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Abstract

Background and aim

Estimation of a PET tracer’s non-displaceable distribution volume (VND) is required for quan-

tification of specific binding to its target of interest. VND is generally assumed to be compara-

ble brain-wide and is determined either from a reference region devoid of the target, often

not available for many tracers and targets, or by imaging each subject before and after

blocking the target with another molecule that has high affinity for the target, which is cum-

bersome and involves additional radiation exposure. Here we propose, and validate for the

tracers [11C]DASB and [11C]CUMI-101, a new data-driven hybrid deconvolution approach

(HYDECA) that determines VND at the individual level without requiring either a reference

region or a blocking study.

Methods

HYDECA requires the tracer metabolite-corrected concentration curve in blood plasma and

uses a singular value decomposition to estimate the impulse response function across sev-

eral brain regions from measured time activity curves. HYDECA decomposes each region’s

impulse response function into the sum of a parametric non-displaceable component, which

is a function of VND, assumed common across regions, and a nonparametric specific com-

ponent. These two components differentially contribute to each impulse response function.

Different regions show different contributions of the two components, and HYDECA exam-

ines data across regions to find a suitable common VND. HYDECA implementation requires

determination of two tuning parameters, and we propose two strategies for objectively

selecting these parameters for a given tracer: using data from blocking studies, and realistic

simulations of the tracer. Using available test-retest data, we compare HYDECA estimates

of VND and binding potentials to those obtained based on VND estimated using a purported

reference region.
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Results

For [11C]DASB and [11C]CUMI-101, we find that regardless of the strategy used to optimize

the tuning parameters, HYDECA provides considerably less biased estimates of VND than

those obtained, as is commonly done, using a non-ideal reference region. HYDECA test-

retest reproducibility is comparable to that obtained using a VND determined from a non-

ideal reference region, when considering the binding potentials BPP and BPND.

Conclusions

HYDECA can provide subject-specific estimates of VND without requiring a blocking study

for tracers and targets for which a valid reference region does not exist.

Introduction

Positron Emission Tomography (PET) in the brain involves administration of a tracer dose of

a radioactively labeled molecule (i.e., tracer) that binds to a specific target [1]. The tracer signal

in the tissue combines signal from tracer “specifically” bound to the target and tracer “non-

specifically” bound to other macromolecules or free in tissue water. Estimation of tracer non-

displaceable uptake allows quantification of the specific binding potential between tracer and

target [2, 3]. The tracer non-displaceable distribution volume (VND), corresponding to “non-

specifically” bound and free tracer, is commonly estimated using either the tracer binding level

in a reference region that is devoid of the target [2, 3], or a blocking study which involves a

baseline PET scan and a second scan with a blocking drug administered just before the tracer

[4, 5].

In a valid reference region, the tracer is either free or only “non-specifically” bound, and its

volume of distribution (VT) in such a region (VT-RR) is typically assumed to represent the

brain-wide VND. For many targets this approach is not appropriate because there is no valid

reference region, as the target is present throughout the brain [6–16], and thus the signal in

any region includes some specific binding. Using an invalid reference region over-estimates

VND, causing underestimation of binding potentials [16], and can confound interpretation of

results [17–20]. Automatic extraction of a reference region signal using cluster analysis [7, 10,

12] of the brain PET data is often not successful, or greatly depends on the data used to train

the clustering algorithm [21].

Alternatively, a blocking study with tracer injections before and after a saturating dose of

an antagonist with high affinity for the same target of interest allows estimation of brain-wide

VND using a Lassen plot [4, 5]. However, performing a blocking study in each subject is cum-

bersome, costly, doubles the radiation exposure, can involve side effects related to the blocking

agent, and is therefore generally avoided in clinical research.

A parametric pseudo-reference tissue model was proposed [22] for tracers that have no

ideal reference region, which provides estimates only for the binding potential BPND [2] and

not for VND and thus not for binding potentials BPP and BPF [2], and assumes that BPND in

the pseudo reference region can be estimated from additional competition data. A genomic

plot was also recently proposed, which provides VND estimates only at the population level and

requires that the brain maps of messenger RNA transcripts of the specific target of interest be

available from the Allen Brain Atlas [23].
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Based on compartment models (CMs) [24], we proposed to perform at the individual sub-

ject level simultaneous estimation of a common VND across regions [25] when no valid refer-

ence region is available. However, for some tracers such as [11C]DASB (target: serotonin

transporter), the simultaneous estimation of VND across regions often fails to give a unique

solution. Separately, we also showed [26] that nonparametric deconvolution is an alternative

quantification approach for PET data, which computes binding potentials comparable to esti-

mates by CMs, and for some tracers, shows superior test-retest performance than quantifica-

tion by CMs [26].

We now propose a new hybrid deconvolution approach (HYDECA) that combines decon-

volution and simultaneous search across regions to calculate a brain-wide VND when arterial

blood data are available but a valid reference region is not. HYDECA is validated for [11C]

DASB and [11C]CUMI-101 (target: serotonin 1A receptor) using simulations and blocking

studies [11, 27], and evaluated in test-retest datasets [10, 28].

Materials and methods

Human subjects and animal studies

Data from published blocking studies in baboons [27] and humans [11], and test-retest data-

sets in humans [10, 28] were used. Human studies were performed in accordance with the

1964 Declaration of Helsinki and its later amendments and approved by The Institutional

Review Boards of Columbia University Medical Center (CUMC) and New York State Psychi-

atric Institute (NYSPI). Animal studies were performed with the approval of the CUMC and

NYSPI Institutional Animal Care and Use Committees, according to all applicable regulations

governing the use of animals in research.

Nonparametric quantification

According to the extended indicator dilution theory [26, 29], the tracer signal in tissue in a

brain region i, CTi(t), after correction for the presence of tracer in vasculature, is a scaled con-

volution between the metabolite-corrected input function in the arterial plasma, CP(t), and the

so-called tissue residue function, Ri(t):

CTi
ðtÞ ¼ KiðCP 
 RiÞðtÞ ð1Þ

While Ki [mL�cm-3�min-1] is a proportionality constant, Ri(t) is defined in the theory of the

indicator-dilution method as the fraction of indicator that remains in the tissue after an ideal-

ized bolus input concentration at time zero. Initially, the residue must be unity (Ri(0) = 1) and

from there it decreases (or at least does not increase) with time (refer to [29] for details).

Among many nonparametric approaches that can be used to estimate the impulse response

function (IRF) in each region i, IRFi(t) = KiRi(t), from known CP(t) and CTi(t), we proposed

using singular value decomposition (SVD) with data-driven selection of the threshold that we

described elsewhere [26].

Hybrid deconvolution approach

In the context of PET reversible radiotracers, Ri(t) can be interpreted as the fraction of tracer

molecules remaining in the tissue over time, and these molecules can be specifically bound to

the target, free in water or bound to other molecules. HYDECA decomposes each region Ri(t)

into the sum of a parametric non-displaceable component, which is approximated as a mono-

exponential function depending on VND, assumed common across regions (see details below

and comments on the validity of this approximation in the Discussion), and a nonparametric
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specific component. For any choice of VND defining the non-displaceable component, the

nonparametric specific component can be estimated by subtraction.

Performing such a decomposition for observed PET data can be challenging, but the goal of

HYDECA is to objectively ascertain a “reasonable” VND value by examining data across regions.

To illustrate this idea, Fig 1 shows Ri(t) curves in two representative regions, calculated using a

two-tissue CM (2TCM) [24] (see Eq 8) and based on kinetic rates derived from data with [11C]

DASB [28]. Non-displaceable component curves based on two “unreasonable” choices of VND

(a value that is 1/4 and 4 times the magnitude of the true VND, respectively) are compared to

the non-displaceable component calculated with the true VND (the “most reasonable” choice).

The non-displaceable component and the corresponding specific component differentially con-

tribute to Ri(t) and two effects can be observed. The first effect is that, at time zero, the differ-

ence between the slope of Ri(t) and that of the non-displaceable component is small, if the VND

value is close to the true VND. The second effect is that, when the VND value used for the non-

displaceable component is larger than the true VND, the corresponding specific component

results in negative values, violating its positivity constraints. Different regions show different

contributions of non-displaceable and specific component to Ri(t). HYDECA is based on find-

ing a VND value that, across regions, provides the best compromise between these two effects.

To do so, HYDECA requires as input CP(t) and CTi(t) curves from a pre-determined set of

N brain regions, once corrected for the presence of vasculature. In our implementation we

assumed a brain-wide blood volume of 5%. HYDECA estimates VND as follows:

IRFi(t) is estimated in each region i from CTi(t) and CP(t) using SVD as described [26]; Ki

is obtained as the value of IRFi(t) at time zero (Ri(0) = 1 by definition for an idealized bolus

input; see “Implementation” section below for comments); Ri(t) is then obtained dividing

IRFi(t) by the Ki estimate;

Ri(t) is expressed in each region i as the sum of a parametric non-displaceable component

(corresponding to an ideal one-tissue CM with distribution volume of VND), RND(t), and a

nonparametric specific component, Si(t):

RiðtÞ ¼ RNDðtÞ þ SiðtÞ ¼ e� tKi=VND þ SiðtÞ ð2Þ

Assuming a mono-exponential for RND(t) represents an approximation (if a 2TCM is

needed to describe the data in a given region, RND(t) would be described by two exponentials

[24]), whose validity varies across regions (see comments on the validity of this approximation

in the Discussion); HYDECA examines data across regions to find a suitable common VND.

The property expressed in Eq (2) can be derived from CMs as follows:

VT ¼ VND þ VS ¼ VND þ BPP ð3Þ

VT ¼
Ð þ1

0
KiRiðtÞdt ¼ Ki

Ð þ1
0

RNDðtÞdtþ Ki

Ð þ1
0

SiðtÞdt ð4Þ

RiðtÞ ¼ RNDðtÞ þ SiðtÞ ¼ e� tKi=VND þ SiðtÞ ð5Þ

with binding potential BPP as in [2]; HYDECA expresses parametrically only RND(t).

For fixed values of the tuning parameters β and γ, the following cost function is minimized

over VND using all N regions:

cðVNDÞ ¼ SN
i¼1

Stj<g½RiðtjÞ � e� tjKi=VND �
2
þ b

Ð t�

0
½RiðtÞ � e� tKi=VND �dt

n o
ð6Þ

Minimization of the first term in Eq (6), which represents the residual sum of squares between

Ri(t) and RND(t), calculated up to time γ after tracer injection, identifies VND values that
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provide RND(t) curves with a slope close to the slope of Ri(t) at time zero. Given the difficulty

in accurately estimating slopes from noisy data, the difference in the slope is approximated as

the residual sum of squares between the two curves. The tuning parameter γ controls the num-

ber of data points considered for this calculation. Minimization of the second term, which rep-

resents the negative area of the curve of the corresponding Si(t), in the case that a portion of

Si(t) assumes negative values, penalizes VND values that lead to unphysiological Si(t) values

(Fig 1). If Si(t) is everywhere positive then there is no contribution of the second term. If Si(t)

has negative values, then the time t� is data-derived as the time point after which Si(t) has con-

sistently positive values. The tuning parameter β weights the contribution of the second term

relatively to the first term. We propose and compare two strategies for setting optimal values

for the tuning parameters β and γ for a given tracer.

Tuning with simulations

One strategy involves simulating data that imitate characteristics of real data for the tracer at

hand, letting β and γ vary over a grid of possible values, and identifying optimal β and γ as

Fig 1. Illustration of the idea behind the algorithm in the hybrid deconvolution approach. Ri(t) curves (black lines) calculated using the IRF of the

2TCM and values of the kinetic rates derived from a study with [11C]DASB for 2 representative regions. Red solid lines indicate the non-displaceable

component calculated with a VND that is 1/4 the size of (top) and 4 times higher than (bottom) the true underlying VND; green dotted lines indicate the non-

displaceable component calculated with the true underlying VND; blue lines indicate the corresponding specific component. Inset plots are added to allow

closer inspection of the first 10 minutes after tracer injection. The time t* is derived from the data as the time point after which the specific component has

consistently positive values. IRF: impulse response function; 2TCM: two-tissue compartment model; VND: non-displaceable distribution volume.

https://doi.org/10.1371/journal.pone.0176636.g001
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those values that allow HYDECA to generate an estimate of VND that, on average across all

simulated instances, is closest to the true simulated VND (VND_TRUE).

We considered a metabolite-corrected input function CP(t) and kinetic rate values in the

same brain regions we considered in previous publications [25, 26] based on available data

[10, 28]: cerebellar gray matter (CGM), temporal lobe (TEM), hippocampus (HIP), dorsal cau-

date (DCA), amygdala (AMY), and ventral striatum (VST), for [11C]DASB; CGM, HIP, TEM

and occipital lobe (OCC), and cingulate (CIN) for [11C]CUMI-101. Noise-free CTi(t) curves

were generated for each region using a 2TCM [3, 24]:

CTi
ðtÞ ¼ K1iðCP 
 IRFiÞðtÞ ð7Þ

IRFiðtÞ ¼
k3i þ k4i � a1i

a2i � a1i
e� ta1i þ

a2i � k3i � k4i

a2i � a1i
e� ta2i ð8Þ

a1i ¼
k2i þ k3i þ k4i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2i þ k3i þ k4iÞ
2
� 4k2ik4i

q

2

a2i ¼
k2i þ k3i þ k4i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2i þ k3i þ k4iÞ
2
� 4k2ik4i

q

2

8
>>>>><

>>>>>:

ð9Þ

where K1i, k2i, k3i, and k4i are the values for the kinetic rate parameters of region i. Table 1 lists

the kinetic rate values used in each of two simulated cases per tracer: 1) common VND_TRUE is

3, and 50% of the tracer VT-RR is specific binding (cerebellar grey matter VT ~6); 2) common

VND_TRUE is 5, and ~17% of the tracer VT-RR is specific binding (cerebellar grey matter VT ~6).

In all cases, we simulated Gaussian noise with zero mean. To ensure realistic noise charac-

teristics, the variance-covariance matrix used to generate simulated noise was estimated from

a matrix of residuals, standardized across time points, from the fits for the considered regions

using available data [10, 28]. In all cases, we simulated 1000 CTi(t) curves for each region.

For each tracer and VND_TRUE case, we then: 1) considered a grid of β (0.5 to 14; step: 0.5)

and γ values (1 to 30 minutes after tracer injection; step: 1); 2) calculated the cost function (Eq

6) corresponding to all combinations of β and γ within the grids, and over a grid of VND values

(0.1 to 7; step: 0.1), in each of the simulated instances; 3) considered the average cost function

(across instances) corresponding to each of the combinations of β and γ; 4) estimated VND as

the value that minimizes each of these average cost functions; and 5) calculated the corre-

sponding absolute estimation error as |VND_TRUE−VND|. After obtaining the association

between each combination of β and γ within the grids and the corresponding bias of the VND

estimate, we selected as optimal β and γ derived via simulations (βopt-S, γopt-S) the values pro-

viding the smallest bias.

Tuning with blocking studies

Another strategy involves using blocking studies, if available, letting β and γ vary over a grid of

possible values, and identifying optimal β and γ as those values in correspondence of which

HYDECA provides a VND that is, on average across all subjects in the dataset, the closest to the

VND estimated using both scans before and after blocking and Lassen plot [5] (VND_LASSEN).

We examined 13 healthy controls imaged with [11C]DASB before and after administration

of sertraline [11], and 8 pairs of scans performed on healthy baboons with [11C]CUMI-101

before and after either WAY100635 or 8-OH-DPAT [27].

In each pair, we computed VND_LASSEN using both scans before and after blocking and the

same regions considered in simulation. We then: 1) considered the same grids for β and γ as in
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tuning with simulations; 2) calculated the HYDECA cost function corresponding to all combi-

nations of β and γ within the grids, and over a grid of VND values (0.1 to 30; step: 0.1), using in

each pair only the scan before blocking and the same regions considered in simulation; 3) esti-

mated VND as the value that minimizes each of these cost functions; 4) calculated the corre-

sponding absolute estimation error as |VND_LASSEN−VND|; and 5) calculated the average

(across all subjects within a tracer) estimation error obtained for each combination of β and γ.

After obtaining the association between each combination of β and γ within the grids and the

corresponding bias in the VND estimate, we selected as optimal β and γ derived via blocking

studies (βopt-B, γopt-B) the values providing the smallest bias.

In each scan before blocking, we calculated the percent difference (PDVND) between VND

estimated using HYDECA (with tuning parameters set with either strategy) and the corre-

sponding VND_LASSEN, as PDVND = 100�|VND_LASSEN−VND|/ VND_LASSEN.

Implementation

HYDECA, implemented in Matlab R2012b (www.mathworks.com/), is a fast algorithm that

runs in ~14 seconds for one subject on an iMac machine, 3.5 GHz Intel Core i7 Processor,

once β and γ are determined. The most computationally demanding component is the data-

Table 1. List of kinetic rate values used in the simulations.

region K1 [mL�cm-3�min-1] k2 [min-1] k3 [min-1] k4 [min-1] VT [mL�cm-3]

[11C]DASB

VND = 3

cerebellar grey matter 0.540 0.180 0.540 0.550 5.96

temporal lobe 0.463 0.154 0.505 0.168 12.00

hippocampus 0.404 0.135 0.103 0.026 14.92

dorsal caudate 0.509 0.170 2.900 0.615 17.14

amygdala 0.380 0.127 1.510 0.270 19.78

ventral striatum 0.476 0.159 3.452 0.357 32.02

VND = 5

cerebellar grey matter 0.542 0.108 0.542 2.816 5.96

temporal lobe 0.463 0.093 0.505 0.361 12.00

hippocampus 0.404 0.081 0.103 0.052 14.92

dorsal caudate 0.509 0.102 2.900 1.194 17.14

amygdala 0.380 0.076 1.510 0.511 19.78

ventral striatum 0.476 0.095 3.452 0.639 32.02

[11C]CUMI-101

VND = 3

cerebellar grey matter 0.450 0.150 0.050 0.050 6.00

hippocampus 0.360 0.120 0.130 0.030 16.00

temporal lobe 0.300 0.100 0.100 0.050 9.00

occipital lobe 0.450 0.150 0.080 0.050 7.80

cingulate 0.330 0.110 0.090 0.050 8.40

VND = 5

cerebellar grey matter 0.450 0.090 0.050 0.250 6.00

hippocampus 0.360 0.072 0.130 0.059 16.00

temporal lobe 0.300 0.060 0.100 0.125 9.00

occipital lobe 0.450 0.090 0.080 0.143 7.80

cingulate 0.330 0.066 0.090 0.132 8.40

https://doi.org/10.1371/journal.pone.0176636.t001
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driven selection of SVD threshold [26]. The computational time required to optimize the tun-

ing parameters initially for a given tracer depends on the selected strategy. If this is done using

simulations, this can take up to a few hours. Using blocking studies, the computation is com-

plete within a few minutes.

Only with an idealized bolus input does Ri(t) reach its maximum at time zero, and in such a

case, Ki could be derived from the value of the reconstructed IRFi(t) = KiRi(t) at time zero.

With a realistic bolus infusion of the tracer, Ri(t) reaches its maximum at some time t > 0, and

implementation that estimates Ki as the maximum of the reconstructed IRFi(t) is preferable.

Furthermore, in our implementation, all deconvolved Ri(t) curves are first shifted to have their

maximum value correspond to time zero before calculating the HYDECA cost function in Eq

(6). We do not perform any correction for a physiological delay between CTi(t) in the different

regions and CP(t).

Estimation using the non-ideal reference region

To investigate the bias of HYDECA VND estimates relative to estimates measured using the

Lassen plot, and in comparison to the common practice of setting VND equal to VT-RR even

when the reference region is known not to be valid, we utilized only the scans before blocking

in the two available datasets to calculate VT in CGM starting from CP(t) and CTi(t), using both

a 2TCM [24] and Likelihood Estimation in Graphical Analysis (LEGA) [30]. CGM was chosen

as reference region as it has the lowest VT [10, 28] and least displacement of all regions exam-

ined in our blocking studies [11, 27]. LEGA provides the best test-retest reproducibility over

analysis with CMs and other graphical approaches for estimates with both tracers [10, 28].

PDVND with respect to VND_LASSEN was also calculated for VT-RR obtained with both 2TCM

(VT-RR,2TCM) and LEGA (VT-RR,LEGA).

Application to test-retest data

As VND is estimated in order to calculate binding potentials, we considered two available test-

retest datasets with [11C]DASB [28] and [11C]CUMI-101 [10] and investigated the reproduc-

ibility of binding potentials derived using HYDECA versus using the purported reference

region (CGM). Both test-retest datasets included only healthy controls, who were imaged with

the radiotracer in question twice in one day (once in the morning, once in the afternoon) in a

test-retest study design. In all scans, we calculated VND (using HYDECA with optimal β and γ
set with either strategy, and considering the same regions used in simulation), VT-RR,2TCM,

and VT-RR,LEGA. For each test-retest pair and region, we calculated the percent difference

PDVND-TRT as 100
jVTEST � VRETEST j

ðVTESTþVRETEST Þ=2
, where VTEST is the VND or VT-RR estimate in the test scan,

and VRETEST the VND or VT-RR estimate in the retest scan. We compared PDVND-TRT values

obtained from the different methods using a two-tailed paired t-test, considering all possible

pairwise combinations of methods.

In all scans and regions, we then calculated the binding potentials BPP and BPND [2] based

on: 1) VND by HYDECA (VND (HYDECA)), as BPP-HYBRID = VT (LEGA)–VND (HYDECA)

and BPND-HYBRID = BPP-HYBRID/VND (HYDECA), where VT (LEGA) is the VT obtained in

each target region using LEGA; 2) VT-RR,LEGA, as BPP-RR,LEGA = VT (LEGA)–VT-RR,LEGA

and BPND-RR,LEGA = BPP-RR,LEGA/VT-RR,LEGA; 3) VT-RR,2TCM, as BPP-RR,2TCM = VT (2TCM)–

VT-RR,2TCM and BPND-RR,2TCM = BPP-RR,2TCM/VT-RR,2TCM, with VT (2TCM) the VT obtained

in each target region using 2TCM; and 4) direct calculation from 2TCM kinetic rates, as

BPP-direct,2TCM = K1k3/k2k4 and BPND-direct,2TCM = k3/k4.
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For each test-retest pair and region, we calculated the percent difference for the binding

potentials (PDBPP and PDBPND) as 100
jBPT � BPRT j
ðBPTþBPRT Þ=2

, (BPT: test estimate; BPRT: re-test estimate),

and computed average and standard deviation (SD) (across subjects within a tracer) of PDBPP

and PDBPND values in each region. We compared PDBPP and PDBPND values obtained from

the different methods using a two-tailed paired t-test, region by region, considering all possible

pairwise combinations of methods.

Results

Simulation studies

Tuning parameters optimization. Optimization of β and γ using simulations and effects

of β and γ values on VND estimates obtained by HYDECA are shown in Fig 2. As γ (number of

points considered for the first term in Eq (6)) increases, β needs to correspondingly increase to

weight more the second term in Eq (6)), in order to minimize bias in VND estimation.

For each tracer and VND_TRUE case, we selected the optimal β and γ values in correspon-

dence of which HYDECA provides the least biased estimation of VND (Fig 2, white circles): for

[11C]DASB, βopt-S = 4.5 and γopt-S = 6 (VND_TRUE = 3), βopt-S = 1.5 and γopt-S = 9 (VND_TRUE =

5); for [11C]CUMI-101, βopt-S = 7.5 and γopt-S = 8 (VND_TRUE = 3), βopt-S = 4 and γopt-S = 18

(VND_TRUE = 5).

When 50% of VT-RR is specific binding (VND_TRUE = 3), for [11C]CUMI-101 HYDECA pro-

vides an average error in the VND estimation smaller than using VT-RR with any other combi-

nation of β and γ. The error committed using a non-ideal reference region (|errRR|) is nine

times greater than the error committed using HYDECA (|errHYDs|) (|errRR|/|errHYDs| = 9.132).

With [11C]DASB, HYDECA provides an average estimation error smaller than using VT-RR in

correspondence of most combinations of β and γ, with exception of a subset of values (green

circles in Fig 2) (|errRR|/|errHYDs| = 10.210).

When only 17% of the VT in the non-ideal reference region is specific binding (VND_TRUE =

5), for both tracers the number of combinations of β and γ in correspondence of which

HYDECA provides an average estimation error smaller than using VT-RR is reduced. However,

HYDECA with optimized β and γ still generated a robustly more accurate estimate of VND

than VT-RR ([11C]CUMI-101: |errRR|/|errHYDs| = 4.482; [11C]DASB: |errRR|/|errHYDs| = 3.354).

Cost functions and estimation bias with optimized tuning parameters. HYDECA cost

function curves (Eq 6) using (βopt-S, γopt-S) as determined using simulations are convex and

unimodal (Fig 3). The corresponding distributions of VND estimates show a bias, calculated

as the average of (VND_TRUE−VND) across instances, of -0.008 (VND_TRUE = 3) and -0.024

(VND_TRUE = 5) ([11C]DASB), and -0.108 (VND_TRUE = 3) and -0.010 (VND_TRUE = 5) ([11C]

CUMI-101). The variance of the estimates is 0.133 (VND_TRUE = 3) and 0.126 (VND_TRUE = 5)

([11C]DASB), and 0.144 (VND_TRUE = 3) and 0.082 (VND_TRUE = 5) ([11C]CUMI-101).

Blocking studies

Tuning parameters optimization. Optimization of β and γ using blocking studies, and

effect of β and γ values on HYDECA estimates of VND, are shown in Fig 4. With our data, we

found five combinations of β and γ with [11C]DASB and nine with [11C]CUMI-101 that pro-

vide the same minimum absolute error in the VND estimation (Fig 4, white circles); any of

these combinations could be regarded as the optimal β and γ. We selected: βopt-B = 3.5, γopt-B =

10 for [11C]DASB; βopt-B = 5, γopt-B = 11 for [11C]CUMI-101.

With both tracers, only very few combinations of β and γ (Fig 4, green circles) provide an

average absolute error in the VND estimation (|errHYDb|) that is larger than the error using
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VT-RR (|errRR|). The |errRR|/|errHYDb| ratio is 2.939 for [11C]DASB, and 4.027 for [11C]CUMI-

101.

For [11C]DASB, HYDECA with (βopt-S, γopt-S) derived using simulation with VND_TRUE = 5

(Fig 4, pink circles) provides the closest results to HYDECA with (βopt-B, γopt-B) derived using

blocking studies (|errHYDs|/|errHYDb| = 1.022). A VND_TRUE value of 5 is closer to average VND

values obtained using Lassen plot in the available [11C]DASB blocking studies. For [11C]

CUMI-101, HYDECA with (βopt-S, γopt-S) derived using simulation with VND_TRUE = 3 (Fig 4,

yellow circles) provides the closest results to HYDECA with (βopt-B, γopt-B) derived using

Fig 2. Optimization of tuning parameters β and γ using simulations. Average absolute error in the estimation of VND as a function of the values for the

tuning parameters β and γ, for all simulated cases (VND_TRUE = 3, top; VND_TRUE = 5, bottom) and tracers. Each point in the matrices correspond to a

specific combination of β (vertical axis) and γ (horizontal axis) values in the selected grids, and represents the average (across simulated instances)

absolute distance between VND estimate obtained by HYDECA, using the corresponding combination of β and γ, and VND_TRUE. The white circle indicates

the optimal combination of the tuning parameters (βopt-S, γopt-S) derived using simulations in each case, and the average absolute error in the estimation of

VND in correspondence of the optimal tuning parameters is reported (|errHYDs|). Green circles indicate the combinations of β and γ for which HYDECA

provides an average absolute error in the estimation of VND that is higher than the absolute error committed by assuming VND equal to the VT in the non-

ideal reference region (CGM) (|errRR|), and the ratio between |errRR| and |errHYDs| in correspondence of the optimal β and γ is reported. VND: non-

displaceable distribution volume; VND_TRUE: true simulated VND; VT: tracer total volume of distribution; CGM: cerebellum grey matter.

https://doi.org/10.1371/journal.pone.0176636.g002
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Fig 3. Cost functions and estimation bias with tuning parameters β and γ optimized using simulations.

HYDECA cost functions (average across 1000 instances, plus and minus one standard deviation) and corresponding

distribution of VND estimates obtained in simulations with VND_TRUE = 3 and VND_TRUE = 5 with [11C]DASB (top) and

[11C]CUMI-101 (bottom), using the optimal tuning parameters (βopt-S, γopt-S) derived using simulations in each case.

VND: non-displaceable distribution volume; VND_TRUE: true simulated VND.

https://doi.org/10.1371/journal.pone.0176636.g003
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Fig 4. Optimization of tuning parameters β and γ using blocking studies. Average absolute error in the estimation of VND as a function of the values

for the tuning parameters β and γ for both tracers. Each point in the matrices correspond to a combination of β and γ values in the selected grids, and

represents the average (across scans within the same tracer) absolute distance between the VND estimated by HYDECA, using the corresponding

combination of β and γ, and VND_LASSEN. White circles indicate the optimal combinations of the tuning parameters (βopt-B, γopt-B) derived using the blocking

studies, and the average absolute error in the estimation of VND in correspondence of (βopt-B, γopt-B) is reported (|errHYDb|). Green circles indicate the

Estimating PET binding without a reference region

PLOS ONE | https://doi.org/10.1371/journal.pone.0176636 May 1, 2017 12 / 29

https://doi.org/10.1371/journal.pone.0176636


blocking studies (|errHYDs|/|errHYDb| = 1.074). A VND_TRUE value of 3 is closer to average VND

values obtained using Lassen plot and the available [11C]CUMI-101 blocking studies. In the

results that follow, we refer to (βopt-S, γopt-S) for [11C]DASB and [11C]CUMI-101 as those

obtained with the simulation studies with VND_TRUE = 5 and VND_TRUE = 3, respectively.

Estimation bias with optimized tuning parameters. Application of HYDECA to individ-

ual scans in the blocking studies, with β and γ optimized using either strategies, in comparison

to the use of VT-RR is shown in Fig 5. VND estimates by HYDECA with either sets of tuning

parameters are considerably less biased, relative to VND estimates from the Lassen plot, than

those using VT-RR. Estimation of VND using 2TCM in the non-ideal reference region is more

biased than that obtained by HYDECA and LEGA for both considered tracers. Average (± SD)

PDVND values across subjects are: 15.48% (± 9.82) using HYDECA with (βopt-B, γopt-B), 15.40%

(± 11.65) using HYDECA with (βopt-S, γopt-S), 44.16% (± 22.52) using VT-RR,LEGA, and 70.04%

(± 24.00) using VT-RR,2TCM ([11C]DASB); 27.81% (± 19.03) using HYDECA with (βopt-B, γopt-B),

26.08% (± 17.24) using HYDECA with (βopt-S, γopt-S), 70.26% (± 42.82) using VT-RR,LEGA, and

76.10% (± 56.03) using VT-RR,2TCM ([11C]CUMI-101). All VND and VT-RR estimates for all

approaches and both blocking datasets are reported in Table 2. For both tracers, average (across

subjects within each tracer) VND estimates by HYDECA, with β and γ optimized using either

strategies, are closer than both LEGA and 2TCM to average values calculated using Lassen plot,

which is considered standard in the field for in vivo estimation of VND, and SD values are over-

all lower than those for LEGA and 2TCM.

Test-retest studies

Average (across subjects within each tracer) estimates of VND and VT-RR in the test-retest

datasets (Table 3) are consistent with corresponding values found in the blocking datasets

(Table 2), although in the case of [11C]CUMI-101 the two datasets are in different species. VND

values we obtain with HYDECA average 27% of total binding in ventral striatum for [11C]

DASB, and 22% of the total binding in hippocampus for [11C]CUMI-101, which is generally in

line with reports for other PET tracers [31, 32].

Test-retest PDVND-TRT values for VND (Table 4) from the different methods are not statisti-

cally significantly different from each other, with the exception of [11C]DASB, in which case

PDVND-TRT values obtained by HYDECA are statistically significantly higher (indicating worse

reproducibility) than those derived by LEGA (p-values: 0.003 with β and γ set via simulation;

0.002 with β and γ set via blocking study). See Discussion for factors affecting the reproducibil-

ity of VND by HYDECA.

Reproducibility of the binding potentials estimated using HYDECA VND, with β and γ opti-

mized using either strategies, is compared to that of binding potentials based on VT-RR,LEGA,

VT-RR,2TCM, or direct estimation by 2TCM in Fig 6. PDBPP values obtained using HYDECA

with either sets of optimized tuning parameters are close to each other and comparable to val-

ues obtained using VT-RR,LEGA. PDBPP values from the different methods are not statistically

significantly different from each other, with the exception of 2TCM direct estimation, where

PDBPP values are statistically significantly higher (indicating worse reproducibility) than those

of all other methods in the case of [11C]DASB in all brain regions except HIP (range of p-

combinations of β and γ for which HYDECA provides an average absolute error in the estimation of VND that is higher than the absolute error committed by

using the VT in the CGM as an estimation of VND (|errRR|), and the ratio between |errRR| and |errHYDb| in correspondence of the optimal β and γ is reported.

The yellow and pink circle indicates the optimal combination of the tuning parameters (βopt-S, γopt-S) derived using simulation with VND_TRUE = 3 and

VND_TRUE = 5, respectively, and the ratio between |errHYDs| (in correspondence of βopt-S and γopt-S) and |errHYDb| (in correspondence of βopt-B and γopt-B) is

reported. VND: non-displaceable distribution volume; VND_LASSEN: VND estimated using both scans before and after blocking and Lassen plot; VT: tracer

total volume of distribution; CGM: cerebellum grey matter.

https://doi.org/10.1371/journal.pone.0176636.g004

Estimating PET binding without a reference region

PLOS ONE | https://doi.org/10.1371/journal.pone.0176636 May 1, 2017 13 / 29

https://doi.org/10.1371/journal.pone.0176636.g004
https://doi.org/10.1371/journal.pone.0176636


Fig 5. Estimation bias with tuning parameters β and γ optimized using blocking studies. Difference between VND_LASSEN and VND

estimates obtained by HYDECA with (βopt-B, γopt-B) set using blocking studies (y-axis; first row), between VND_LASSEN and VND estimates

obtained by HYDECA with (βopt-S, γopt-S) set using simulations (y-axis; second row), between VND_LASSEN and VND estimated as the VT in the
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CGM using 2TCM (y-axis; third row), and between VND_LASSEN and VND estimated as the VT in the CGM using LEGA (y-axis; bottom), as a

function of VND_LASSEN (x-axis) in individual scans in the blocking study with [11C]DASB (left) and [11C]CUMI-101 (right). Solid lines indicate

the average error; dotted lines indicate average error ± 1.96 standard deviation. The zero line is the dotted black line. VND: non-displaceable

distribution volume; VND_LASSEN: VND estimated using both scans before and after blocking and Lassen plot; VND (HYDECA): VND estimated

using HYDECA; VT-RR,2TCM: distribution volume in the non-ideal reference region calculated using 2TCM; VT-RR,LEGA: distribution volume in

the non-ideal reference region calculated using LEGA; VT: tracer total volume of distribution; CGM: cerebellum grey matter; 2TCM: two-

tissue compartment model; LEGA: Likelihood Estimation in Graphical Analysis.

https://doi.org/10.1371/journal.pone.0176636.g005

Table 2. VND and VT-RR estimates for all approaches in the available blocking datasets and their summary statistics.

VND ESTIMATES in BLOCKING DATASETS

HYDECA (βopt-S, γopt-S)

(baseline scan)

HYDECA (βopt-B, γopt-B)

(baseline scan)

VT-RR,2TCM (baseline

scan)

VT-RR,LEGA (baseline

scan)

LASSEN (baseline and

block scan)

[11C]DASB

sub 1 6.4 6.2 13.1 10.9 6.5

sub 2 6.6 6.3 8.3 8.2 5.7

sub 3 7.5 7.2 11.1 9.3 7.5

sub 4 6.7 6.4 13.0 9.0 6.8

sub 5 11.1 10.7 14.9 14.8 8.6

sub 6 8.4 8.3 15.4 11.2 7.2

sub 7 6.6 6.3 9.8 7.7 7.2

sub 8 9.4 8.8 12.6 12.6 8.7

sub 9 5.8 5.4 12.8 8.9 7.2

sub

10

6.3 6 10.9 9.2 7.4

sub

11

6.1 5.7 12.8 9.4 7.1

sub

12

8.3 7.9 10.8 10.8 6.2

sub

13

6.7 6.5 8.6 8.6 5.0

mean 7.4 7.1 11.9 10.0 7.0

SD 1.5 1.5 2.2 2.0 1.0

[11C]CUMI-101

scan

1

3.1 3.5 6.7 6.6 4.1

scan

2

2.2 2.5 3.6 3.8 2.1

scan

3

3.4 3.8 7.0 6.9 4.2

scan

4

2.2 2.9 5.1 5.3 4.2

scan

5

3.3 3.7 5.6 5.9 4.7

scan

6

3.4 3.8 5.4 4.8 3.4

scan

7

3.7 4 7.3 6.1 2.6

scan

8

3.3 3.8 5.5 5.4 2.4

mean 3.1 3.5 5.8 5.6 3.5

SD 0.6 0.5 1.2 1.0 1.0

https://doi.org/10.1371/journal.pone.0176636.t002
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values: 4.37E-5 to 0.019), and of 2TCM indirect estimation in the case of [11C]DASB in TEM,

for which PDBPP values are statistically significantly higher than those derived by HYDECA

(p-values: 0.025 with β and γ set via simulation; 0.021 with β and γ set via blocking study).

Similarly, PDBPND values from the different methods are not statistically significantly differ-

ent from each other, with the exception of 2TCM direct estimation in the case of [11C]DASB

in all regions (PDBPND values statistically significantly higher than those of all other methods;

range of p-values: 1.10E-5 to 0.032), and 2TCM direct estimation in the case of [11C]CUMI-

101 in TEM and CIN, for which PDBPND values are statistically significantly higher than those

derived by LEGA (p-values: 0.035 in TEM; 0.021 in CIN) and by 2TCM indirect estimation (p-

value: 0.032 in CIN).

Overall, the test-retest reproducibility of binding potentials obtained using all methods

reported in Fig 6 are comparable, with the exception of 2TCM direct estimation in the case of

[11C]DASB.

Discussion

HYDECA is a data-driven approach that estimates VND for each individual based on his/her

PET data from multiple brain regions. HYDECA is intended for tracers and targets for which

a valid reference region does not exist. If a valid reference region does in fact exist, then bind-

ing potentials based on VT-RR or on reference region approaches are likely to be more accurate

than those based on HYDECA.

Table 3. VND and VT-RR estimates for all approaches in the available test-retest datasets and their summary statistics.

VND ESTIMATES in TEST-RETEST DATASETS

HYDECA (βopt-S, γopt-S) HYDECA (βopt-B, γopt-B) VT-RR,2TCM VT-RR,LEGA

TEST RETEST TEST RETEST TEST RETEST TEST RETEST

[11C]DASB

sub 1 10.1 10.6 9.5 10.3 14.9 15.2 14.9 15.2

sub 2 7.2 8.2 7 7.8 10.8 10.9 10.8 10.9

sub 3 6.5 6.9 6.1 6.7 8.2 8.3 8.2 8.3

sub 4 9.8 8 9.5 7.6 12.1 11.9 12.1 11.7

sub 5 5.6 5.1 5.2 4.7 9.0 9.1 9.0 9.1

sub 6 7.7 8.4 7.3 8.1 11.1 9.5 9.3 9.5

sub 7 11.6 10.2 11.3 10 14.8 14.4 14.8 13.2

sub 8 8.6 8.3 8.4 8 15.4 11.6 11.2 11.6

sub 9 10.1 10.8 9.8 10.1 12.6 12.8 12.6 12.8

sub 10 6.9 7.8 6.8 7.4 13.6 9.7 9.2 9.7

mean 8.4 8.4 8.1 8.1 12.3 11.3 11.2 11.2

SD 1.9 1.7 1.9 1.7 2.5 2.3 2.4 2.1

[11C]CUMI-101

sub 1 2.5 2.7 3.1 3.7 4.8 5.1 5.0 5.2

sub 2 2.6 2.3 2.9 2.7 4.8 4.8 4.9 4.8

sub 3 2.4 2.4 3.1 2.9 4.9 4.6 5.1 4.8

sub 4 2.5 3.1 3.4 3.6 5.6 5.5 5.7 5.8

sub 5 3.1 2.6 3.6 3.7 6.1 7.2 6.1 6.7

sub 6 1.6 2.4 2.6 3.5 5.5 5.9 5.8 6.1

mean 2.5 2.6 3.1 3.4 5.3 5.5 5.4 5.5

SD 0.5 0.3 0.4 0.4 0.5 1.0 0.5 0.8

https://doi.org/10.1371/journal.pone.0176636.t003
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Tuning parameters

HYDECA implementation requires determination of two tuning parameters, herein denoted β
and γ, and we propose two possible strategies to make this choice for a given tracer: using data

from blocking studies, or realistic simulations of the tracer in question. It should be noted that

using the same tuning parameters across subjects imaged with the same tracer does not result

in estimating the same VND in each subject.

Of the two strategies, the one using blocking studies involves less subjective judgment.

When blocking study data are not available, simulations can be used, but simulated VND val-

ues, kinetic rates, and measurement errors should be chosen carefully to obtain realistic repre-

sentation of the data with the tracer in question. For established tracers, simulations can be set

up using kinetic rate values derived from available data or from the literature. For a new tracer,

both simulations and validation with blocking studies are recommended.

For [11C]DASB and [11C]CUMI-101, our results suggest that, regardless of the strategy used

to optimize the tuning parameters, HYDECA estimates of VND are considerably less biased

than those obtained based on VT-RR. Even with a “sub-optimal” choice of the tuning parame-

ters, HYDECA estimates of VND are generally less biased than using a non-ideal reference

region (Figs 2 and 4). Although the selection strategies can provide different values for β and γ,

the resulting bias in the estimation of VND is similar (|errHYDs|/|errHYDb| ratios in Fig 4).

If we were to optimize β and γ individually for each subject in the blocking datasets, we

would observe quite large inter-subject variability in the optimal β and γ: β = 8.85 ± 4.64, γ =

19.77 ± 11.80 ([11C]DASB); β = 9.31 ± 5.04, γ = 18.38 ± 12.37 ([11C]CUMI-101). For subjects

Table 4. Test-retest PDVND percent difference values for HYDECA VND, VT-RR,LEGA and VT-RR,2TCM.

VND TEST-RETEST PERCENT DIFFERENCE

HYDECA (βopt-S, γopt-S) HYDECA (βopt-B, γopt-B) 2TCM LEGA

[11C]DASB

pair #1 4.83% 8.08% 1.65% 1.68%

pair #2 12.99% 10.81% 0.47% 0.47%

pair #3 5.97% 9.38% 0.58% 0.58%

pair #4 20.22% 22.22% 1.30% 3.01%

pair #5 9.35% 10.10% 1.54% 1.10%

pair #6 8.70% 10.39% 15.39% 2.47%

pair #7 12.84% 12.21% 2.82% 11.49%

pair #8 3.55% 4.88% 28.55% 2.82%

pair #9 6.70% 3.02% 1.89% 1.72%

pair #10 12.24% 8.45% 33.27% 5.78%

mean 9.74% 9.95% 8.75% 3.11%

SD 4.98% 5.13% 12.53% 3.32%

[11C]CUMI-101

pair #1 7.69% 17.65% 5.07% 3.91%

pair #2 12.24% 7.14% 0.37% 2.27%

pair #3 0.00% 6.67% 7.05% 5.99%

pair #4 21.43% 5.71% 2.90% 1.58%

pair #5 17.54% 2.74% 16.86% 9.42%

pair #6 40.00% 29.51% 6.79% 3.62%

mean 16.48% 11.57% 6.51% 4.46%

SD 13.75% 10.15% 5.66% 2.86%

https://doi.org/10.1371/journal.pone.0176636.t004
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in the dataset that is used for tuning parameter selection, using individually optimized β and γ
instead of values optimized on average across subjects, as we suggest, would lead to an even

less biased VND estimation. However, the question of which β and γ values to use when apply-

ing HYDECA to a subject imaged with the same tracer, but for which a blocking scan is not

available, would remain. Individually optimized β and γ values are not obtainable in standard

practice.

Fig 6. Reproducibility of binding potentials estimated using HYDECA, LEGA, and 2TCM. Average plus standard deviation (across test-retest pairs

of scans within each tracer) test-retest percent difference PDBPP values calculated in each of the considered region for [11C]DASB (left) and [11C]CUMI-

101 (right), using BPP based on VND from HYDECA, BPP based on VT-RR,LEGA, BPP calculated directly from the 2TCM kinetic rates, and BPP based on

VT-RR,2TCM (top). Corresponding values for the test-retest percent difference PDBPND (bottom). Vertical axes are reported in logarithmic scale to allow for

easier visualization of the direct 2TCM results based on 2TCM kinetic rates. Statistically significant comparisons (p-value� 0.05) are indicated. AMY:

amygdala; CIN: cingulate; DCA: dorsal caudate; HIP: hippocampus; OCC: occipital lobe; TEM: temporal lobe; VST: ventral striatum; PDBPP: percent

difference for BPP; PDBPND: percent difference for BPND; VND: non-displaceable distribution volume; VT-RR,LEGA: tracer total distribution volume in the non-

ideal reference region estimated using LEGA; LEGA: Likelihood Estimation in Graphical Analysis; 2TCM: two-tissue compartment model; VT-RR,2TCM:

racer total distribution volume in the non-ideal reference region estimated using 2TCM.

https://doi.org/10.1371/journal.pone.0176636.g006
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Utility

HYDECA is a workable algorithm that can be applied to estimate individual VND in absence of

a reference region or individual blocking data, and could therefore be extremely useful in both

clinical and research settings. If the target selected for a given PET application lacks a valid ref-

erence region, there is no way to accurately estimate VND (and consequently specific binding

to the target), unless one performs a blocking scan for each subject. HYDECA can provide

an alternative convenient quantification approach. For tracers for which HYDECA tuning

parameters have already been determined, the published optimized tuning parameters can be

used. Otherwise, published blocking studies for the tracer in question would constitute the

basis to either tune HYDECA directly (if data are accessible) or to set up a simulation.

Reproducibility

HYDECA estimates of VND (with either strategy to set tuning parameters) lead to binding

potentials estimates with test-retest reproducibility that are comparable to estimates based on

VT-RR. Note that average PDBPP values are overall lower when based on HYDECA compared

with values based on VT-RR, and not merely because VND estimates by HYDECA are consis-

tently lower than corresponding VT-RR. Detailed related information is provided in the Supple-

mentary Materials (S3 and S4 Figs, S2 Text). We observe on average worse reproducibility of

the estimates based on HYDECA when considering BPND compared to BPP estimates. Because

of the nature of the outcome measure and performance metric used here, BPND values and

their corresponding test-retest performance are more sensitive than BPP to values and changes

(in between test and retest scan) in the VND, which appears at the denominator in the indirect

definition of BPND. When using the VT from an invalid reference region to estimate VND,

reproducibility of that measure depends on, among other factors, how much the tissue time

activity curve from that region changes between the test and the retest scans. HYDECA,

instead, uses tissue time activity curves from multiple regions to determine VND, and therefore

its test-retest performance is affected, among other factors, by how much the tissue time activ-

ity curves from all of these regions change between the test and the retest scans. The test-retest

percent difference values for HYDECA VND (Table 4) are on average worse than those for

VT-RR calculated using 2TCM and LEGA, especially in the case of [11C]CUMI-101. Reproduc-

ibility performance should be considered when deciding which approach to use in longitudinal

studies, while the bias of the approach is more important in group comparisons and cross-sec-

tional studies.

Alternative strategies

If blocking scans are available for a certain tracer, they could be used to estimate a population-

based α = VND_LASSEN/VT-RR ratio, which could then be used for studies with the same tracer

to scale each subject VT-RR in the non-ideal reference region to estimate VND. We applied

such approach to the two available blocking datasets. We found the following VND_LASSEN/

VT-RR,LEGA average (± SD) α ratios: 0.710 (± 0.114) for [11C]DASB, and 0.619 (± 0.145) for

[11C]CUMI-101. We applied such ratios to the subjects in the available test-retest datasets to

calculate a scaled VT-RR,LEGA, and then calculated the corresponding BPP-α = VT(LEGA)—

αVT-RR,LEGA and BPND-α = BPP-α/αVT-RR,LEGA values and their test-retest percent difference

(Fig 7). Test-retest percent differences values obtained using the different methods reported in

Fig 7 are not statistically significantly different from each other in the case of BPP, nor in the

case of BPND, with the exception of [11C]DASB BPND in DCA, and [11C]CUMI-101 BPND in

OCC and CIN, for which percent differences values obtained using a population-based α ratio

are statistically significantly lower (indicating better reproducibility) than those based on
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HYDECA with β and γ set via simulation (p-value: 0.050, 0.024, and 0.036, respectively). Also

see comments on BPND reproducibility in “Reproducibility” section above.

From a compartment modeling point of view, however, if there is specific binding in the

non-ideal reference region, this would correspond to an additional compartment, which would

require a subtraction (rather than a multiplicative adjustment) from the total VT in the region,

in order to be properly accounted for. A population-based distance d = VT-RR−VND_LASSEN can

be derived if blocking scans are available for a certain tracer as in the case of the scaled VT-RR.

In the two available blocking studies, we found the following average VT-RR,LEGA−VND_LASSEN

distance (± SD) d: 3.04 (± 1.56) for [11C]DASB, and 2.14 (± 0.92) for [11C]CUMI-101. We

applied such average distance values to the subjects in the available test-retest datasets to

Fig 7. Reproducibility of binding potentials estimated using HYDECA and alternative strategies based on blocking studies. Average plus

standard deviation (across test-retest pairs of scans within each tracer) test-retest percent difference PDBPP values calculated in each of the considered

region for [11C]DASB (left) and [11C]CUMI-101 (right), using BPP based on VND from HYDECA, BPP based on scaled VT-RR,LEGA, and BPP based on

average distance d (top). Corresponding values for test-retest percent difference PDBPND (bottom). Statistically significant comparisons (p-value� 0.05)

are indicated. AMY: amygdala; CIN: cingulate; DCA: dorsal caudate; HIP: hippocampus; OCC: occipital lobe; TEM: temporal lobe; VST: ventral striatum;

PDBPP: percent difference for BPP; PDBPND: percent difference for BPND; VND: non-displaceable distribution volume; VT-RR,LEGA: tracer total distribution

volume in the non-ideal reference region estimated using LEGA; LEGA: Likelihood Estimation in Graphical Analysis.

https://doi.org/10.1371/journal.pone.0176636.g007
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calculate BPP-d = VT(LEGA)–(VT-RR,LEGA−d) and BPND-d = BPP-d/(VT-RR,LEGA−d), and their

test-retest percent difference (Fig 7). Test-retest percent differences values of binding potentials

obtained using a population-based distance d are not statistically significantly different from

those of the other methods, with the exception of [11C]CUMI-101 BPND in OCC, where they

are statistically significantly lower than those obtained based on HYDECA with β and γ set

via simulation (p-value: 0.044). The reproducibility performance of HYDECA with tuning

parameters set via blocking study is comparable to that of all the other methods for both bind-

ing potentials.

A fixed population-based ratio or distance approach, unlike HYDECA, would not take

advantage of the information relative to VND that is implicitly contained in each individual’s

PET tissue data across brain regions. Such an approach would rely on blocking studies more

heavily than HYDECA, for which tuning parameter selection can alternatively be achieved

using simulations.

In the Supplementary Materials (S1 and S2 Figs, S1 Text) we report results obtained on

alternative nonparametric binding potentials [26] that can be calculated based on HYDECA,

including their test-retest reproducibility and the comparison to 2TCM, LEGA, and alternative

strategies.

Choice of regions

Regions that are simultaneously considered should be carefully chosen in all approaches that

either take advantage of simultaneous estimation across regions [25, 33–37], or jointly estimate

common parameters of interest across regions, like occupancy and VND in the Lassen plot. For

simultaneous estimation approaches to perform well, the regions that are considered should in

general have kinetic behavior as distinct as possible [36]. Including regions with similar kinetic

behavior would serve only to increase the dimensionality of the objective function without

adding much useful information [36]. The variety in kinetic behavior depends greatly on the

tracer at hand. In our previous experience with simultaneous-type estimation with [11C]DASB

[33] and [11C]CUMI-101 [25], we had carefully selected regions to represent a broad range of

kinetic behavior, while avoiding regions that tend to be noisy. We had also previously assessed

the properties of nonparametric quantification in these regions using both simulated and clini-

cal data [26]. We are therefore using the same regions in this study.

Choice of deconvolution approach

We used here SVD for its speed and ease of implementation, and have characterized its perfor-

mance in terms of reproducibility and sensitivity to noise in an earlier publication [26]. SVD

can however be sensitive to potential delay and dispersion of the injected bolus [38, 39]. More

robust approaches to nonparametric deconvolution [39, 40] or functional principal compo-

nents analysis [41] may further improve HYDECA performance. Here we provide a frame-

work for HYDECA and comparison between different implementations of the algorithm is

beyond our scope.

Limitations

Vascular correction. The tracer signal in the brain tissue can be modeled as in Eq (1) only

after correction for intravascular activity. Here, following a practice common in the field, we

assumed a brain-wide fractional blood volume (VB) of 5%. It is recommended that the VB

value be optimized before applying HYDECA (or any other PET quantification approach) if

pathological changes in the fractional blood volume are suspected in the population at hand.

HYDECA performance, as that of any PET quantification approach, may in fact be affected by
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an erroneous choice of the VB value used to correct the tissue time activity curves. We ran an

additional simulation to investigate the sensitivity of HYDECA estimates of VND to a poten-

tially erroneous vascular correction of the measured time activity curves (details are reported

in the Supplementary Materials, S5–S7 Figs, S3 Text). HYDECA estimates of VND appear to be

robust to erroneous correction of the time activity curves for errors in VB in the range -4% to

+5% for [11C]DASB, and -4% to +7% for [11C]CUMI-101.

As blood volume may vary in the brain, using a brain-wide value may not significantly

impact outcome measures such as VT and binding potentials, but may impact the upslope of

the tissue signal, and thus the Ri(t) estimated nonparametrically. If VB varies across regions, a

case that is not trivial for any of the quantification approaches used in PET, one potential strat-

egy to account for this within HYDECA could be incorporating the vascular correction com-

ponent into the impulse response function that is nonparametrically deconvolved in each

region. The problem may be treatable from a mathematical point of view, but would require

careful comparison of more sophisticated approaches to deconvolution than SVD. Another

potential strategy could be exploiting the semiparametric nature of HYDECA and adding VB

as a free-parameter to be estimated in each of the regions that are simultaneously considered,

but this would require a more complex optimization procedure than the simple grid approach

that we proposed for VND. Correction for intravascular activity represents just as much of a

problem for other approaches proposed as alternatives to compartment models [42, 43].

Assumption of a mono-exponential RND(t) curve. To ensure identifiability of the two

components of the residue function curve R(t) (non-displaceable and specific), HYDECA

needs to assume a certain shape to describe the non-displaceable component, RND(t). We

chose, in part for its simplicity, a mono-exponential function, which would represent the

impulse response function in the case of an “ideal” reference region with total distribution vol-

ume equal to VND. Assuming a mono-exponential curve for RND(t) represents an approxima-

tion: if a 2TCM is needed to describe the data in a given region, the RND(t) curve of the region

would be more appropriately described by a two-exponential function (24). We note that a

similar assumption is central in the development of the very widely used simplified reference

tissue model (SRTM) [44], which assumes that the total (non-displaceable plus specific)

impulse response function of the target region (which, as well, would be a two-exponential

function) can be reasonably approximated by a mono-exponential curve. The Supplementary

Materials (S8 and S9 Figs, S4 Text) report data to evaluate the validity of such approximation

for the two tracers considered here. Our evaluation indicates that a mono-exponential approx-

imation for RND(t) would be problematic only in the situation in which k3 >> k4, which

means that more tracer molecules transit in a given amount of time from the non-displaceable

binding state into the specific binding state than vice versa. We recommend that the simplify-

ing assumption of a mono-exponential RND(t) curve be evaluated for tracers for which it is sus-

pected that k3 >> k4. However, we remind the reader: 1) that HYDECA uses data across

many regions, for some of which the mono-exponential assumption may hold better than for

others, and provides a brain-wide value of VND that satisfies certain constraints (via the

HYDECA cost function) on average across such regions; and 2) that parts of the RND(t) curve

that are potentially erroneously determined in a region due to the simplifying mono-exponen-

tial assumption are likely to be captured by the corresponding nonparametric RS(t) curve, for

which there is no assumption besides being positive and monotonic. We want also to stress

that the assumption of a common, brain-wide VND implies that the ratio of the transfer con-

stants (VND = K1/k2) is the same everywhere in the brain for non-specific binding. This same

assumption is routinely made when using CMs and/or graphical approaches in a reference

region to estimate a brain-wide common VND, when constraining the K1 and k2 parameters in

a 2TCM to those of a reference region, or when using SRTM.
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Applicability to other populations. The two assumptions required to apply HYDECA

are that: a) the non-displaceable distribution volume VND is uniform brain-wide within each

subject (which is the same assumption regularly considered in the field when estimating VND

from a reference region, or when using SRTM); and b) the non-displaceable component of the

residue function, RND(t), is reasonably described by a mono-exponential function (a similar

assumption is considered for both reference and target region when using SRTM). So unless

there is a population or group of subjects where it is suspected that these two assumptions are

seriously violated, HYDECA can be applied. The presence of altered kinetics in the tissue time

activity curves of such a population would be problematic for any of the other PET quantifica-

tion approaches that are based on the assumptions above.

Future investigations

Future investigations include developing a method to provide a measure of precision [45] for

HYDECA VND estimates, validating HYDECA across tracers, and assessing whether perform-

ing the tuning of β and γ only once for a given tracer will suffice, which should be the case if

the noise characteristics and kinetics range of independent data acquired with a tracer for

which the HYDECA tuning parameters have been determined will resemble those of the data

used in such determination.

Conclusions

We showed, using two PET radiotracers that, in the absence of a valid reference region,

HYDECA can provide individual estimates of a brain-wide VND without requiring a blocking

study, and these estimates are less biased, with respect to estimation with Lassen plot, which is

the method of reference, as it represents a standard in the field for in vivo estimation of VND in

humans, than those obtained relying on the VT in a non-ideal reference region.

Supporting information

S1 Fig. Reproducibility of alternative nonparametric binding potentials: BPP. Average

(across test-retest pairs of scans within each tracer) test-retest percent difference PDBPP values

calculated in each of the considered region for [11C]DASB (left) and [11C]CUMI-101 (right),

using the two nonparametric definitions of BPP: BPP-END (top), and BPP-NP2 (bottom) (see def-

initions in S1 Text). In each plot, grey bars refer to BPP-RR,LEGA = VT (LEGA)–VT-RR,LEGA;

black bars refer to BPP-RR,2TCM = VT (2TCM)–VT-RR,2TCM; white bars refer to BPP-α =

VT(LEGA)—αVT-RR,LEGA; and green bars refer to BPP-d = VT(LEGA)–(VT-RR,LEGA−d). Error

bars indicate standard deviation (across test-retest pairs of scans within each tracer). Vertical

axes are reported in logarithmic scale to allow for easier visualization of the 2TCM results.

AMY: amygdala; CIN: cingulate; DCA: dorsal caudate; HIP: hippocampus; OCC: occipital

lobe; TEM: temporal lobe; VST: ventral striatum; PDBPP: percent difference for BPP. VT

(LEGA): tracer total distribution volume (VT) estimated using Likelihood Estimation in

Graphical Analysis (LEGA); VT-RR,LEGA: VT in the purported reference region estimated

using LEGA; VT (2TCM): VT estimated using a two-tissue compartment model (2TCM);

VT-RR,2TCM: VT in the purported reference region estimated using 2TCM; α: population-based

ratio of non-displaceable distribution volume (VND) (from available blocking studies) over VT

in the purported reference region; d: population-based distance of VT in the purported refer-

ence region and corresponding VND (from available blocking studies).

(PDF)
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S2 Fig. Reproducibility of alternative nonparametric binding potentials: BPND. Average

(across test-retest pairs of scans within each tracer) test-retest percent difference PDBPND val-

ues calculated in each of the considered region for [11C]DASB (left) and [11C]CUMI-101

(right), using the two nonparametric definitions of BPND: BPND-END (top), and BPND-NP2 (bot-

tom) (see definitions in S1 Text). In each plot, grey bars refer to BPND-RR,LEGA; black bars refer

to BPND-RR,2TCM; white bars refer to BPND-α; and green bars refer to BPND-d. Error bars indi-

cate standard deviation (across test-retest pairs of scans within each tracer). Vertical axes are

reported in logarithmic scale to allow for easier visualization of the 2TCM results. AMY: amyg-

dala; CIN: cingulate; DCA: dorsal caudate; HIP: hippocampus; OCC: occipital lobe; TEM:

temporal lobe; VST: ventral striatum; PDBPP: percent difference for BPP. BPND-RR,LEGA =

BPP-RR,LEGA/VT-RR,LEGA = [VT (LEGA)–VT-RR,LEGA]/VT-RR,LEGA; BPND-RR,2TCM = BPP-RR,2TCM/

VT-RR,2TCM = [VT (2TCM)–VT-RR,2TCM]/VT-RR,2TCM; BPND-α = BPP-α/αVT-RR,LEGA =

[VT(LEGA)—αVT-RR,LEGA]/αVT-RR,LEGA; BPND-d = BPP-d/(VT-RR,LEGA−d) = [VT(LEGA)–

(VT-RR,LEGA−d)]/(VT-RR,LEGA−d). VT (LEGA): tracer total distribution volume (VT) estimated

using Likelihood Estimation in Graphical Analysis (LEGA); VT-RR,LEGA: VT in the purported

reference region estimated using LEGA; VT (2TCM): VT estimated using a two-tissue compart-

ment model (2TCM); VT-RR,2TCM: VT in the purported reference region estimated using

2TCM; α: population-based ratio of non-displaceable distribution volume (VND) (from

available blocking studies) over VT in the purported reference region; d: population-based dis-

tance of VT in the purported reference region and corresponding VND (from available blocking

studies).

(PDF)

S3 Fig. Comparison of binding potentials and test-retest percent difference values: [11C]

DASB test-retest dataset. Left: Scatter plots of BPP-HYBRID, BPP-END, and BPP-NP2 (see defini-

tions in S1 and S2 Texts) values versus BPP-RR,LEGA values obtained using the non-ideal refer-

ence region and Likelihood Estimation in Graphical Analysis (LEGA). The black solid line is

the identity line. Right: Distance between test-retest percent difference (PD) values obtained

using BPP-HYBRID and PD values obtained using BPP-RR,LEGA (y axis) versus the corresponding

distance between BPP-HYBRID (average of test and re-test) and BPP-RR,LEGA (average of test and

re-test). Open circles represent values obtained using the non-displaceable distribution volume

(VND) from HYDECA with βopt-S and γopt-S; solid circles represent values obtained using

the VND from HYDECA with βopt-B and γopt-B. BPP-RR,LEGA = VT (LEGA)–VT-RR,LEGA; VT

(LEGA): tracer total distribution volume (VT) estimated using LEGA; VT-RR,LEGA: VT in the

purported reference region estimated using LEGA.

(PDF)

S4 Fig. Comparison of binding potentials and test-retest percent difference values: [11C]

CUMI-101 test-retest dataset. Left: Scatter plots of BPP-HYBRID, BPP-END, and BPP-NP2 (see

definitions in S1 and S2 Texts) values versus BPP-RR,LEGA values obtained using the non-ideal

reference region and Likelihood Estimation in Graphical Analysis (LEGA). The black solid

line is the identity line. Right: Distance between test-retest percent difference (PD) values

obtained using BPP-HYBRID and PD values obtained using BPP-RR,LEGA (y axis) versus the

corresponding distance between BPP-HYBRID (average of test and re-test) and BPP-RR,LEGA

(average of test and re-test). Open circles represent values obtained using the non-displaceable

distribution volume (VND) from HYDECA with βopt-S and γopt-S; solid circles represent values

obtained using the VND from HYDECA with βopt-B and γopt-B. BPP-RR,LEGA = VT (LEGA)–

VT-RR,LEGA; VT (LEGA): tracer total distribution volume (VT) estimated using LEGA;

VT-RR,LEGA: VT in the purported reference region estimated using LEGA.

(PDF)
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S5 Fig. Sensitivity of HYDECA estimates of the non-displaceable distribution volume

(VND) to erroneous vascular correction. Percent difference (PDerrVC) between the non-

displaceable distribution volume (VND) value estimated at each instance of erroneously

corrected time activity curves and the VND value estimated in correspondence of the accu-

rately corrected set of time activity curves (y-axis), as a function of the difference between

the true fractional blood volume (VB) value and the value adopted for correction (x-axis);

dots and error bars indicate average and standard deviation across subjects, respectively,

within each tracer. The dotted horizontal lines indicate the +10%, 0%, and -10% mark,

respectively.

(PDF)

S6 Fig. Residue function curves R(t) and vascular correction: [11C]CUMI-101. Residue

function curves R(t) in correspondence of different errors and no error in the fractional blood

volume value (VB), and the corresponding HYDECA cost functions, in a representative subject

for [11C]CUMI-101. CIN: cingulate; HIP: hippocampus; OCC: occipital lobe; TEM: temporal

lobe; CGM: cerebellum grey matter.

(PDF)

S7 Fig. Residue function curves R(t) and vascular correction: [11C]DASB. Residue function

curves R(t) in correspondence of different errors and no error in the fractional blood volume

value (VB), and the corresponding HYDECA cost functions, in a representative subject for

[11C]DASB. AMY: amygdala; DCA: dorsal caudate; HIP: hippocampus; TEM: temporal lobe;

VST: ventral striatum; CGM: cerebellum grey matter.

(PDF)

S8 Fig. Validity of mono-exponential assumption for the residue function non-displace-

able component RND(t): [11C]DASB. Average (across time points) square distance between

the residue function non-displaceable component, RND(t) (see S4 Text), with k3 and k4 >0,

and RND(t) with k3 = k4 = 0 as k3 and k4 vary, in 4 cases of (K1, k2) for [11C]DASB. VST: ventral

striatum; CGM: cerebellum grey matter. K1, k2 k3 and k4: kinetic rate parameters of a two-tis-

sue compartment model.

(PDF)

S9 Fig. Validity of mono-exponential assumption for the residue function non-displace-

able component RND(t): [11C]CUMI-101. Average (across time points) square distance

between the residue function non-displaceable component, RND(t) (see S4 Text), with k3 and

k4 >0, and RND(t) with k3 = k4 = 0 as k3 and k4 vary, in 4 cases of (K1, k2) for [11C]CUMI-101.

HIP: hippocampus; CGM: cerebellum grey matter. K1, k2 k3 and k4: kinetic rate parameters of

a two-tissue compartment model.

(PDF)

S1 Text. Alternative nonparametric binding potentials and their test-retest reproducibil-

ity. Supporting information and equations accompanying S1 and S2 Figs.

(PDF)

S2 Text. Comparison of binding potentials and test-retest percent difference values. Sup-

porting information and equations accompanying S3 and S4 Figs.

(PDF)

S3 Text. Sensitivity to vascular correction. Supporting information and equations accompa-

nying S5–S7 Figs.

(PDF)
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