
Lentinula edodes Genome Survey and
Postharvest Transcriptome Analysis

Yuichi Sakamoto,a Keiko Nakade,a* Shiho Sato,a Kentaro Yoshida,a*
Kazuhiro Miyazaki,b Satoshi Natsume,a Naotake Konnoa*
Iwate Biotechnology Research Center, Kitakami-shi, Iwate, Japana; Kyushu Research Center Forestry and Forest
Products Research Institute, Kumamoto, Kumamoto, Japanb

ABSTRACT Lentinula edodes is a popular, cultivated edible and medicinal mushroom.
Lentinula edodes is susceptible to postharvest problems, such as gill browning, fruit-
ing body softening, and lentinan degradation. We constructed a de novo assembly
draft genome sequence and performed gene prediction for Lentinula edodes. De
novo assembly was carried out using short reads from paired-end and mate-paired
libraries and by using long reads by PacBio, resulting in a contig number of 1,951
and an N50 of 1 Mb. Furthermore, we predicted genes by Augustus using transcrip-
tome sequencing (RNA-seq) data from the whole life cycle of Lentinula edodes, re-
sulting in 12,959 predicted genes. This analysis revealed that Lentinula edodes lacks
lignin peroxidase. To reveal genes involved in the loss of quality of Lentinula edodes
postharvest fruiting bodies, transcriptome analysis was carried out using serial analy-
sis of gene expression (SuperSAGE). This analysis revealed that many cell wall-related
enzymes are upregulated after harvest, such as �-1,3-1,6-glucan-degrading enzymes
in glycoside hydrolase (GH) families GH5, GH16, GH30, GH55, and GH128, and
thaumatin-like proteins. In addition, we found that several chitin-related genes are
upregulated, such as putative chitinases in GH family 18, exochitinases in GH20, and
a putative chitosanase in GH family 75. The results suggest that cell wall-degrading
enzymes synergistically cooperate for rapid fruiting body autolysis. Many putative
transcription factor genes were upregulated postharvest, such as genes containing
high-mobility-group (HMG) domains and zinc finger domains. Several cell death-
related proteins were also upregulated postharvest.

IMPORTANCE Our data collectively suggest that there is a rapid fruiting body autol-
ysis system in Lentinula edodes. The genes for the loss of postharvest quality newly
found in this research will be targets for the future breeding of strains that keep
fresh longer than present strains. De novo Lentinula edodes genome assembly data
will be used for the construction of a complete Lentinula edodes chromosome map
for future breeding.
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Lentinula edodes, popularly known as the shiitake mushroom, is a widely cultivated
edible and medicinal mushroom in Asia. The shiitake is the second most cultivated

fungus, and over 1,321,000 tons of Lentinula edodes have been produced in China,
Japan, Taiwan, and Korea (1, 2). Lentinula edodes is used as a medicinal mushroom;
lentinan, a �-1,3-1,6-glucan with antitumor activity, is present in this mushroom (3).
Recently, it was shown that lentinan can be effective for treating gut inflammation
(4). It is also reported that polysaccharides extracted from Lentinula edodes can restore
age-attenuated immune responses and reverse age-related alterations of gut microbi-
ota compositions in mice (5). Furthermore, Lentinula edodes can be a source of
ergosterol and ergothioneine (6). Lentinula edodes has the potential for use not only as
a fresh food but also as a source of medicinal compounds. Therefore, it is necessary to
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breed new Lentinula edodes strains that contain these beneficial compounds. How-
ever, Lentinula edodes requires a longer cultivation time than other mushrooms, such
as Flammulina velutipes and Pleurotus ostreatus (7), and thus it takes a very long time
to breed new strains using typical breeding methods based on mating and evaluating
fruiting body traits. Effective breeding methods based on gene function are needed.

Genome sequence data have been published for basidiomycetous fungi such as
Phanerochaete chrysosporium (8), Laccaria bicolor (9), Coprinopsis cinerea (10), Agaricus
bisporus (11), Schizophyllum commune (12), and Flammulina velutipes (13). Because of
the popularity of next-generation sequencing, many genome sequence drafts of ba-
sidiomycetous fungi are publicly available, especially from the 1,000 Fungal Genomes
Project (14). More recently, the constructions of de novo draft genome sequences of
Lentinula edodes were reported (15, 16).

Some transcriptome analyses with genome sequence data have been reported in
several mushrooms, such as Agaricus bisporus (11), Schizophyllum commune (12), and
others. Transcriptome analyses for fruiting body development in Lentinula edodes were
carried out using differential display (17) or serial analysis of gene expression (SAGE)
analysis (18), and PCR subtraction was used for analyzing postharvest quality loss (19).
More recently, transcriptome analysis was performed by transcriptome sequencing
(RNA-seq) during browning film formation on mycelial bags (20) and during cellulose
degradation (16). In Lentinula edodes, postharvest quality loss is a very significant
problem from an economical viewpoint. In Lentinula edodes, significant quality loss is
caused by gill browning and fruiting body softening, resulting in a foul odor 3 to 4 days
after harvest if stored at room temperature (21). Lentinula edodes fruiting bodies turn
brown owing to melanin synthesis and turn soft because of cell wall degradation.
Melanin synthesis occurs from the increases in tyrosinase (22, 23) and laccase (24, 25)
after harvest. Cell wall degradation is another significant postharvest issue in Lentinula
edodes. Because lentinan, a �-1,3-1,6-glucan in cell walls with antitumor activity (3), is
degraded by increased glucanase activity after harvest (26), we identified cell wall
degradation-related genes that were upregulated after harvest by PCR subtraction (19).
Genome sequence data of Lentinula edodes was not available for PCR subtraction,
yet approximately 50 genes, such as putative chitinases (chi1, chi2, and chi3) and a
chitosanase (cho1), were identified as upregulated after harvest (19, 21). Several �-1,3-
glucanases were purified and characterized from Lentinula edodes fruiting bodies after
harvest. EXG2, an exo-�-1,3-glucanase belonging to glycoside hydrolase (GH) family 55
(27), TLG1, an endo-�-1,3-glucanase with high similarity to thaumatin-like protein (28),
GLU1, an endo-�-1,3-1,6-gluanase belonging to GH128 (29), and PUS30, an endo-�-
1,6-glucanase belonging to GH30 (30), can degrade lentinan. Their expression increased
after harvest; therefore, lentinan is degraded by multiple enzymes with synergic effects.
The putative transcription factor exp1, which is a homolog of a gene that regulates cap
autolysis in Coprinopsis cinerea (31), is also upregulated after harvest (19). This suggests
that exp1 in Lentinula edodes regulates genes involved in postharvest quality loss.
However, it is highly possible that multiple transcription factors are involved in post-
harvest quality loss in Lentinula edodes. To establish methods for controlling posthar-
vest quality loss, a more comprehensive transcriptome analysis of Lentinula edodes is
needed.

To obtain a basis for constructing a reference sequence for Lentinula edodes transcrip-
tome analysis, we constructed the genome sequence of Lentinula edodes G408PP-4 that
was used for linkage mapping (32) using a combination of short-reads from Illumina
sequencers and long reads from PacBio. Next, we predicted genes by combining
assembled genome sequence data and RNA-seq data. Then, we analyzed transcrip-
tomic data obtained from previously published PCR subtraction data (19) and Super-
SAGE data for postharvest quality loss. The results suggest that multiple novel cell wall
enzymes, such as putative �-1,3-gluanases, �-1,6-gluanases, and chitinases are upregu-
lated after harvest. We also identified several transcription factors for postharvest
quality loss. The results will provide insight for controlling postharvest freshness in
Lentinula edodes.
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RESULTS AND DISCUSSION

We constructed genome sequence data for G408PP-4, a wild strain isolated on
Yakushima Island, Japan, which is crossed with strain D703PP-9 to construct a linkage
map (32, 33). Short leads from the Illumina GAIIx and Illumina HiSeq2500 were
assembled by the clc genomics workbench, and then we scaffolded the contigs using
mate-paired libraries and a PacBio sequencing system. The resulting scaffold number
was 1,951, the N50 was 103,018, and the total was 38,944,209 bp (see Table S1 in the
supplemental material). The resulting scaffolds were comparable with those from other
genome sequence data from mushroom-forming basidiomycetous fungal species,
such as from Coprinopsis cinerea (37 Mb) (10), Agaricus bisporus (30 Mb) (11), and
Schizophyllum commune (38.5 Mb) (12), but were smaller than that from the
mycorrhizal basidiomycetous fungus Laccaria bicolor (65 Mb) (9). Previously, we carried
out gene prediction by draft genome sequencing of Lentinula edodes strain D703PP-9
and found 8,271 putative genes (25). On the other hand, the number of predicted
genes in Coprinopsis cinerea or Schizophyllum commune is around 15,000, much larger
than our prediction for Lentinula edodes. Therefore, to more accurately predict genes,
we combined RNA-seq data from whole life cycle and reference genome sequence
data. Using RNA-seq data, the number of predicted genes was 12,959, and 100% of
recorded genes in Lentinula edodes were predicted (except for pheromone precursors
and mitochondrial and partial proteins) (see Table S2). Lentinula edodes belongs to
Marasmiaceae, which includes white rot, saprobic, and plant-pathogenic fungi (34).
Plant cell wall-degrading enzymes in Lentinula edodes G408PP-4 (see Table S3) were
identical to those of strain W1-26 (16) and similar to other species of Marasmiaceae
(Table S3) (35–37). Characteristically, no lignin peroxidase (Lip)-encoding genes were
found in Lentinula edodes or in Marasmiaceae species whose genome sequences are
publicly available (Table S3), suggesting that Lentinula edodes lacks Lip and depends on
laccases and manganese peroxidases for lignin degradation.

Transcriptome analysis for fruiting bodies after harvest. Genes upregulated in
the fruiting body after harvest were investigated by SuperSAGE (38). More than 200,000
tags were sequenced from fresh fruiting bodies and postharvest fruiting bodies. Tag
counting data are summarized in Fig. S2, and totally, 62% of unique tags were matched
with predicted genes. Approximately 95% of the genes that were true-positive upregu-
lated genes after harvest by our previous PCR subtraction analysis (19) were expressed
higher than 2-fold in the fruiting body after harvest compared with that in the fresh
fruiting body (see Fig. S3, Table S4). This suggests that the results from SuperSAGE
are reliable. To identify differentially expressed genes (DEGs), statistical and gene
ontology analyses were performed. DEG analysis revealed that 66% of the genes
that are true-positive genes upregulated after harvest by our previous PCR subtraction
analysis were determined to be DEG in the present SuperSAGE analysis (Fig. S3). We
identified an enriched gene ontology in the fruiting body after harvest compared with
that in the fresh fruiting body using Blast2GO (Fig. 1). This revealed that catalytic
activity and hydrolase activity on glycosyl bonds, transporters, and oxidoreductase
activity were upregulated in the fruiting body after harvest (Fig. 1). We identified an
enriched gene ontology in the fruiting body after harvest by DAVID and found that
dehydrogenases, transporters, oxidoreductases, and transcription factors are found in
the fruiting body (see Table S5). On the other hand, we compared the enriched gene
ontologies in the fresh fruiting body by Blast2GO and DAVID, and the results suggested
that many gene ontologies were enriched in the fresh fruiting body (see Fig. S4, Table
S6). In particular, DNA, RNA, protein, and carbohydrate metabolic processes were
enriched.

Expression of putative �-1,3-glucanases after harvest. �-1,3-1,6-Glucans are the
most abundant cell wall components in the Lentinula edodes fruiting body; therefore,
we first analyzed �-1,3-1,6-glucan-degrading enzymes expressed abundantly after
harvest (Table 1). Lentinula edodes has three GH55 family exo-�-1,3-glucanases that are
mostly conserved in filamentous fungi and also exist in several bacteria (39). EXG2, a
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member of the GH55 family which is involved in cell wall degradation after harvest (27),
has a strong effect on lentinan degradation after harvest (40). The enzyme encoded by
exg2 in the GH55 family of exo-�-1,3-glucanases was not determined to be a DEG, but
its expression was upregulated more than 15-fold in the fruiting body after harvest
(Table 2). Two other genes encoding putative GH55 family enzymes (g7383.t1 and
g7404.t2) (Table 1) were slightly increased after harvest (Table 2). We previously
characterized another exo-�-1,3-glucanase, EXG1 (g4132.t1), an enzyme of the GH5
family (41). Twenty-one putative GH5 members were found in Lentinula edodes (Table
1). The expression of exg1 decreased after harvest (Table 2), but another GH5 gene
(g4131.t1) located in the Lentinula edodes genome in tandem with exg1, similar to the
one found in Agaricus bisporus (42), increased after harvest (Table 2). We further
identified 3 DEGs that increased after harvest encoding GH5 family members (Table 2).
One endo-�-1,3-glucanase in GH128 involved in lentinan degradation in Lentinula
edodes, GLU1, was purified and characterized (29). We found 4 putative GH128 family
enzymes in Lentinula edodes (Table 1). The expression of glu1 increased significantly
after harvest and was deemed a DEG (Table 2), but the other three GH128 family genes
were not identified or decreased after harvest (see Table S4). Thaumatin-like protein,
TLG1, which also has endo-�-1,3-glucanase activity, was purified from the Lentinula
edodes fruiting body after harvest (28). The gene tlg1 was identified as a DEG, and one
other thaumatin-like protein was judged to be a DEG as well (g10798.t1) (Table 2). We
found four other putative thaumatin-like proteins that were not DEGs (Table 1; see also
Table S4), but the expression of one gene (g10969.t1) increased 18.5 times after harvest
(Table 2). We also found 6 glycopeptide proteins which are weakly similar to thaumatin-
like protein (43), and the expression of three of them (g6764.t1, g6761.t1, and g707.t1)
increased significantly after harvest (Table 2). Additionally, we observed that the
�-1,6-glucanase LePUS30 that belongs to GH30 is involved in cell wall degradation after
harvest (30). Expression of pus30 and ghf30 (19), encoding other GH30 family members,
increased after harvest. The other gene encoding a GH30 member enzyme (g1578.t1)
was not identified as a DEG (Table 2). Some enzymes belonging to the GH16 family can
degrade �-1,3-1,6-glucans, such as laminarin (44), and Lentinula edodes has 28 genes
encoding putative GH16 family members (Table 1). We found that 4 of them (including

FIG 1 Comparison of enriched gene ontologies between fruiting bodies after harvest and fresh fruiting bodies (just
after harvest) by using Blast2GO enrichment analysis (Fisher’s exact test). Black and white bars indicate enriched
gene ontologies in the fruiting body after harvest and the fresh fruiting body, respectively. The x axis indicates the
number of genes enriched.
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mlg1) are differentially expressed after harvest (Table 2). We expressed mlg1 in Asper-
gillus oryzae and showed stable expression and secretion. The recombinant protein
encoded by mlg1 was purified using ammonium sulfate fractionation, metal affinity
resin, and anion-exchange chromatography (see Fig. S5). Purified MLG1 could degrade
laminarin (�-1,3-1,6-glucan) and barley glucan (�-1,3-1,4-glucan), a typical feature of
mixed-linked glucanases in the GH16 family (Table 3). However, recombinant MLG1
hardly degraded lentinan, cellulose, pustulan, or lichenan. This suggests that MLG1
degrades oligosaccharides degraded from lentinan by endo-�-1,3-glucanases, such as
TLG1 and GLU1, and that rapid lentinan degradation after harvest was caused by a
synergetic effect between the exo-�-1,3-1,6-glucanase EXG2, endo-�-1,3-glucanases
TLG1 and GLU1, �-1,3-glucanase MLG1, and the endo-�-1,6-glucanase PUS30.

Expression of chitin-related genes after harvest. Chitin is a major cell wall
component in Lentinula edodes, and chitin-degrading-enzyme-encoding genes (chi1,
chi2, and chi3) and chitinase activity increased after harvest (19, 21). chi3 is a homolog
of the chitinase-encoding gene in Coprinopsis cinerea, chiIII, involved in cap autolysis
(45). Therefore, the chitin degradation process is important for postharvest cell wall
degradation in Lentinula edodes; however, there is little information on chitin degra-

TABLE 2 �-Glucan-degrading enzymes involved in fruiting body softening after harvest

Classification IDa Day 0 meanb Day 4 meanc

Fold change
(day 4/day 0) P value DEGd

GH55 g7384.t1 (exg2) 1.67 25.33 15.2 9.82E�03 0
GH55 g7383.t1 9 12.67 1.41 9.40E�01 0
GH55 g7404.t2 10.67 18 1.69 1.00E�00 0
GH5 g4132.t1 (exg1) 28.67 21.67 0.76 1.14E�01 0
GH5 g4131.t1 3 17.33 5.78 7.62E�02 0
GH5 g3633.t1 0 19 ∞ 1.98E�05 1
GH5 g1981.t1 0 10.33 ∞ 6.98E�04 1
GH5 g1273.t1 17 152 8.94 4.26E�04 1
GH128 g8562.t1 (glu1) 9 269.33 29.93 1.33E�08 1
Thaumatin-like protein g9371.t1 (tlg1) 27.33 560 20.49 5.15E�08 1
Thaumatin-like protein g10798.t1 4.67 2328.33 498.93 1.27E�07 1
Thaumatin-like protein g10969.t1 0.67 12.33 18.5 1.44E�02 0
Glycopeptide g707.t1 0 8.33 ∞ 3.18E�03 1
Glycopeptide g6764.t1 3 3716.33 1238.78 1.23E�24 1
Glycopeptide g6761.t1 0.67 239.67 359.5 1.18E�10 1
GH30 g10719.t2 (ghf30) 0 37.67 ∞ 4.37E�08 1
GH30 g1693.t1 (pus30) 0 30 ∞ 3.50E�06 1
GH30 g1578.t1 251 333 1.46 8.56E�01 0
GH16 g1113.t1 0 297 ∞ 1.49E�09 1
GH16 g6709.t1 0 120.33 ∞ 5.59E�13 1
GH16 g1786.t1 (mlg1) 159.67 6197 38.81 8.96E�12 1
GH16 g3753.t1 9 123.33 13.7 5.67E�06 1
aID, identification number. The gene names are shown in parentheses.
bMean number of Super-SAGE tag counts (n � 3) of fresh fruiting body (day 0).
cMean number of Super-SAGE tag counts (n � 3) of fruiting body after harvest (day 4).
d1, estimated as DEG; 0, not estimated as DEG.

TABLE 3 Substrate specificity of MLG1

Substrate Glycosidic bond Relative activity (%)a

Laminarin �-1,3-1,6 100
Pachyman �-1,3-1,6 40.2
Cardran �-1,3 32.0
Lentinan �-1,3-1,6 NDb

Barley glucan �-1,3-1,4 29.2
Lichenan �-1,3-1,4 ND
Cellulose �-1,4 ND
Pustulan �-1,6 ND
aReleased reducing sugar after incubation of MLG1 and each substrate was matured by the PAHBAH (4-
hydroxybenzoic acid hydrazide) method. Relative activity of each substrate was indicated as a ratio (%) of
absorbance of each substrate toward that of laminarin.

bND, not detected.
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dation processes in basidiomycetous fungi. We identified 14 putative chitinases with
GH18 domains in the Lentinula edodes genome (Table 1). Three of them (chi1, chi2, and
chi7) showed significantly increased expression after harvest (Table 4). The chi7 gene is
a newly identified putative endochitinase that has a chitin-binding module (CBM5).
Other putative chitinases were not determined to be DEGs, but the expression of three
other chitinases (chi4, chi5, chi6) increased after harvest (Table 4). These putative
chitinases do not have CBM5, but several chitinases without CBM5 have chitin-
degrading activity in basidiomycetous fungi (46). In particular, the Coprinellus congre-
gatus chitinase Chi2 purified from droplets during cap autolysis, which has a high
similarity to that encoded by chi5, can degrade chitin oligosaccharides (47). These
results collectively suggest that multiple proteins with GH18 domains are coordinately
involved in chitin degradation in the fruiting body after harvest. One chitin-degrading
enzyme family is the hexosaminidases in GH20, namely, Hex20A (48) and Hex20B (49).
These two hexosaminidases can degrade crystalized chitin in an exo-manner. Hex20A
increased after harvest, and Hex20B decreased after harvest (Table 4). We also identified
another GH20 family gene (g9894.t1), and it was not judged as a DEG but its expression
increased 6.75-fold after harvest (Table 4). We identified other putative chitin-related
proteins that have carbohydrate-binding module family 50 domains (CBM50, known as
the LysM domain). Several LysM domains have chitin-binding ability, and several
chitinases contain LysM domains (50). We found 7 proteins containing CMB50 domains;
5 of 7 such proteins were increased after harvest, and 2 of 5 were identified as DEGs in
the fruiting body after harvest (g6653.t1 and g8231.t1) (Table 4). Expansin is involved
in loosening cellulose crystal structures for cellulose degradation (51), and an expansin-
like protein in Schizophyllum commune enhances chitin degradation (52). The expres-
sion of several expansin-like proteins, such as those encoded by baw28 (g7005.t1) and
g6097.t1, increased after harvest. Chitosan is found in Lentinula edodes in addition to
chitin (53, 54). Previous PCR subtraction data suggested the chitosanase cho1 is
upregulated after harvest (19), and the SuperSAGE data were in agreement (see
g3293.t2 in Table 4). The gene cho1 has high similarity to chitosanases in the GH75
family in ascomycetous fungi, but no similar sequence was found in basidiomycetous
genomes except for that in Marasmiaceae (Table 1) and Auriculariales (55) species. We
also found that the putative chitin deacetylase chd1 (g7070.t1) that encodes a protein

TABLE 4 Chitin- and chitosan-degrading enzymes involved in fruiting body softening after harvest

Classification IDa Day 0 meanb Day 4 meanc

Fold change
(day 4/day 0) P value DEGd

GH18 g976.t2 (chi5) 0 5.67 ∞ 1.41E�02 0
GH18 g10886.t1 (chi7) 1 116 116 4.64E�05 1
GH18 g1744.t1 (chi4) 1.33 10.67 8 3.56E�01 0
GH18 g10746.t4 (chi6) 3 9.33 3.11 5.54E�01 0
GH18 g2804.t1 (chi8) 104 146 1.4 7.87E�01 0
GH18 g5859.t1 (chi3) 0 5 ∞ 1.65E�01 0
GH18 g8924.t1 (chi2) 1 1110 1110 8.91E�17 1
GH18 g8040.t1 (chi1) 8.33 405.67 48.68 3.40E�06 1
GH20 g10209.t2 (Hex20A) 0 2.67 ∞ 2.24E�01 0
GH20 g10237.t1 (Hex20B) 19 11.33 0.6 5.24E�02 0
GH20 g9894.t1 1.33 9 6.75 8.10E�02 0
CBM50 g6653.t1 0 18.33 ∞ 8.30E�05 1
CBM50 g8231.t1 0.67 104.67 157 3.74E�05 1
CBM50 g6766.t1 205.67 1024.67 4.98 1.04E�02 0
CBM50 g6268.t1 43.33 136 3.14 1.31E�01 0
CBM50 g11628.t1 89.33 270 3.02 2.58E�01 0
Expansin family protein g6097.t1 2 60 23.67 4.70E�04 1
Expansin family protein g7005.t1 (baw1) 27.67 3210.5 122.76 9.33E�17 1
GH75 g3293.t2 (cho1) 0 39 ∞ 8.52E�09 1
CE4 g7070.t1 (chd1) 242.33 613 3.59 5.28E�02 0
aID, identification number. The gene names are shown in parentheses.
bMean number of Super-SAGE tag counts (n � 3) of fresh fruiting body (day 0).
cMean number of Super-SAGE tag counts (n � 3) of fruiting body after harvest (day 4).
d1, estimated as DEG; 0, not estimated as DEG.
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that can catalyze chitin to chitosan increases after harvest (19) (Table 4). These data
collectively suggest that there are rapid chitin and chitosan degradation systems for cell
wall lysis in Lentinula edodes fruiting bodies after harvest.

Other genes upregulated in the fruiting body after harvest. Many transcription
factor (TF) genes were found in the fruiting bodies after harvest using DAVID (see Table
S5); especially, TF genes containing zinc finger domains were upregulated after harvest
(Table 5). Some genes containing Zn2Cy6 in their N termini, designated GAL4 domains,
are involved in fruiting body development, such as priB (56) and ftf1, ftf2, and ftf3 (19,
21), and are upregulated during fruiting body formation. We found 7 genes (including
ftf2) that have GAL4 domains in their N termini that were upregulated after harvest. The
transcription factor exp1 regulates cap autolysis during spore diffusion (31), and its
homolog in Lentinula edodes is upregulated after harvest (19). Two novel genes that
contain high-mobility-group (HMG) domains were upregulated after harvest (g11706.t1
and g429.t2) (Table 5). Some of the genes with HMG domains have a wide gene
regulation ability (57, 58) by interacting with other transcription factors to regulate
transcription in a variety of genes (59). Therefore, these genes might be more effective
in controlling fruiting body quality after harvest. We found other putative transcription
factor genes that contain basic leucine zipper (bzip [g5086.t1 and g6148.t1]) and
helix-loop-helix (bHLH [g271.t1]) domains (Table 5) that were upregulated after harvest.
We found chromatin remodeling-related genes, such as the SWI/SNF complex genes
(g872.t1, g5556.t1, g11151.t1, and g2328.t1), and histone deacetylases containing Sin3
domains (g143.t1) in fruiting bodies after harvest (Table 5). These results collectively
suggest that several transcription factor genes and chromatin remodeling are coordi-
nated to transcribe genes related to quality loss after harvest.

TABLE 5 Transcription factor genes that were upregulated in the fruiting body after
harvest

Sequence IDa Domain Day 0 meanb Day 4 meanc

Fold change
(day 4/day 0) P value

g3094.t1 Zn2Cys6 (GAL4:ftf2) 5.67 64 11.29 9.88E�04
g9959.t1 Zn2Cys6 (GAL4) 2.33 27.67 11.86 6.51E�04
g5145.t1 Zn2Cys6 (GAL4) 5 661 132.2 1.24E�08
g4572.t3 Zn2Cys6 (GAL4) 0 31.67 ∞ 2.89E�07
g5092.t1 Zn2Cys6 (GAL4) 0 30.67 ∞ 1.30E�06
g250.t1 Zn2Cys6 (GAL4) 0 22.33 ∞ 8.63E�05
g5558.t1 Zn2Cys6 (GAL4) 0 10.67 ∞ 3.94E�04
g7227.t1 Zn2Cys6 1 19 19 4.47E�03
g9056.t2 Zn2Cys6 0 16 ∞ 2.02E�05
g721.t1 Zn2Cys6 0 13.67 ∞ 1.21E�03
g5340.t1 Zn2Cys6 0 11.33 ∞ 9.82E�04
g2567.t1 Zn2Cys6 0 10.33 ∞ 2.40E�03
g8104.t1 Znf-CCHC 0.67 17.67 26.5 1.37E�03
g9472.t1 Znf-CCHC 0 40 ∞ 9.53E�08
g7860.t1 Znf-C2H2 3 34 11.33 7.75E�04
g9975.t1 Znf-C2H2 0 38.33 ∞ 4.86E�08
g10687.t1 Znf-C2H2 0 25 ∞ 4.32E�05
g10687.t1 Znf-C2H2 0 25 ∞ 4.32E�05
g2176.t3 Znf-C2H2 0 18.33 ∞ 1.35E�04
g9593.t1 HMG (exp1) 1.33 90.67 68 7.23E�06
g10925.t1 HMG 9.67 147 15.21 7.38E�04
g429.t2 HMG 1 42.33 42.33 2.66E�03
g6148.t1 bZIP 6.67 53 7.95 3.43E�03
g5086.t1 bZIP 2.67 137.33 51.5 2.03E�06
g271.t1 bHLH (hlh) 3.67 49.33 13.45 9.48E�04
g5556.t1 SWI 1.67 52 31.2 1.03E�03
g872.t1 SNF5 2.67 74.33 27.88 5.52E�06
g11151.t1 SNF5 0.67 31 46.5 4.77E�03
g2328.t1 SNF2 1.33 106.33 79.75 1.85E�08
g143.t1 Homeodomain-like 0.67 80.67 121 5.77E�05
aID, identification number.
bMean number of Super-SAGE tag counts (n � 3) of fresh fruiting body (day 0).
cMean number of Super-SAGE tag counts (n � 3) of fruiting body after harvest (day 4).

Sakamoto et al. Applied and Environmental Microbiology

May 2017 Volume 83 Issue 10 e02990-16 aem.asm.org 8

http://aem.asm.org


We previously identified tyrosinase and laccase (22–25) as involved in melanin
synthesis in the Lentinula edodes fruiting body after harvest. The putative phenylalanine
ammonia-lyase (PAL) that produces several phenolic compounds (60) for pigment
synthesis was upregulated after harvest. This suggests that PAL is coordinately
involved in pigment formation with tyrosinase and laccase after harvest (see Table S7).
Oxidative stress affects postharvest quality in horticultural crops (61, 62). We found that
7 glutathione S-transferase genes were DEGs in the fruiting body after harvest (Table
S7), and glutathione reductase (g3721.t1) and catalase (g2239.t2) were not DEGs but
were expressed at 3-fold higher levels in the fruiting body after harvest compared with
those in the fresh fruiting body (Table S4). These proteins are involved in antioxidant
defense (63). Furthermore, the expression of ascorbate oxidase (g9281.t1) also in-
creased after harvest (Table S7). The ascorbate glutathione pathway has an antioxidant
role in oxidative stress (64). These genes are involved in reducing oxidation stress.
Thioredoxin and cytochromes that are also involved in the reduction of oxidation stress
(63) were upregulated in the fruiting body postharvest (Table S7). These antioxidant
enzyme activities increased after harvest (65) in Lentinula edodes, collectively suggest-
ing that the antioxidant defense system is induced after harvest. Protein kinases have
a critical role for signal transduction in stress responses (66), and many protein kinases
were upregulated after harvest (Table S7). This suggests that some signal transduction
systems are newly functioning after harvest. We found that several programmed cell
death-related genes were upregulated after harvest (Table S7). The autophagy-related
genes encoding inositol hexakisphosphate kinase 1 (InsP6K1 [g615.t1]) and a cullin
domain-containing protein (g11374.t1) were upregulated after harvest (Table S7).
InsP6K forms diphosphoinositol pentakisphosphate [InsP(7)], which induces autophagy
(67). Furthermore, InsP6K mediates the assembly/disassembly of the cullin-RING ubiq-
uitin ligases (CRL)-signalosome complex to regulate cell death (68). The vacuolar
assembling sorting protein VPS16 (g9687.t2) (Table S7), which is involved in vacuolar
assembling for biosynthetic, endocytic, and autophagic pathways (69), was also up-
regulated after harvest. Typical autophagy-related genes, such as those encoding ATG8
and APG6 (g3164.t2 and g3678.t1, respectively) (70), were expressed in the fruiting
body after harvest (Table S4), suggesting that autophagy occurs in fruiting bodies
postharvest. We also found that genes encoding proteases, such as subtilisin-like
protease and metacaspase (g9815.t1 and g485.t1, respectively), involved in autophagy
or programmed cell death (71, 72), were upregulated after harvest (Table S7). These
results collectively suggest that programmed cell death occurs after harvest in the
Lentinula edodes fruiting body. Nutrient limitation by harvesting will induce postharvest
autophagy or programmed cell death.

Conclusion. We constructed a de novo assembly of genome sequence data of
Lentinula edodes strain G408PP-4 and predicted 12,959 genes from the genome se-
quence. We also constructed a predicted gene set of Lentinula edodes as a reference
sequence for transcriptome analysis. This analysis provided significant insight into
freshness control in the Lentinula edodes fruiting body after harvest. We identified novel
cell wall-associated genes, putative transcription factors, and putative cell death-related
genes (Fig. 2). RNA interference tools are available in Lentinula edodes (40, 73), and
TILLING, a method for screening mutants that have a mutation in a target gene (74), will
be applicable for breeding. Gene expression for wood decay, biofilm formation in
sawdust, medium cultivation, and fruiting body primordia in Lentinula edodes has been
reported. Therefore, to carefully identify postharvest-specific genes and mutate the
genes by the above techniques, we will construct strains that retain freshness long after
harvest. These results collectively suggest that genome sequence data, predicted gene
sets, and transcriptome data will be applicable for breeding Lentinula edodes in the near
future.

MATERIALS AND METHODS
Strains and culture conditions. Lentinula edodes monokaryotic strain G408PP-4 (NBRC 111202),

which was a mating partner of D703PP-9 (ICMP 20921) for linkage map construction (32), was used for
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genome sequence analysis. The dikaryotic commercially cultivated strain Lentinula edodes KRCF1660
(NBRC 111652, designated H600 [19, 75]) was used for transcriptome analysis. Mycelial cultures on
sawdust medium were prepared as described previously (41). Fruiting body growth was performed as
described previously (41), and for postharvest analysis, harvested mature fruiting bodies were immedi-
ately transferred to a desiccator at 25°C (41) and sampled daily from day 0 (fresh) to day 4. Upon
sampling, mushrooms were separated into the pileus, gill, and stipe, and were immediately frozen in
liquid nitrogen.

Genome assembling using pyrosequence data. Genomic DNA was extracted from 2-week-old
liquid cultures after crushing the mycelia in liquid nitrogen and using a MasterPure yeast DNA extraction
kit (Epicentre Biotechnologies, WI, USA) in accordance wtih the manufacturer’s instructions. Libraries for
genome sequencing were prepared using a TruSeq DNA sample Prep kit v2 (Illumina, CA, USA), and
76-bp paired-end sequencing was performed with an Illumina Genome Analyzer IIx system. Furthermore,
76-bp paired-end sequencing was performed with a HiSeq 2500 through a custom service provided
by Genaris, Inc. (Kanagawa, Japan). The mate pair library was constructed using a Mate Pair library
prep kit v2 (Illumina, CA USA) and was sequenced using an Illumina Genome Analyzer IIx system.
PacBio sequencing was performed using the custom service provided by Filgen, Inc. (Aichi, Japan).
De novo sequences were assembled using Velvet assembler version 0.7.34 (http://www.ebi.ac.uk/
~zerbino/velvet/) by varying several parameters and by the clc genomics workbench 8.5.1 (Filgen Inc.,
Aichi, Japan). We chose a set of contigs created under the conditions that generated the longest N50 for
further analyses. Scaffolding of assembled contigs was performed using SSPACE (76) (BaseClear B.V.,
Netherlands) with sequence reads from the mate pair library. Further scaffolding was carried out using
sequence data from PacBio sequence with Pbjelly (77) (http://sourceforge.net/p/pb-jelly/wiki/Home/).

Gene prediction with RNA-seq data. For RNA-seq analysis, we used RNA from mycelia cultivated for
2 weeks in liquid medium, mycelia grown for 3 weeks on sawdust medium, mycelia grown for 3 months
just before fruiting body production, primodium, stipe, and pileus of a young fruiting body, stipe, pileus,
and gills of a mature fruiting body, and gills at 4 days after harvest of the fruiting body. For RNA
extraction, mycelia were cultured in malt extract-yeast extract-peptone-glucose (MYPG) liquid medium at
25°C with shaking as described previously (41). To extract RNA from mycelia grown on sawdust medium,
a membrane filter was placed on the sawdust and covered with 1.5% agar. Mycelia from sawdust cultures
were harvested from the surface of the filter membrane 2 weeks after inoculation (19). To extract RNA
from fruiting bodies, primordia and fruiting bodies were prepared after harvest, as described previously
(27, 78). Equal amounts of RNA were mixed and used for RNA-seq analysis. The construction of a library
for RNA-seq and subsequent sequencing by a HiSeq 2500 instrument (Illumina, CA, USA) were carried out
using a custom service (Genaris, Inc., Kanagawa, Japan). Gene prediction was performed using Augustus
3.0.1 (79) (http://augustus.gobics.de) using training files from Coprinopsis cinerea and a mixture of RNA
from mycelia (grown in liquid medium and sawdust medium), from young fruiting bodies, from mature
fruiting bodies, and from fruiting bodies after harvest. Library construction and sequencing using
the HiSeq 2500 (Illumina) were performed through a custom service from Genaris, Inc. (Kanagawa,

FIG 2 Working model illustrating the modification of the postharvest quality loss of a Lentinula edodes fruiting body. Oxidative
stress will occur after harvest, as will sequential signal transduction via protein kinases and de novo gene expression via
transcription factors. De novo gene expression includes genes for gill browning, cell wall degradation, antioxidative stress, and
cell death.
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Japan). RNA-seq reads were mapped onto the reference genome using Bowtie2 (80) (http://bowtie
-bio.sourceforge.net/bowtie2/index.shtml) and TopHat2 (81) (https://ccb.jhu.edu/software/tophat/
index.shtml). Intron regions were extracted by filterBam in Augustus; hint files for gene prediction were
constructed, and genes were predicted by Augustus (3.0.1) with the hint file. The annotation of predicted
genes was performed using Blast2GO Pro (82) in the clc genomics workbench plug-in.

SuperSAGE analysis. RNA from the gills of fresh fruiting bodies and fruiting bodies 4 days after
harvest was used for SuperSAGE according to the method previously described (38). Purified and mixed
PCR products for SuperSAGE were applied to cluster formation on the flow cell of the Illumina Genome
Analyzer IIx (illumina, CA, USA) and then were sequenced. Matching of tag sequences to Lentinula edodes
genes was performed with the blastn algorithm (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast�/
LATEST/), and tag counts were calculated following a scheme described in Fig. S1 in the supplemental
material. Statistical analysis was performed using TCC in the R package (83). Gene ontology analysis was
performed by Blast2GO (BioBam Bioinformatics S.L., Valencia, Spain) and DAVID (84). Transcription factor
genes were analyzed using the Fungal Transcription Factor Database (85) (http://ftfd.snu.ac.kr/index.php
?a�view).

Expression of putative cell wall-related enzymes in A. oryzae. Several putative glucanases
containing GH16 domains were heterologously expressed by using the vector pPPAMYBsp in Aspergillus
oryzae according to the methods described previously (86). Transformants were cultured for 3 days in
dextrin-polypeptone-yeast extract (DPY) medium with shaking, and proteins were expressed and secreted
according to the methods described previously (28). Recombinant proteins secreted in the medium were
concentrated by precipitation with 80% saturated sulfur ammonium. Recombinant proteins were
detected by Western blot analysis and visualized by a penta-His horseradish peroxidase (HRP) conjugate
kit (Qiagen GmbH, Germany). Recombinant proteins were purified by a Talon metal affinity resin (TaKaRa
Bio, Inc., Tokyo, Japan) and further purified by anion-exchange chromatography using Mono Q (GE
Healthcare, UK). Glucanase activity was measured using the methods described previously (87).

Accession number(s). Scaffold data were deposited in the DDBJ (accession no. BDGU01000001 to
BDGU01001951).

SUPPLEMENTAL MATERIAL
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