases (1000 Genomes Phase 35, dbSNP71, ExAC11, and the 

UK10K project4.

Identifying heritable patterns of outlier gene expression

For the 61 trios in our study, we developed a generalized likelihood ratio test that identifies 

extreme gene expression signatures that are shared between one parent and their child (a full 

derivation of the test is given in the Supplementary Note). In practice, we ran our outlier 

pipeline on the same PEER normalized data as we did for the eQTL analyses; we tested 

another normalization pipeline to see if PEER was over-correcting outlier signals but found 

less results overall (instead of using PEER, we regressed out covariates that were highly 

correlated with PEER factors as described in Supplementary Table 27). We tested each trio 

for all 15,243 expressed genes used in the eQTL analyses and evaluated significance via 

permutation, selecting the most significant trio for each gene and applying the Benjamini-

Hochberg adjustment66. For all genes with an outlier trio at a 10% FDR we compared ASE 

in the outlier individuals with ASE in the rest of the participants (non-outliers). We next 

identified rare variants shared between outlier parents and children in the 250 kb window of 

the outlier gene and measured the relative enrichment of these variants with similarly 

identified variants in non-outlier individuals; confidence intervals were calculated via 

bootstrap resampling (B = 1000) of all observed shared rare variants. Shared rare variants 

were annotated with chromatin state annotations from peripheral blood mononuclear cells 

(E062) from the Roadmap Epigenomics Consortium49 (Supplementary Table 28). Log odds 

scores and confidence intervals were calculated using Fisher’s exact tests for all functional 

annotations (Supplementary Tables 19–20). We then tested whether the effect of these 
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shared rare variants on expression replicated in the larger study cohort (i.e. where there were 

at least 4 carriers in the population).

Clinical relevance of candidate causal rare variants

We prioritized 30 of these shared rare variants as candidate causal variants based on several 

annotations (e.g. proximity to the TSS, were either highly conserved/deleterious, or were 

potential splicing variants) (Supplementary Table 21). Five of these were associated with 

genes near significant GWAS loci and 3 were associated with genes previously implicated in 

the manifestation of clinical traits available to us for study. We tested these rare variants for 

association to the complex traits or disease they were predicted to impact. For categorical 

traits (e.g. Celiac disease and bipolar disorder), we performed a likelihood ratio test 

comparing two nested logistic regression models with the full model (genotype at the rare 

variant locus, sex, age, and age2) and the reduced null model (without the above covariates). 

Empirical p-values were computed by permuting sample genotypes 1000 times. To test rare 

variants for continuous traits (e.g. BMI), we ran the lmekin function from the kinship R 

package to perform a likelihood ratio test comparing two nested linear mixed models with 

the full model (genotype at the rare variant locus, sex, age, and age2) and the reduced null 

model (without the above covariates). We then calculated the Pearson correlation between 

outlier gene expression and the adjusted trait data and calculated the correlation of gene 

expression with each clinical trait for each outlier gene-trait association; significance was 

assessed as the percentile of the empirical distribution obtained from the p-values for all 

tested genes (Supplementary Tables 23–24).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. QTLs show larger effect sizes in Sardinia compared to Europe
The distribution of Spearman correlation coefficients (absolute value) is shown for (a) top 

expression QTLs (eQTLs) and (b) top allele-specific expression QTLs (aseQTLs) in 

Sardinia, Geuvadis, and DGN. Top eQTLs and aseQTLs in Sardinia show increased 

correlations relative to Geuvadis and DGN. To make analyses comparable across studies, 

188 unrelated individuals from each study were uniformly processed and analyses were 

performed on a subset of genes that were quantifiable in all three studies.
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Figure 2. Differentiated eQTLs in Sardinia
(a) Sardinian eQTLs are plotted based on their allele frequency in Europe (measured in the 

1000 Genomes Project) and Sardinia. Blue points represent eQTLs in the top 1% of the |

ΔAF| distribution. Sample sizes: |ΔAF| > 0.00 (n = 19,108 eQTLs), > 0.05 (n = 6,793), > 

0.10 (n = 2,151), > 0.15 (n = 567), > 0.20 (n = 134), and Top 1% (n = 192). (b) eQTLs with 

larger allele frequency differences compared to Europe have longer tracts of LD decay as 

potential evidence for recent positive selection. These are compared to eQTLs that have 

comparable allele frequencies in Sardinia and Europe (allele frequencies within ±2.5%; blue 

lines) as well as randomly selected, distance to TSS-matched, non-eQTL variants with large 

allele frequency changes (black line). (c) eQTLs linked to multiple sclerosis variants and 

malaria-associated genes are both enriched in allele frequency difference changes between 

Sardinia and Europe. (d) The significance of the top ten trait enrichments for differentiated 

eQTLs (red = ΔAF, blue = FST) after Bonferroni correction for all possible tests. Traits with 

less than 10 eQTLs in LD were filtered out.
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Figure 3. Outlier gene expression in Sardinian trios
(a) An example of a significant gene expression outlier effect that segregates in a single 

Sardinia trio. The father and daughter both under express the RINL gene and share a rare 

splicing variant. (b) A scatterplot showing the sharing of extreme gene expression patterns 

between parents and children in 61 Sardinian trios, with significant outliers highlighted 

(orange = 5% FDR and yellow = 10% FDR). (c) Heterozygous sites in outlier genes show 

elevated levels of allelic imbalance (AI) in outlier individuals (red) versus the rest of the 

population (gray). Allelic imbalance (AI) measures the absolute deviance of the reference 

allele ratio from 0.5 at heterozygous sites. (d) Correlation matrices for gene expression and 

allele-specific expression within outlier trios suggest that the extreme regulatory effects are 

restricted to the affected individuals and not primarily a family-specific event due to a shared 

environment. (e) The relationship between outlier gene expression and allelic imbalance 

(AI) in outlier (red) and non-outlier (gray) individuals. The mean ± one s.d. is shown for 

each bin.
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Figure 4. Properties of rare, shared variants near outlier genes
(a) Relative enrichment in the number of rare variants transmitted between outlier parents 

and children versus non-outlier parents and children. Relative enrichments were calculated 

in overlapping windows of 5 kb for the 250 kb regions adjacent to the TSS and TES of 

outlier genes. Enrichment is measured as the relative risk of finding rare shared variants in 

outlier versus non-outlier lineages in each window. (b) Shared rare variants in outlier 

lineages are enriched for functional regions of chromatin in peripheral blood and splice 

donor/acceptor regions. Enrichments are shown as the log odds ratio derived from Fisher’s 

exact tests with 95% confidence intervals. (c) The position of shared rare variants is plotted 

relative to the TSS against the regression coefficient derived from the rare eQTL analysis. 

The color represents under-expression (blue) and over-expression (yellow) rare eQTLs, and 

the size indicates relative significance. (d) Metrics of conservation, evolutionary constraint, 

fitness, and deleteriousness can identify the most significant rare eQTLs. The mean ± one 

s.d. is shown for each bin.
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Figure 5. Gene expression patterns in carriers of rare splicing variants
We identified five splicing variants in under-expression outliers - for each variant, the 

expression level of the affected gene is shown in red for heterozygous carriers in the Sardinia 

cohort and gray for individuals homozygous for the reference allele. The rare splicing 

variants for each gene are given here: chr12:g.121570899G>T for P2RX7; chr5:g.

68490523G>A for CENPH; chr1:g.152009388C>T for S100A11; chr19:g.39368871C>T for 

RINL; and chr6:g.33237597C>G for VPS52.
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Table 1
Expression traits with at least one eQTL

We report the number of tests performed and the number of significant QTL associations for different 

expression traits at a false discovery rate of 5%. Associations that are significant by BH are significant after 

Bonferroni correction and Benjamini-Hochberg adjustment (see Methods)

Measurement Trait type # of tested traits
# of traits with at least one QTL (FDR 5%)

BH By permutation

Gene-level Protein coding 11,477 8,381 (73%) 9,019 (79%)

lncRNA 1,694 991 (69%) 1,258 (74%)

miRNA precursors 172 48 (27%) 55 (32%)

Other 1,900 935 (39%) 835 (44%)

Total 15,243 10,329 (68%) 11,167 (73%)

Isoform-proportion* Protein coding 11,116 3,865 (35%) 4,515 (41%)

lncRNA 826 335 (41%) 373 (45%)

Other 661 213 (32%) 323 (49%)

Total 12,603 4,413 (35%) 5,120 (41%)

*
Isoforms results are reported at gene-level (only one sQTL per gene is reported)
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