
REVIEW

Topographical and physiological differences of the skin mycobiome in
health and disease

Jay-Hyun Jo, Elizabeth A. Kennedy, and Heidi H. Kong

Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

ARTICLE HISTORY
Received 19 August 2016
Revised 9 October 2016
Accepted 11 October 2016

ABSTRACT
Skin constantly encounters external elements, including microbes. Culture-based studies have
identified fungi present on human skin and have linked some species with certain skin diseases.
Moreover, modern medical treatments, especially immunosuppressants, have increased the
population at risk for cutaneous and invasive fungal infections, emphasizing the need to
understand skin fungal communities in health and disease. A major hurdle for studying fungal flora
at a community level has been the heterogeneous culture conditions required by skin fungi. Recent
advances in DNA sequencing technologies have dramatically expanded our knowledge of the skin
microbiome through culture-free methods. This review discusses historical and recent research on
skin fungal communities – the mycobiome – in health and disease, and challenges associated with
sequencing-based mycobiome research.
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Introduction

Skin is the outermost compartment of the body and
often the first point of contact for an extensive number
of environmental microbes. The skin surface is a unique
niche, serving as a habitat for a distinct community of
microorganisms.1 While metagenomic analyses have
shown that the majority of annotated reads from samples
obtained from most skin sites are bacterial, some sites
may have relatively high proportions of fungal or viral
sequences.2,3 Understanding skin fungal communities as
well as investigating interactions between bacterial and
fungal communities are essential, especially given the
association of fungi with various skin disorders, such as
seborrheic dermatitis, atopic dermatitis, and dermato-
phytosis.4-9

Culturing has long been used to isolate and iden-
tify fungi on skin. However, this approach may not
fully capture the diversity and/or relative composition
of fungal communities, as optimal culture conditions
and growth rates vary widely between species.10

Several molecular approaches such as restriction frag-
ment length polymorphism (RFLP) analyses have
been used to complement culturing; however, these
low-throughput methods only take into account a
portion of the community and likely underestimate
the diversity of fungi present. Development of high-

throughput sequencing techniques and microbiome
analysis methods are revolutionizing our understand-
ing of the “mycobiome”—here defined as the overall
fungal habitat, including fungi, “their genomes
(i.e. genes), and the surrounding environmental con-
ditions.”11 This review focuses on efforts to examine
the skin mycobiome in healthy individuals and altera-
tions associated with various skin conditions and
disorders.

“Normal” skin mycobiome

Cultivation methods recover primarily Malassezia
(formerly known as Pityrosporum),12 as well as occasion-
ally Candida and a variety of other species on healthy
human skin.13 Initial studies used culture-based techni-
ques to speciate Malassezia, relying on morphology and
lipid dependence to differentiate isolates12 and identify-
ing new species based on distinct physiological and
biochemical features.14 Culturing surveys commonly
have isolatedM. globosa, M. restricta, andM. sympodialis
from healthy human skin.14 However, cultivation-based
studies can be biased by culture media and growth con-
ditions, so results from different studies may not be com-
parable. Malassezia isolates can require different
conditions for optimal growth, and some species (such
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asM. furfur andM. sympodialis) grow more quickly than
others (M. restricta and M. obtusa), which may skew the
relative abundances of species observed.15

Molecular methods have facilitated investigations of
Malassezia spp. Genomic differences, which have been
shown to correspond to morphological distinctions,
allow for inter-species resolution.16 Analyses based on
nested PCR or RFLP have suggested that M. globosa, M.
restricta, M. sympodialis, and M. furfur inhabit the skin
of healthy individuals.17,18 More recent studies perform-
ing culture-independent sequencing analyses of skin fun-
gal communities rely on amplicon sequencing using
fungi-specific phylogenetic markers such as the 18S
rRNA gene, internal transcribed spacers, and the 28S
rRNA gene.19 Researchers have used a single region or
combination of regions, with primers targeting the D1/
D2 region of the 28s rRNA gene,20 the 18S rRNA gene
with the 5.8S/ITS2 region for Malassezia speciation,21

ITS1-5.8S-ITS2 and the 28S rRNA gene,22 or ITS1 and
the 18S rRNA gene.23 These cultivation-independent
studies from individuals residing in varying geographic
regions also showed Malassezia predominates on most
skin sites20-22,24 except the feet.23 Eleven of the fourteen
Malassezia species have been identified by sequencing
swabs from healthy human skin, indicating the range of
colonization possible.23 Here, we discuss the distribution
of skin fungi in association with body site, age, and
gender.

Body site

Quantitative culturing has shown thatMalassezia coloniza-
tion is particularly high in sebaceous sites such as the scalp
and the forehead.25 SeveralMalassezia species are present in
statistically significantly different proportions at spatially
distinct body sites. M. globosa was present in higher abun-
dances on head sites (scalp and forehead) and in lower
abundances on the back, while relative abundances of M.
sympodialiswere distributed in the inverse pattern.26 Results
from culture-independent studies also indicated that fungal
communities are strongly influenced by body location, with
different sites harboring distinct populations.20,23 Using
ITS1 sequencing, M. restricta and M. globosa patterns were
similar among different individuals sampled at the same
site. M. restricta predominated on head and facial sites
whereas M. globosa was predominant on trunk sites. Other
body sites demonstrated more mixedMalassezia communi-
ties, and feet were populated by diverse fungal communities
including Aspergillus, Cryptococcus, Rhodotorula, and
Epicoccum23 (Fig. 1).

The site selectivity of Malassezia species may be
explained by genomic differences within the Malassezia
genus that can affect niche adaptation. The Malassezia

genus lacks the fatty acid synthase gene, so species are lipid-
dependent, explaining their predominance on sebaceous
sites. However, different species vary in their lipase and
phospholipase genes with resultant variation in lipid prefer-
ences.27 Given that lipid profiles vary at different skin
sites,28,29 these preferences may underlie the observed adap-
tation to different sites, although more research is needed to
clarify how genetics may drive niche preference.

Age

Shifts in fungal colonization occur with age, with young
subjects colonized by lower levels of Malassezia and col-
onization generally increasing in adolescence to adult-
hood.15,26,30 Analysis based on ITS1 sequencing has also
shown low relative abundance of Malassezia accompa-
nied by high fungal diversity on the skin of preadolescent
children aged 8–13 y as compared to adults31 (Fig. 1).
These observed shifts may be explained by the increase
in sebaceous activity during adolescence which provides
a more favorable niche for lipophilic Malassezia to colo-
nize.32 The variation in fungal communities across dif-
ferent age groups may contribute to the age predilection
of several fungal infections. For example, tinea capitis
and tinea corporis are typically caused by a variety of
non-Malassezia fungi and are more prevalent in chil-
dren, whereas tinea versicolor, associated with Malasse-
zia spp., is more common in adults.6,7,33

At the species level, culture-based methods have
shown thatM. globosa predominated in children whereas
M. sympodialis was typically absent; in contrast, M.
globosa was less common than M. sympodialis in
adults.26 Culture-independent analyses also showed that
M. globosa was less abundant in adult subjects, particu-
larly at facial sites, with M. restricta predominat-
ing.15,23,31 Changes in the composition of the secreted
lipids may explain these shifts over time, given the
different lipid preferences of individual species.27,34

Gender

Sugita et al. noted that female subjects had a reduced
abundance of Malassezia at the age of 19–29 years as
compared to male subjects of the same age or female
subjects of different ages. The authors attributed this
finding to the prevalent use of cosmetics, which contain
compounds that may inhibit cutaneous fungal growth.15

In atopic dermatitis patients, culture-independent meth-
ods showed that females had a statistically significantly
reduced abundance of Malassezia spp. on their faces, but
not their upper trunk skin, as compared to males.35

However, another study failed to identify significant dif-
ferences in Malassezia colonization based on gender,
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Figure 1. Composition of skin fungal communities distributed over various skin sites and in different age groups. Phylum- and
genus-level classification of fungi colonizing skin of healthy adults (left, age 18–39 years) and children (right, age 8–13 years).
Data adapted from Ref.27.
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although results were based on culturing and cosmetic
use was not discussed.36

Mycobiome and pathogenesis of skin diseases

The major commensal skin fungi: Malassezia spp

A goal of studying the human skin mycobiome is to
understand the role of fungal communities in health and
disease. In addition to being the most prevalent fungus
identified on human skin, the genus Malassezia has been
extensively studied to understand its connection to skin
diseases. Various reports have proposed that Malassezia
spp. are associated with several dermatologic conditions,
including tinea versicolor (also known as pityriasis versi-
color), atopic dermatitis, and seborrheic dermatitis.4,5

Tinea versicolor is characterized by the appearance of
round lesions that are hyper-or hypopigmented than the
surrounding skin.4 Lesions preferentially appear on seba-
ceous skin areas, such as the back and chest. Studies of
the pathogenesis of tinea versicolor typically implicate
Malassezia. Reports have shown that affected lesions
have higher loads of M. globosa, M. sympodialis, and M.
furfur as compared to non-lesional sites and the skin of
healthy individuals.37-40 Mechanistically, it has been sug-
gested that Malassezia proteins such as malassezin and
pityriacitrin contribute to hypo- or hyperpigmentation
of the lesion by inducing apoptosis of melanocytes and
directly absorbing UV light.41-43

Atopic dermatitis is a common inflammatory skin dis-
ease characterized by chronic relapsing itchy red skin.
Many factors contribute to the development and progres-
sion of atopic dermatitis, including genetics, skin barrier,
environmental factors, and skin bacteria.44-47 Although
several culture-based studies have described lack of associ-
ation between atopic dermatitis and Malassezia
spp.,25,40,48,49 others have shown an association between
Malassezia and atopic dermatitis. A molecular-based study
(nested PCR) showed that Malassezia spp. are more fre-
quently detected and are more diverse in patients than
healthy subjects.17 Some studies also demonstrated higher
Malassezia-specific serum IgE in atopic dermatitis
patients50-52 and systemic antifungal ketoconazole treat-
ment in patients with relatively high Malassezia-specific
IgE levels was associated with clinical improvement.50

Other studies have described IgE or reactive T cells that
recognize Malassezia antigens, e.g. HSP70, MnSOD, and
thioredoxin, in patients with atopic dermatitis.4,53-55

Seborrheic dermatitis is characterized by recurrent,
relapsing inflammation with yellowish greasy scaling
observed in sebaceous areas of the head and trunk, specifi-
cally the scalp (dandruff). Several studies have linked seb-
orrheic dermatitis and dandruff with Malassezia.
Culturing showed Malassezia spp. were more frequently

isolated from the lesions of seborrheic dermatitis.40 Also,
data suggest a causal link between Malassezia and dan-
druff, since various antifungal reagents—zinc salts,
selenium salts and azoles—are highly effective in the
treatment of dandruff.56,57 Improvement of the disease by
anti-dandruff shampoo use is accompanied by reduced
Malassezia levels.57 Although the role of Malassezia in
this disease is not well understood, the higher prevalence
of seborrheic dermatitis in immunodeficient HIV
patients58-60 (10–30 times higher than the general popula-
tion) suggests an immune response against Malassezia
might be important for controlling the disease.

While culture-based studies have shown that
Malassezia spp. are more frequently isolated from the
lesions of tinea versicolor, atopic dermatitis, and sebor-
rheic dermatitis, recent culture-independent analyses
have shown thatMalassezia are a part of the normal skin
flora.23,27,61 Therefore, Malassezia spp. are likely to be
opportunistic microorganisms that may elicit disease
with changes in host immunity or growth phase—yeast
versus mycelial form—of the fungus.25,62 Higher levels of
anti-Malassezia antibodies have been observed in the
serum of atopic dermatitis50 and seborrheic dermatitis63

patients (IgE and IgG, respectively). Microscopic studies
illustrated that the mycelial forms ofMalassezia were fre-
quently observed in lesional sites of tinea versicolor, but
the yeast form was present on non-lesional skin and on
healthy controls.37,64,65 In addition, several Malassezia
metabolites or virulence factors, e.g., indole com-
pounds41 and lipases,66 have been proposed to play roles
in the pathogenesis of certain skin diseases. Some indole
derivatives fromM. furfur have been shown to act as aryl
hydrocarbon receptor agonists involved in various cellu-
lar processes such as immune signaling, cell cycle, and
apotosis.67 More recently, whole genome sequencing of
several Malassezia species was performed, which
provides insights into niche selection and virulence.27

Mycobiome alteration and disease
While most studies examining the relationship between
microbes and disease focus on culturing and implicate a
single microbial species, microbial communities can be
studied at a global level with sequencing-based
approaches. In general, microbiome studies have focused
primarily on bacteria with less of an emphasis on fungi.
Studies of the bacterial skin communities have shown
that diversity is inversely correlated with disease severity
in atopic dermatitis and psoriasis.47,68,69 In contrast,
higher fungal diversity has been associated with atopic
dermatitis61 and psoriasis70 as compared to controls.
Atopic dermatitis patients also had increased relative
abundances of Candida spp., Cryptococcus spp. and
Malassezia globosa in comparison to healthy individuals,
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and psoriatic skin lesions had increased relative abun-
dances of Malassezia restricta. However, the relevance of
these mycobiome diversity and community differences
to disease pathophysiology remains unknown. Therefore,
additional studies in these and other skin diseases with
proper controls will be important for understanding
mycobiome shifts.

Role of host factor in skin mycobiome homeostasis
and disease
Host factors, such as genetics and immune status, can
influence microbiome composition and, in turn, diseases.
Patients with primary immunodeficiency syndromes often
suffer from recurrent infections, including fungal infec-
tions.71-73 Chronic candidiasis is frequently observed in
patients with mutations in immune modulatory genes,
such as AIRE (autoimmune regulator), dectin-1 (C-type
lectin receptor), and CARD9 (Caspase recruitment
domain family 9).74-76 Signal transducer and activator of
transcription 3 (STAT3) is a key transcription factor
involved in immune signaling, and is activated by inter-
leukin-6 (IL-6), IL-10, IL-23, IL-21 and IL-11.77 Heterozy-
gous mutations in STAT3 causes hyper-IgE syndrome
(HIES), a primary immunodeficiency disease characterized
by high serum IgE, atopic dermatitis-like symptoms, and
systemic infections.78-80 Oh et al. demonstrated that
STAT3-HIES patients exhibited increased mycobiome
richness, with reduced Malassezia and increased Aspergil-
lus and Candida even on unaffected skin.81 This observa-
tion corresponds to clinical manifestations of STAT3-
HIES, which often include fungal infections such as
mucocutaneous candidiasis and pulmonary Aspergillus
and Scedosporium infections. Since monogenic disorders
that alter host immune function can result in susceptibility
to fungal colonization and infection, studying mycobiome
alterations in this context may enhance our understanding
of host-microbial interactions.

Abnormal fungal infections can also occur in
patients with acquired immunodeficiency, such as
individuals with AIDS or those on immunosuppres-
sive medications. The incidence of fungal infections
has surged in the last few decades with the annual
number of deaths from invasive mycoses in the
United States increasing about 320% from 1980 to
1997,82,83 mainly due to the rise in immunocompro-
mised individuals in the population.84-87 Cutaneous
fungal infections in immunocompromised patients are
caused by common opportunistic pathogens such as
Candida, Aspergillus, and Cryptococcus. However,
severely immunocompromised patients can sometimes
be infected by fungi that usually do not colonize
humans, such as Trichosporon spp, Fusarium spp.,
and Emmonsia spp..88 Although various fungal

infections were reported in acquired immunodefi-
ciency patients, no skin mycobiome studies have been
done in these individuals. Individuals with acquired
immunodeficiency may be colonized by a diverse
group of fungi, similar to the primary immunodefi-
ciency patients.81 Overall, host immune responses
appear to be critical for maintaining a “healthy” fun-
gal flora and preventing opportunistic infection;
understanding the mycobiome alterations that occur
in immunodeficient individuals may provide insights
into the source and/or pathogenesis of these fungal
infections.

Further directions of sequence-based mycobiome
studies

In recent decades, our understanding of the microbiome
has expanded with the development of and rapid technical
advances in sequencing technology. Large-scale studies,
such as the National Institutes of Health Common Fund’s
Human Microbiome Project, have not only provided pro-
files of the microbial communities at various body sites in
healthy volunteers, but have also standardized pipelines
for analysis.1 However, more investigations of the fungal
communities on various body sites and standardized
methods for studying the mycobiome are needed.

Many fungi require specific cultivation conditions for
optimal growth and isolation, hampering precise quanti-
tative analyses; sequencing-based approaches enable cul-
ture-free and high-throughput investigations of the skin
fungal communities. However, there are several chal-
lenges and limitations to consider for sequencing-based
mycobiome analysis. Given the low microbial biomass
present on skin, samples are particularly prone to con-
taminants showing up in sequencing results. Sample
handling and reagent contamination can affect results,
so negative controls must be processed in parallel to con-
firm sample integrity.89 Additionally, standardized and
high-yield protocols for extracting microbial DNA from
the skin mycobiome are important. Use of physical cell
disruption method (bead-beating) combined with chem-
ical methods (detergents and enzymes) during DNA
extraction facilitates breaking cell walls of fungi and
accessing more fungal genomes, and can possibly lessen
the bias toward a particular taxonomic group.90

Currently, targeted amplicon sequencing is widely
used for mycobiome analysis; therefore, the selection of
marker genes for taxonomic classification and the
robustness of reference databases is critical for develop-
ing standardized mycobiome pipelines. Commonly used
marker genes are internal transcribed spacer regions
(ITS1/2) and rRNA (18S, 5.8S and 28S rRNA)
genes.21,22,61,91 Advantages and disadvantages for each
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marker are evident: ITS exhibits high sequence variation
among different taxa, providing greater taxonomic reso-
lution but poor alignment. The 18S rRNA gene is well
conserved and easier to align for better phylogenetic
analysis, but allows for less taxonomic resolution.
Although current reference databases for ITS1
(UNITE,92 ITSoneDB93) and 18S rRNA (SILVA94) are
useful for classification, these databases include a limited
number of fungi. It is estimated that approximately
1.5–5.1 million fungal species exist, whereas existing
databases include less than 100,000 species.95,96 Bioinfor-
matic methods that address these difficulties are under
active development. Fouquier et al. developed a hybrid
pipeline that uses ITS1 and 18S rRNA sequences
together to ensure both taxonomic resolution and phylo-
genetic analysis,97 and a newer ITS1 database (ISHAM98;
International Society of Human and Animal Mycology)
and sequence analysis pipeline specific for mycobiome
studies (CloVR-ITS99) are available.

An additional limitation of sequencing-based
approaches includes the inability to differentiate between
live and dead organisms. Several studies have addressed
this challenge by developing methods that prevent DNA
amplification and sequencing of dead cells.100-101 Fur-
thermore, longitudinal surveys in the same study popula-
tion can help to distinguish between long-term
colonizers vs. transient microorganisms.

Several studies of the human microbiome have sug-
gested that a homeostatic balance exists between a host
and its commensal microbes. Disturbance of this homeo-
stasis may result in disease; therefore, investigating skin
mycobiome-host interactions is important for under-
standing the pathophysiology of various skin conditions
and infections. Utilizing various “omic” approaches will
be important for understanding and deciphering host-
microbe and microbe-microbe interactions. Likewise,
inter-kingdom interactions on skin is another intriguing
area of research. Targeted species analysis has shown
that there are diverse interactions between fungi and bac-
teria. For example, Candida albicans and Staphylococcus
aureus can co-colonize and form mixed biofilms, poten-
tially protecting them from antifungal and antibiotic
reagents.102 Additionally, Pseudomonas aeruginosa was
shown to inhibit C. albicans colonization on burn
wounds.103 Therefore, inter-kingdom interactions within
the microbiome are another crucial area to be explored.
Metagenomic shotgun sequencing currently enables
examination of the bacterial communities, mycobiome,
and virome in a single sequencing reaction. Development
of additional methods and pipelines for incorporating
proteomics, transcriptomics, metabolomics, and lipido-
mics will widen our perspective regarding the biological
and clinical implications of the mycobiome. Ultimately,

studying skin mycobiome-host interactions will expand
our understanding of disease pathogenesis and ability to
find novel therapies for various skin conditions.
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