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ABSTRACT
Research on oral fungi has centered on Candida. However, recent internal transcribed spacer (ITS)-
based studies revealed a vast number of fungal taxa as potential oral residents. We review DNA-
based studies of the oral mycobiome and contrast them with cultivation-based surveys, showing
that most genera encountered by cultivation have also been detected molecularly. Some taxa such
as Malassezia, however, appear in high prevalence and abundance in molecular studies but have
not been cultivated. Important technical and bioinformatic challenges to ITS-based oral mycobiome
studies are discussed. These include optimization of sample lysis, variability in length of ITS
amplicons, high intra-species ITS sequence variability, high inter-species variability in ITS copy
number and challenges in nomenclature and maintenance of curated reference databases.
Molecular surveys are powerful first steps to characterize the oral mycobiome but further research is
needed to unravel which fungi detected by DNA are true oral residents and what role they play in
oral homeostasis.

KEYWORDS
internal transcribed spacer;
ITS1; microbiome;
mycobiome; oral fungi; saliva

Introduction

For over a century fungi have been recognized as com-
mensal inhabitants of the human oral cavity. A study
from the first half of the twentieth century recovered
yeast-like organisms from the mouth of »35% of sub-
jects.1 The incidence of yeast-positive cultures was
higher, »60%, in denture-wearers free of thrush lesions.
The most consistently recovered yeast-like colonies were
Monilia (now Candida) albicans. However, individuals
also harbored Cryptococcus, Saccharomyces and other
unidentified “Monilia.” A study by Young et al.2 yielded
positive yeast cultures from the oral cavity in 48.6% of
subjects (284/584). About 93% of isolates were Candida
albicans; the remaining other Candida species or Crypto-
coccus. Candida spp. colonize the oral tissues at a very
early age, with about 28% of children <2 years yielding
positive cultures at multiple visits.3 These early studies
established fungi as normal inhabitants of the human
mouth.

Although the vast majority of research in oral mycol-
ogy has focused on Candida, recent molecular studies
revealed a diverse array of fungi as potential oral resi-
dents.4, 5 These results opened a new era for questions in
oral mycology: Are detected fungi stable oral residents?
What is the functional role of these species in the oral

ecosystem? Do non-Candida fungi play a role in oral
health? In this review we evaluate the classic literature
and contrast it with studies that use modern high
throughput sequencing to characterize the oral myco-
biome. We then consider challenges to the molecular
analysis of oral fungi and present an overview of pressing
questions that need resolution.

Classic studies on oral mycology

Candida species and oral candidiasis
Candida albicans is the most commonly cultivated and
studied fungus from the oral cavity. Candida species,
especially C. albicans, have been unequivocally linked to
the etiology of oral thrush (candidiasis). The mean car-
riage rate for C. albicans in healthy individuals has been
estimated at 17.7% (range 1.9-62.3%), based on cultiva-
tion.6 Carriage rates are usually higher in hospitalized
patients, subjects under cancer therapy or with other
immunosuppressive conditions, and in elderly individu-
als.6-8 Local factors associated with increased oral carriage
of Candida spp. include low salivary flow9-11, low pH2,12

and wearing a denture.11,13 The association of smoking
and antibiotic intake with oral Candida colonization
remains controversial with some studies showing an asso-
ciation,12,14,15 while others do not support a link.16,17
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Species of Candida other than albicans are less fre-
quently, but consistently, recovered from the oral cavity.
These include Candida glabrata, Candida tropicalis,
Candida parapsilosis, Candida dubliniensis, Candida
rugosa, Candida krusei (currently Pichia kudriazevii and
Issatchenkia orientalis), Candida guilliermondii (Meyero-
zyma guilliermondii) and Candida lusitaniae (Clavispora
lusitaniae).2,18-22 Candida species other than albicans are
more prevalent in immunosuppressed individuals, par-
ticularly those with a history of antifungal therapy, since
species such as C. glabrata and C. krusei are naturally
resistant to azoles.23,24

Despite considerable research in oral candidiasis, it is
not clear why some subjects develop the condition, while
others with similar risk factors remain disease-free. Oral
candidiasis can present clinically as a pseudomembra-
nous condition or as erythematous and/or hyperplastic
lesions25. Most cases of oral candidiasis are associated
with C. albicans, although some have been linked to C.
dubliniensis, C. glabrata, C. krusei and C. tropicalis,
either in isolation or more commonly as mixed infec-
tions sometimes including C. albicans.21,22 Molecular
epidemiological studies show the origin of C. albicans
infections is often attributable to endogenous strains.26,27

Although some resident strains of C. albicans are more
pathogenic, it is not clear which specific genotypes
increase risk for oral lesions.27,28 The main risk factor for
oral candidiasis seems a pharmacologically-induced or
naturally occurring impairment of the immune response,
such as that in organ transplantation, HIV infection,
cancer treatment or in specific immune defects such as
autosomal dominant hyper IgE (HIES) syndrome.15,18,29

In HIES, mutations in STAT3 result in defects in T
helper type 17 (Th17) cytokine production.30 Animal
models suggests that the Th17/IL-17 axis is essential for
immunity to oral candidiasis, exerting its effects through
upregulation of proinflammatory cytokines (IL-6), neu-
trophil-recruiting chemokines (CXCL1 and CXCL5) and
antimicrobial peptides.31 Local factors may also play
roles in risk for oral candidiasis. Saliva could offer pro-
tection aiding in Candida clearance either via aggrega-
tion or by direct killing through anti-fungal proteins
such as histatin 5 and calprotectin.32 Dentures probably
predispose to candidiasis by disrupting the epithelial bar-
rier and promoting biofilm formation.33

Cultivation-based studies of fungi other than Candida
Oral lesions not due to Candida are very rare and there-
fore few studies have focused on colonization by other
genera. Cases of oral lesions associated with Cryptococcus
spp., filamentous fungi (Aspergillus spp. and
Zygomycetes), and dimorphic fungi (Histoplasma, Blasto-
myces and Coccidioides) have been reported but usually

involve severe immunosuppression and disseminated
infection to extra-oral sites.34-36 Histoplasma and Cocci-
dioides are likely acquired infections. Other fungi
responsible for rare oral and systemic infections are
likely opportunistic with the mouth potentially serving
as infection reservoir. For instance, Knighton1 and
Young et al.2 detected cryptococci in the oral mucosal
surfaces of healthy subjects. Aspergillus species including
niger, versicolor and fumigatus have also been frequently
recovered.37-39

Few broad cultivation surveys of fungi from the
oral cavity exist (Fig. 2). A contributing factor was
the indication that the origin of cultivated fungi other
than Candida was environmental.40 More recent stud-
ies with air-exposed control plates or plating under
laminar flow contradict these findings.38,41 Gomes
et al.38 reported filamentous fungi in 28.3% of sam-
ples from root canals of teeth with pulp necrosis in a
study including air-exposed control plates. Five Asper-
gillus species were identified (ustus, granulosus, niger,
sydowii) and Emericella quadriluniata (sexual form of
Aspergillus). Four Penicillium species (implicatum,
micsynvisk, lividum and citrionigrum) were recovered.
Other taxa represented were Fusarium (moniliforme
and melanochorum), Aureobasidium pullulans,
Exophiala jeanselmei, Eurotium amstelodame and Cla-
dosporium sphaerospermum. In a recent, carefully-
controlled, cultivation study, Monteiro da Silva
et al.41 investigated oral fungi in 40 healthy subjects.
Growth was evaluated at 25�C and 37�C. The most
commonly isolated fungi were species of Candida
(67.5%), Rhodotorula (75%), Penicillium (85%), Asper-
gillus (75%), Cladosporium (72.5%), Trichoderma
(10%), Scedosporium (7.5%), Alternaria (5%) and Rhi-
zopus (2.5%). More samples produced cultures at
25�C, 100% yielding molds and 92.5% yielding yeasts.
At 37�C, 42.5% produced molds and 45% produced
yeasts. Three factors argue against environmental
contamination to explain these high recovery rates: 1)
use of sterile conditions including laminal flow; 2)
variability in taxa colonizing participants and 3) repli-
cation of subject-specific colonization profiles in 10
subjects at 2 additional time points, including a sea-
sonal climatic change.

Additional studies have also recovered fungi other
than Candida from a few subjects. Saccharomyces
spp. and Rhodotorula rubra were isolated from oral
swabs of radiotherapy patients.42 Rhodotorula muci-
laginosa, Trichosporon mucoides and Cryptococcus
humicolus were isolated from infected root canals
and saliva.43 Also, Miranda et al.44 reported Saccha-
romyces cerevisiae and Kluyveromyces lactis from the
tongue.
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The oral mycobiome surveyed via molecular
methods

Universal primers and amplicon sequencing enabled
broad spectrum surveys of microbiota circumventing
limitations of cultivation approaches. The most widely-
used locus for mycobiota surveys is the internal tran-
scribed spacer (ITS) between the 18S and 28S rRNA
genes. The ITS includes the most rapidly-evolving ITS1,
the highly conserved 5.8S and the moderately to rapidly
evolving ITS2.45-47 Figure 1 shows a map of the ITS
region and primer sets used in oral mycobiome studies.

Aas et al.48 conducted one of the earliest amplicon-
based sequencing studies of the oral mycobiome. Their
primers were capable of amplifying the 18S gene from a
variety of medically-important species.49 Cloned ampli-
cons from subgingival plaque of HIV-positive subjects
were Sanger sequenced. Only Candida albicans and Sac-
charomyces cerevisiae were found.

The first comprehensive survey of the oral mycobiome
employing universal primers and high throughput sequenc-
ing analyzed oral rinse samples of 20 healthy individuals.4

Although Candida was the most frequently detected genus
(75% of subjects; C. albicans identified in 40%), a diverse
array of fungi were revealed as potential oral residents. Fif-
teen genera were present in more than 20% of subjects and
designated the “core” mycobiome. A later study by the
same group compared the mycobiome of 12 HIV-positive

subjects to 12 controls.50 Results confirmed previously
reported taxa and also showed a negative correlation
between abundance of Candida and Pichia. An investiga-
tion of the in vitro interaction of Pichia and other fungi
found that spent media from a Pichia farinosa strain inhib-
ited growth of Candida, Aspergillus and Fusarium. The
most commonly reported Pichia in oral mycobiome studies
are Pichia guilliermondii (Candida/Meyerozyma guillier-
mondii) and Pichia jadinii (Cyberlindnera jadinii).4,5,51 It is
not clear that Pichia farinosa is part of the oral mycobiome.
Nevertheless, this study highlights the potential for fungal
interactions to modulate oral mycobiome composition.

Our group recently characterized fungi in unstimu-
lated saliva of healthy individuals using ITS1 pyrose-
quencing.5 Our results are in good agreement with
Ghannoum et al.4 in identifying Candida, Pichia, Clado-
sporium/Davidiella, Alternaria/Lewia, Aspergillus/Emeri-
cella, Eurotium, Fusarium/Gibberella, Cryptococcus/
Filobasidiella, and Aureobasidium. However, our study
uniquely identified Malassezia as a prominent commen-
sal in all individuals (abundance 13% to 96%) (Fig. 2).
Since Malassezia species had never been reported as oral
residents, we eliminated the possibility of contamination
through rigorous negative controls. Malassezia are
well-known skin commensals, also recoverable from
respiratory tracts, and therefore oral residency is very
plausible.52,53 Lack of detection in previous cultivation

Figure 1. Schematic diagram of the nuclear ribosomal repeat unit in fungi. This region includes the 18S, 5.8S and 28S rRNA genes and
the internal transcribed spacers (ITS) 1 and 2. Sites of universal primers used by molecular surveys of the oral mycobiome and by one
landmark skin mycobiome study are indicated by arrows. As seen in the Figure, studies commonly rely on ITS1 amplification.
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studies was likely due to media that do not support
Malassezia growth.41 Malassezia have an incomplete
fatty acid synthesis pathway requiring addition of lip-
ids.54,55 Lack of previous molecular detection is attribut-
able to cell lysis methods, since studies reporting
Malassezia in human compartments employed very
harsh protocols5,53,56,57 necessary for disrupting the thick
cell walls of Malassezia. We use bead-beating with high-
density 0.5 mm yttria-zyrconia beads for lysis and have
noticed that even small variations in homogenization
speed can greatly impact DNA yields from Malassezia
(Fig. 3a). These results emphasize the need for validated
protocols to improve detection of resident taxa.

A recent longitudinal microbiome characterization in
a leukemia patient further corroborates our finding of
Malassezia as a prominent commensal. Malassezia spp.
dominated oral communities (buccal swabs) during cer-
tain time points of chemotherapeutic treatment.57 In
contrast to oral samples, stool from the same individual
did not show Malassezia. Other abundant fungi in the
oral cavity of this patient included C. albicans, C. glab-
rata, Fusarium spp. and Alternaria spp.Mucur ventilosus
was also detectable in oral samples prior to occurrence of
invasive mucormycosis, with the oral cavity potentially
serving as the infection source.

Recently, the oral mycobiome was compared between
healthy subjects and those suffering oral candidiasis.56

The mycobiomes of subjects with candidiasis were domi-
nated by C. albicans, but C. tropicalis and C. dublinensis
were also detected in some subjects in moderately high
abundance. Interestingly, antifungal treatment did not
dramatically change the mycobiome with only C. dublin-
iensis decreasing while C. albicans increased proportions.
The “healthy” mycobiome was not markedly different
from the “candidiasis” mycobiome, both dominated by
C. albicans. These results suggest that strain shifts,
changes in load, altered pathogenic potential or host-
related factors, rather than simple alterations in C. albi-
cans proportions are associated with clinical symptoms.

In summary, pioneering molecular studies relying on
saliva or oral rinses revealed highly diverse fungal com-
munities in the human mouth. Detailed characterization
of fungal biogeography at different oral sites is lacking.
Cultivation studies suggest Candida species are more
abundant in the posterior half of the tongue.1,12,58 Is
there partitioning of other fungal species across oral
sites? Also, are there relationships between fungi and
other dental diseases? Beyond the association of Candida
spp. with oral candidiasis, and suggested relationships
between Candida carriage, salivary pH and caries,2,59 no

Figure 2. Comparison of oral mycobiome members (genus-level) as identified by molecular and culture-based approaches. Most preva-
lent oral genera (appearing in »20% of subejcts in Ghannoum et al.4 and Dupuy et al.5) DNA sequencing studies are in the left circle.
Those studies38,41,42,44 appear in the right circle. The overlap in the Venn diagram illustrates the fungal genera identified by both
approaches. Highlighted genera in the culture-based list are those present in our saliva data set but at less than 20% frequency.5 The
molecular studies were conducted on systemically healthy individuals, while culture-based studies included both healthy and cancer
patients. Samples in the molecular studies included oral rinses and unstimulated saliva, while samples for the cultivation studies
included oral rinses, mucosal swabs and contents of infected root canals. Despite these differences, there is great agreement between
the molecular surveys and cultivation studies with most taxa detected by cultivation also seen molecularly.
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further evaluation of oral health in the context of the
mycobiome has been conducted.

Challenges in oral mycobiome analysis

In addition to lysis optimization, other technical and bio-
informatic aspects to ITS-based surveys must be taken
into account. These include differences in ITS amplicon
lengths, variable rates of intra-species ITS sequence vari-
ation, variable number of ITS genomic copies among
taxa and challenges in nomenclature and maintenance of
comprehensively curated reference databases.

Fungal ITS amplicon lengths can differ greatly among
taxa. Figure 3b shows ITS1 amplicons ranging from
»200 to »600 bps in saliva and reference strains. ITS
amplicon fragments from mouse and human fecal sam-
ples also vary in length (170 to 550 bp).60 Awareness of
length discrepancies is especially necessary with bidirec-
tional sequencing approaches since overlap between for-
ward and reverse reads will differ. There is also potential
bias in abundance estimates due to preferential amplifi-
cation of the shorter fragments.60

The sequence variation in the fungal ITS region
makes it ideal for phylogenetics. However, the degree of
intra-species variability is remarkably different among
fungi.45 In a comprehensive analysis, Nilsson et al.45

showed that ITS intra-species variation is above the 3%
threshold in 1=4 of fungal species, with ITS1 being more
variable than ITS2. In practice, the combination of
multiple alignment difficulties for different amplicon
lengths and high intra-species sequence variation render

unreliable the automated pipelines that separate
sequence reads by similarity thresholds to delineate
species-level operational taxonomic units (OTU)s.
Therefore, most ITS-based studies employ taxonomic
identification of individual sequences followed by group-
ing based on assigned names.

Total fungal load is a critical piece of information for
clinical samples, but quantitative molecular methods
used for other organisms are of limited value for fungi.
While methods for fungal load using universal primers
and real time PCR exist61, the interspecific (inter-species)
variability in ITS copy number (few to »250 copies)
makes overall quantitative estimates challenging. Even
with species-specific primers, intraspecific copy number
differences make the quantitative estimate of fungal cells
or spores difficult in the absence of prior knowledge of
copy numbers and relative abundance of different
strains. Some species of important oral mycobiome
members show discrepancies in copy number among
strains. Candida albicans strains have been shown to
vary »4-fold (56-222 copies)62, while Aspergillus fumiga-
tus strains differ »2.5-fold (38-91)63.

A daunting challenge in mycobiome research is the
confusing state of nomenclature. Unlike other organ-
isms, a single fungus was permitted multiple names
(reflecting asexual/sexual morphs, or diverse historical or
geographical discoveries). Compounding nomenclature
confusion was assignment of species to genera without
phylogenetic support. These uncertainties are amplified
in some oral mycobiome genera such as Candida
or Cryptococcus that were depositories for varied

Figure 3. Examples of technical challenges important in the molecular evaluation of oral fungi. Table in Panel A shows yields after DNA
extraction of standardized Malassezia cell suspensions (5 £ 107 cells) using slightly different bead-beating speeds. DNA was extracted
using yttria-zyrconia beads following a protocol developed by our group.5 Samples were subjected to bead-beating (3 £ 30 sec) in an
MP Biomedicals FastPrepTM instrument using a speed of 5 m/s or 6 m/s. Notice that this small variation almost doubled DNA recovery
for M. restricta and M. globosa while it did not affect DNA yield for M. sympodialis. Arrows in middle phase-contrast micrograph show
intact M. globosa cells after bead-beating using the 5 m/s setting. Scale bar D 50 mm. Panel B shows dramatic differences in amplicon
length in the ITS1 region. Amplicons were generated from saliva samples of 4 subjects and from 2 reference strains using a published
protocol.5 Such variation in amplicon length may introduce bias in abundance estimates as shorter fragments are preferentially
sequenced.
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anamorphic fungi. Unification of nomenclature is
important to avoid reporting synonyms as different
fungi, especially given the reliance of mycobiome studies
on groupings by taxonomy. A recent goal has been to
minimize nomenclature confusion through the “one
name one fungus” (1N1F) initiative.64,65 International
working groups are currently creating morphological,
biochemical and multigene phylogenetic descriptions to
inform recommendations for nomenclature (e.g. Consol-
idated Species Concept66). Subject to formal approvals,
some recommendations have been published, which we
have used to revisit nomenclature for oral cavity genera
(Table 1). Our intent is not to provide a simple selection
chart, but rather to alert researchers working on oral
communities to the complexities of fungal nomenclature
and to direct to more complete sources of information.
Two major contributors to nomenclature adjustments
are 1) historical assignments of different names to the
same fungus and 2) new assignments due to phylogenetic
circumscription. In the first instance, some synonyms
arose when asexual (anamorphic) and sexual (teleomor-
phic) forms were assigned different names. These are
resolved by reassigning members of one of the genera to
the protected genus of the pair, joining other legitimate
species in the phylogenetically circumscribed genus. In
Table 1, Lewia joins Alternaria, Davidiella joins Clado-
sporium, Cochliobolus joins Curvularia. In the second
instance, new phylogenetic circumscription of genera
can change nomenclature. An illustration is the large,
heterogeneous, genus Candida. A recent reclassifica-
tion67 considered 434 Candida species that were reas-
signed to 15 genera and clades. Most relevant to the oral
mycobiome is the delineation of the genus Candida to 31
species, including many oral members (i.e. albicans, dub-
liniensis, parapsilosis, tropicalis and others) that will not
change names.

Since mycobiome studies rely on taxonomic identi-
fication to group sequences, well-curated databases
are a necessity. Publicly available repositories contain
about 20% of sequences incorrectly annotated at the
species level.68 Many GenBank ITS sequences are
annotated as “fungi” or “uncultured fungi;” with
some shown to originate from primer artifacts.5 Three
commonly used databases, Findley et al.,53 UNITE69

and Fungal ITS RefSeq Targeted Loci Project (RTL)
were recently evaluated using a single mouse fecal
ITS library.60 Unsurprisingly, the distribution of fungi
depended on the database and the authors ultimately
constructed a niche-specific reference set. A recent,
curated, quality-controlled database of 3400 ITS
sequences covering 524 human and animal pathogens
was constructed to aid in identification of causes of
mycoses.70 A specific database for oral fungi would be

an invaluable resource for tracking nomenclature evo-
lution, avoiding inclusion of redundant taxa, and
allowing accurate taxonomic assignments.

Ultimately, a full understanding of the roles of fungi
in oral health and disease requires species level resolu-
tions. As discussed earlier, the ITS power of discrimina-
tion for species varies widely. As a result, a number of
additional gene sequences have been used in various
“multigene” studies. One example uses EF1a (translation
elongation factor), RPB2 (subunit B2 of RNA polymerase
II), b-tubulin, actin, calmodulin, LSU and ITS to create
more robust phylogenies and reference sequence data-
sets.66 One can envision that selective multigene
approaches may become useful in circumstances when
ITS is insufficient.

A glimpse into the future

In addition to the need to explore oral fungal biogeogra-
phy is one to evaluate whether fungi detected by DNA
are functional residents of the oral biocompartment,
rather than a transient environmental presence. Cultiva-
tion studies with appropriate media to target growth of
prevalent molecularly-detected species would help
answer this question. For instance, lipid-enriched media
to support growth of Malassezia would confirm their
presence as true mycobiome residents. Such studies
should employ rigorous laboratory conditions and nega-
tive controls to exclude environmental contaminants.
Also, longitudinal studies that include seasonal changes
could help separate transient environmental fungi from
permanent residents.

One reason that the study of oral fungi has lagged
behind that of oral bacteria is the comparatively lower
biomass of fungi in the mouth. The number of cultivable
yeasts ranges from 10 to 10,000 per mL of saliva, with
the majority of specimens at 1,000 or less.2,41 The con-
centration of molds recovered from healthy subjects by
cultivation of oral rinse is also low, not exceeding 10 cells
per mL.41 These data sharply contrast with salivary bac-
terial load between 108 to 1010 16S rRNA gene copies per
mL (unpublished data). Gut microbiome studies indicate
that small numbers of fungi could have surprisingly
strong effects on immunological responses and the com-
position of the bacterial microbiome.71,72 Therefore, low
biomass should not deter interest in the effects of fungi
in the oral ecosystem.

Finally, a combination of molecular-based clinical
surveys and model-based research using in vivo and in
vitro systems will be necessary to fully understand the
roles of fungi in oral health. Pressing questions include:
How do fungal oral commensals affect immune
responses? How do oral fungi and bacteria interact? Are
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fungi “accessory” pathogens in oral diseases apart from
their direct involvement in candidiasis? Molecular sur-
veys are powerful first steps toward understanding the

oral mycobiome, but mechanistic studies are necessary
to uncover the functional roles of fungi in oral
homeostasis.

Table 1. Naming Information for Genera Reported in the Human Oral Cavity. Protected/preferred names, synonyms and references are
presented for an expanded list of fungal genera (this review, Dupuy et al.5). Sexual (T) and asexual (A) forms are designated. Only genus
level information is presented, however it should be noted that not all species within a genus have synonyms in only one other genus
and thus ultimate decisions on preferred names should be taken at the species-level. Lack of entry in the synonyms column does not
imply that there are no synonyms but rather that there may be many possible synonyms. Readers are directed to the literature citations,
MycoBank or Index Fungorum for extensive listings of alternate names and reassignments of species to new or different genera.
Absence of entry in the basis for decision column means that information from MycoBank and/or Index Fungorum was used to infer
legitimacy and currency of names.

PROTECTED OR PREFERRED NAME SYNONYMS REFERENCE

Agaricus
Alternaria Lewia, Allewia, Crivellia Zhang et al.73, Rossman et al.74

Aspergillus Eurotium, Emericella Controversial: Pitt and Taylor75; Samson et al.76

Aureobasidium
Bipolaris Cochliobolus (T) Rossman et al.74

Bullera Bulleromyces, hannae clades Liu et al.78

Candida Lodderomyces, several genera Daniel et al.67

Cladosporium Davidiella (T) Rossman et al.74

Coprinus Coprinopsis, Coprinellus
Cryptococcus Neoformans/gatti complex, Filobasidiella(T) Liu et al.78

Curvularia (A) Pseudococclioblous Rossman et al.74

Cyberlindnera Pichia, Candida, others Daniel et al.67

Cystofilobasidium (T) Some Cryptococcus species Liu et al.78

Cytospora (A) Valsa (T), Valsella, Valseutypella, Leucostoma Rossman et al.77

Debaryomyces Daniel et al.67

Didymella Genus Peyronellaea, Phoma Chen et al.79

Dioszegia Dioszegia clade (includes some Cryptococcus) Liu et al.78

Epicoccum Several Phoma Chen et al.79

Erythrobasidium Sporobolomyces Wang et al.80

Exophiala
Filobasidium (T) Filobasidium clade (includes some Cryptococcus) Liu et al.78

Fusarium Gibberella Rossman et al.81

Glomus
Hanseniaspora (T) Kloeckera (A) Daniel et al.67

Irpex Synonyms in several genera
Kluyveromyces Kurtzman82

Lenzites Trametes, others
Leptosphaerulina Chen et al.79

Malassezia Wu et al.55

Mrakia Mrakia clade (includes some Mrakiella) Liu et al.78

Naganishia Cryptococcus albus clade Liu et al.78

Penicillium Eupenicillium Redhead et al.83, Zhang et al.73

Phaeosphaeria Phaeoseptoria Rossman et al.73

Phoma Atradidymella, others Chen et al.79

Pichia Daniel et al.67

Pisolithus Synonyms in several genera
Pyrenochaetopsis Chen et al.79

Ramularia (T) Mycosphaerella (A) Quaedvlieg et al.66, Rossman et al.73

Rhizocarpon Synonyms in several genera
Rhizopus Hoffman et al.84

Rhodosporidiobolus Rhodosporidium/Sporidiobolus Rhodotorula(A)/
Rhodosporidium (T) Sporobolomyces(A)/Sporidiobolus(T)

Wang et al.80

Rhodotorula Rhodosporidium (T) in Rhodosporidium clade Wang et al.80

Saccharomyces Kurtzman82, Daniel et al.67

Sarcinomyces
Scedosporium Lackner and de Hoog85

Sporobolomyces (A) Sporidiobolus (T) in Sporobolomyces clade Wang et al.80

Talaromyces (T) Penicillium (A) Redhead et al.83, Yilmaz et al.86

Taphrina (T) Lalaria (A) Daniel et al.67

Tausonia Guehomyces, Trichosporon Liu et al.78

Teratosphaeria Kirramyces, Colletogloeopsis Quaedvlieg et al.66 Rossman et al.74

Torulaspora Kurtzman82

Trametes Carlson et al.87

Trichoderma (A) Hypocrea (T) Rossman et al.87

Trichosporon
Wallemia Bargellinia
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