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ABSTRACT Syrian hamsters are permissive for the replication of species C human
adenoviruses (HAdV-C). The virus replicates to high titers in the liver of these ani-
mals after intravenous infection, while respiratory infection results in virus replication
in the lung. Here we show that two types belonging to species C, HAdV-C5 and
HAdV-C6, replicate to significantly different extents and cause pathology with signifi-
cantly different severities, with HAdV-C6 replicating better and inducing more severe
and more widespread lesions. The virus burdens in the livers of HAdV-C6-infected
hamsters are higher than the virus burdens in HAdV-C5-infected ones because more
of the permissive hepatocytes get infected. Furthermore, when hamsters are infected in-
travenously with HAdV-C6, live, infectious virus can be isolated from the lung and the
kidney, which is not seen with HAdV-C5. Similarly to mouse models, in hamsters,
HAdV-C6 is sequestered by macrophages to a lesser degree than HAdV-C5. Depletion of
Kupffer cells from the liver greatly increases the replication of HAdV-C5 in the liver, while
it has only a modest effect on the replication of HAdV-C6. Elimination of Kupffer cells
also dramatically increases the pathology induced by HAdV-C5. These findings indicate
that in hamsters, pathology resulting from intravenous infection with adenoviruses is
caused mostly by replication in hepatocytes and not by the abortive infection of
Kupffer cells and the following cytokine storm.

IMPORTANCE Immunocompromised human patients can develop severe, often le-
thal adenovirus infections. Respiratory adenovirus infection among military recruits is
a serious problem, in some cases requiring hospitalization of the patient. Further-
more, adenovirus-based vectors are frequently used as experimental viral therapeutic
agents. Thus, it is imperative that we investigate the pathogenesis of adenoviruses
in a permissive animal model. Syrian hamsters are susceptible to infection with cer-
tain human adenoviruses, and the pathology accompanying these infections is simi-
lar to what is observed with adenovirus-infected human patients. We demonstrate
that replication in permissive cells in a susceptible host animal is a major part of the
mechanism by which systemic adenovirus infection induces pathology, as opposed
to the chiefly immune-mediated pathology observed in nonsusceptible hosts. These
findings support the use of compounds inhibiting adenovirus replication as a means
to block adenovirus-induced pathology.
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Human adenoviruses (Ads) form 7 species (human adenoviruses A to G [HAdV-A to
HAdV-G]) that include over 70 types (previously serotypes) (reviewed in references

1 and 2). Species C Ads comprise HAdV-C1, -C2, -C5, and -C6 (designated Ad1, Ad2, etc.
in this article) and, possibly, the newly described HAdV-C57 (3). Species C Ads are of
particular interest because they are among the most common Ads, they are ubiquitous,
typically causing upper respiratory tract infections in infants and young children, and
they are frequently observed in immunosuppressed patients, especially children. Of
further interest, Ad5 and, to a lesser extent, Ad2 are the types that have been studied
very extensively as models for molecular adenovirology. A great deal is known about
nearly all the �35 genes of these DNA viruses and how the products of these genes
function in the entire cycle of replication in cell culture.

Although the replication cycles of Ad5 and Ad2 in cell culture are well described,
much less is known about the pathogenesis of Ad5 and Ad2 in replication-permissive
animal models. Ad5 is the backbone for many genetically engineered vectors for use in
gene therapy and cancer gene therapy. These vectors have been characterized nearly
exclusively in mice, and most of what is known about Ad5’s behavior in animals comes
from studies with Ad5-based vectors in mice. However, mice are not a useful model for
understanding Ad5’s replication (i.e., production of progeny virus) and pathogenesis
because mice are not permissive for replication of Ad5 or other human Ads (4).

In contrast to mice, two small animal models, namely, Syrian hamsters (5, 6) and
cotton rats (4, 7, 8), are quite permissive for Ad5 replication. Our laboratory (6, 9–17)
and other laboratories (18–28) have developed the Syrian hamster as a tumor model to
characterize Ad5-based oncolytic Ad vectors (reviewed in references 29 and 30). The
advantage of this model is that tumors formed, e.g., by subcutaneous injection of
Syrian hamster cancer cell lines are permissive for replication of oncolytic Ad5-based
vectors, as are most of the tissues of the hamster. Also, the Syrian hamster has an intact
immune system, such that immunity develops against the vector and the tumor. As
such, the behavior of oncolytic Ad vectors in the Syrian hamster should reflect their
behavior in human cancer patients.

Syrian hamsters also serve as a general model for species C Ad pathogenesis. In
immunocompetent Syrian hamsters, following intravenous (i.v.) administration, Ad5 is
disseminated to and replicates in the liver and most other organs (17). While immu-
nocompetent Syrian hamsters are permissive for replication of Ad5 following i.v. or
intranasal administration of the virus, a robust innate and adaptive immune response
develops that eliminates most of the virus within a week or two (13, 17, 31). Immuno-
competent hamsters do not develop extensive pathology after adenovirus infection; in
a dose escalation toxicity study with Ad5, we found that the no observable adverse
effect level (NOAEL) for immunocompetent hamsters was 3 � 1010 virus particles per
kg of body weight (10). However, when Syrian hamsters are immunosuppressed by
treatment with high-dose cyclophosphamide (CP), Ad5 replicates to very high levels in
the liver and other organs following i.v. administration and causes pathology similar to
that seen with immunocompromised human patients, including lethal multiorgan
disease (32). Using immunosuppressed Syrian hamsters, we have successfully evaluated
compounds that may inhibit Ad5 replication and pathogenicity. We found that brin-
cidofovir (previously named CMX-001) (32, 33), cidofovir (33), ganciclovir (34), and
valganciclovir (35) are very effective.

To further develop the Syrian hamster as a model, we (36) and others (37) have
sequenced the Syrian hamster transcriptome. We identified 42,707 unique transcripts
representing 34,191 unique genes. Using these data, a custom microarray was devel-
oped and employed to analyze gene expression in the Syrian hamster liver at 18 h
following i.v. injection of Ad5. We found that about 20% of transcripts were up- or
downregulated, with prominent upregulation of genes involved in the innate immune
response to virus infection (36). The latter finding is consistent with our recent study in
Syrian hamsters with the STAT2 gene knocked out (STAT2 KO hamsters). We found that
STAT2 KO hamsters are much more permissive for disseminated Ad5 replication and
pathogenesis than are wild-type Syrian hamsters (31). In contrast to the wild-type
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Syrian hamsters infected i.v. with Ad5, i.v.-infected STAT2 KO hamsters were defective
in the expression of type I interferon response genes, such as PKR, OAS, and Mx2. This
study indicated that the type I interferon response is crucial to controlling acute
disseminated Ad5 infections (31).

As discussed above, Ad5 has been used as the backbone virus in the vast majority
of gene therapy and cancer gene therapy studies in mice. A potential problem with the
use of Ad5 as a vector in humans is that it is a common type, as indicated by serological
studies (reviewed in reference 2). Ad5 neutralizing antibodies, often of high titer, range
in various studies from 30% to 70% occurrence in individuals in the United States, 50%
to 60% in Europe, and generally much higher in other parts of the world (2). These high
levels of neutralizing antibodies might be expected to neutralize Ad5-based vectors.
This issue has prompted one laboratory to explore the use of Ad6 as a vector for gene
therapy and vaccine development (38–41). About half the population of the world has
neutralizing antibodies to Ad6, but mostly of low titer (42). It is not known whether
these differences reflect the incidence of Ad6 in the human population or a stronger
immune response against Ad5. Another potential problem with the use of Ad5 as a
vector for studies in mice (and probably in humans) is that following i.v. administration
in mice, at least 90% of the injected particles of Ad5 or Ad5-based vectors are
eliminated by Kupffer cells (resident liver macrophages), thereby reducing the efficacy
of Ad5-based vectors (43–45). In contrast, Ad6 vectors or Ad5/Ad6 chimeric vectors
containing the Ad6 hexon hypervariable region interact with Kupffer cells to a lower
degree than does Ad5 (46); this observation provides further support for the use of Ad6
as a vector backbone (41).

Prompted by these differences between Ad6- and Ad5-based vectors in mice, we
compared the degrees of pathogenicity of Ad6 and Ad5 in Syrian hamsters. As we
report here, we found that wild-type Ad6 is considerably more pathogenic than
wild-type Ad5.

RESULTS
Intravenously injected Ad6 but not Ad5 is pathogenic in immunocompetent

Syrian hamsters. When injected i.v., 6 � 1010 PFU/kg of Ad6 caused weight loss for
hamsters, while the same dose of Ad5 did not affect weight gain (Fig. 1A). Ad6 caused
significant liver damage, as evidenced by serum alanine transaminase (ALT) levels,
while Ad5 did not cause any elevation of serum ALT levels (Fig. 1B). To investigate the
cause of the increased pathology, we determined the virus burdens in the livers, lungs,
and kidneys of the animals. We found that Ad6-infected hamsters had consistently
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FIG 1 Ad6 but not Ad5 induced morbidity in immunocompetent hamsters. A dose of 6 � 1010 PFU/kg of
virus was injected intravenously. (A) Body weight changes. Each symbol represents the group mean; the
whiskers symbolize the standard deviations. Vehicle versus Ad6, P � 0.0001 (two-way ANOVA). (B) Serum
alanine transaminase levels. Each symbol represents the value from an individual animal; the horizontal bars
signify the mean value for each group. Day 3, vehicle versus Ad6, P � 0.0079, and Ad5 versus Ad6, P �
0.0079; day 6, vehicle versus Ad6, P � 0.2222, and Ad5 versus Ad6, P � 0.0159 (Mann-Whitney U test).

Kupffer Cells Protect Hamsters from HAdV Pathogenesis Journal of Virology

May 2017 Volume 91 Issue 10 e00284-17 jvi.asm.org 3

http://jvi.asm.org


higher virus burdens, which were especially high in the livers (Fig. 2). The host immune
response to Ad6 was also higher than the response to Ad5; there was more severe
infiltration of the liver by T lymphocytes for Ad6-infected hamsters than for Ad5-
infected ones (Fig. 3).

Intravenously injected Ad5 and Ad6 replicate in the liver of immunosup-
pressed Syrian hamsters. To demonstrate that both Ads replicate in hamsters, we
injected the viruses i.v. into immunosuppressed animals. Immunosuppression enhances
Ad replication in hamsters, providing a better opportunity to trace virus burdens. To
equalize the pathogenicity of the two viruses, 5 times less Ad6 than Ad5 was injected
(2 � 1010 PFU/kg versus 1 � 1011 PFU/kg). At 6 h postinfection (p.i.), approximately 2 �

107 50% tissue culture infective doses (TCID50)/g of liver tissue of infectious Ad5 could
be recovered from the livers, which decreased by approximately 2 orders of magnitude
at the 24-h time point, indicating that the virus recovered at 6 h p.i. was derived from
the input bolus (Fig. 4). Practically no infectious virus was found in the livers of
Ad6-infected hamsters at 6 h p.i.; however, at 24 h p.i., the virus burdens reached levels
similar to those of the Ad5-infected animals (Fig. 4). At 5 days p.i., high infectious virus
burdens (2 � 109 and 5 � 109 TCID50/g of liver tissue for Ad5 and Ad6, respectively)
were detected in the livers of animals infected with either virus (Fig. 4), indicating
ongoing virus infection.

Intravenously injected Ad6 is more pathogenic than Ad5 in immunosup-
pressed Syrian hamsters. Both the increased replication of Ad6 and the more intense
immune response can contribute to enhanced pathogenicity. To investigate whether
the increased replication alone can cause more pathology, we infected immunocom-
promised hamsters with various doses of Ad5 and Ad6, ranging from 1.2 � 1011 to 2 �

1011 PFU/kg. By 4 to 5 days postchallenge, all Ad6-infected hamsters had lost about
15% of their body weight (Fig. 5B) and were sacrificed because they were moribund
(Fig. 5A). We sacrificed the Ad5-infected hamsters at this time as well, in order to have
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time-matched samples. While some of these latter animals were losing weight (Fig. 5B),
they were not moribund at sacrifice. At necropsy, all Ad6-infected hamsters showed the
gross pathological signs of advanced disseminated Ad infection (yellow, mottled,
friable liver); conversely, only animals infected with the highest dose of Ad5 showed
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lesions in their livers, and even these lesions were much less severe than for Ad6-
infected animals (data not shown). All sera collected from Ad-infected hamsters, with
the exception of 3 hamsters infected with the lowest dose of Ad5, showed elevated ALT
levels; however, the ALT levels in the sera of Ad6-infected hamsters were 3- to 5-fold
higher than for animals infected with the matching dose of Ad5 (Fig. 5C). Similarly to
immunocompetent hamsters, the virus burdens in the livers of Ad6-infected animals
were 10- to 100-fold higher than for Ad5-infected ones (Fig. 5D).

We repeated this experiment using lower infectious doses (1 � 1010 to 6 � 1010

PFU/kg) of both viruses. The 6 � 1010 and 3 � 1010 PFU/kg doses of Ad6 caused 100%
mortality, and 1 of 6 hamsters became moribund in the 1 � 1010 PFU/kg group (Fig.
6A). Conversely, we observed no pathology with any of the Ad5-infected hamsters (Fig.
6A and B; only the results for the highest dose of Ad5 are shown). Ad6 at all doses
caused body weight loss, but Ad5 at the highest dose did not (Fig. 6B). As expected, the
serum ALT levels for the animals in the groups infected with the two higher doses of
Ad6 were very high, and even hamsters infected with the lowest dose of Ad6 had
markedly elevated serum ALT levels (Fig. 6C). No elevation of serum ALT levels was
detected in any of the Ad5-infected hamsters (Fig. 6C; only the results for the highest
dose of Ad5 are shown).

Based on these data, the intravenous 50% lethal dose (LD50) of Ad6 in immuno-
suppressed Syrian hamsters is approximately 2 � 1010 PFU/kg, which is about 10-fold
lower than the LD50 established for Ad5 in this model, indicating that the main cause
of the more severe pathology caused by Ad6 is the increased virus burden.

The virus burdens are higher in the organs of Ad6-infected hamsters than in
the organs of Ad5-infected ones. As we noted before, hamsters infected with Ad6
had higher virus burdens in the liver than Ad5-infected ones (Fig. 5D). To further
investigate this finding, we analyzed liver, lung, and kidney samples collected from the
experiment whose results are shown in Fig. 6. We found that the virus burdens in the
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livers of Ad6-infected hamsters were at least 10,000-fold higher than those in the livers
of animals infected with the matching dose of Ad5 (Fig. 7A). In accordance with this
finding, histopathological analysis revealed more extensive and more severe pathology
(Fig. 7B, left) and much more widespread infection (Fig. 7B, right) in the livers of
Ad6-infected hamsters. Similarly, at the 6 � 1010 PFU/kg dose, the virus burdens were
approximately 108 to 109 TCID50/g of tissue for the kidneys (Fig. 8A) and lungs (Fig. 8C)
of the Ad6-infected animals, while no infectious virus was detected in these organs
collected from hamsters infected with the same dose of Ad5. While Ad6-infected cells
could be found in the kidney and lung (Fig. 8B and D), no pathology was apparent in
either organ, with the exception of distended tubules in the kidney.

Intranasally administered Ad6 replicates more and causes more pathology in
the lung than Ad5. We infected immunosuppressed hamsters intranasally with Ad6 or
Ad5, with doses ranging from 3.3 � 109 to 3.3 � 1010 PFU/kg. There were 12 hamsters
per dose level; 6 were sacrificed at 3 days postchallenge, and the other 6 were sacrificed
at 7 days postchallenge. All Ad6-infected hamsters lost body weight after challenge,
while the weight gains of Ad5-infected animals were indistinguishable from those of
vehicle-treated hamsters (Fig. 9A). At 3 days postchallenge, the virus burdens in the
lungs of Ad6-infected animals were approximately 100-fold higher than in the lungs of
Ad5-infected ones (Fig. 9B). Generally, more hamsters in the Ad6-infected groups had
lung pathology than in the Ad5-infected group, especially in the lower-dose groups
(Table 1). Immunohistochemical staining for the Ad fiber protein showed that both
viruses infected bronchial epithelial cells; the infection was more widespread for Ad6
than for Ad5, resulting in widespread damage to the epithelial layer of the bronchi (Fig.
10A and B). Marked mononuclear/granulocytic infiltration was detected for animals
infected with either virus, with no discernible differences. This infiltration increased
both in dissemination and severity from day 3 to day 6 postchallenge (Fig. 10C to F).

Depletion of Kupffer cells increases the replication of Ad5 but not Ad6 in the
liver of Syrian hamsters. It has been shown before that Kupffer cells sequester a large
portion of intravenously injected Ad in mice and that Ad6 is less susceptible to this
sequestering than Ad5 (47). To test whether this was happening in hamsters as well, we
depleted the Kupffer cells of hamsters using clodronate-loaded liposomes. As expected,
intravenously injected Ad6 (6 � 1010 PFU/kg) infected the livers of untreated animals
better than Ad5 (Fig. 11A) at 3 days postchallenge; however, when clodronate-treated
animals were infected with Ad5, the virus burdens in the livers increased approximately
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100,000-fold compared to those in untreated hamsters (Fig. 11A). On the other hand,
the increases in the virus burdens for the clodronate-treated, Ad6-infected hamsters
were much more modest, about 1,000-fold (Fig. 11A). The increased virus burdens in
the clodronate-treated, Ad5-infected hamsters caused severe liver damage (average
serum ALT levels of 1,000 U/liter, Fig. 11B), while the elevation of serum ALT levels in
the Ad6-infected counterparts of these animals was less prominent (Fig. 11B).

DISCUSSION

We have shown here that Ad6 replicates to higher levels in the liver and other
organs and is much more pathogenic than Ad5 in Syrian hamsters. We compared
infection by Ad6 and Ad5 in immunocompetent hamsters using an i.v. dose of 6 � 1010

PFU/kg. Ad5 did not cause weight loss or elevation of serum ALT, although some
virus (�105 TCID50/g of liver tissue) was found in the livers of 3 of 5 animals. With Ad6,
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�3 � 106 TCID50/g of liver tissue of Ad6 was found in all 5 hamsters at 3 days, the ALT
levels were elevated, and the hamsters lost weight starting at 2 days postinfection (Fig.
1 and 2). Furthermore, there was much more infiltration of T cells into the liver with Ad6
than with Ad5 (Fig. 3). By 6 days, neither Ad6 nor Ad5 was found in the liver and ALT
levels were nearly normal. In other studies, we have shown that there is considerable
neutralizing antibody response by 6 days (31), and this immune response is likely
responsible for eliminating the virus. We have demonstrated that both Ad5 and Ad6
replicate in the liver of hamsters to high levels (Fig. 4). Notably, we found that part of
the input bolus of Ad5 was still infectious at 6 h p.i., while no infectious Ad6 could be
recovered from the livers of infected animals at this time. This may indicate a slower
uptake and/or uncoating for Ad5 than for Ad6 and may contribute to the decreased
pathogenicity of Ad5 compared to that of Ad6. However, the interpretation of these
data is complicated by the fact that, to avoid pathogenicity with Ad6, we injected 5
times less Ad6 than Ad5. Clearly, further investigation is needed to elucidate this
mechanism.

Most of our experiments were conducted in hamsters immunosuppressed by treat-
ment with CP. This treatment prevents the elimination of the virus by the adaptive
immune response and thereby allows replication of the virus to continue for much
longer than in immunocompetent hamsters. Also, the CP-treated hamsters provide a
model for disseminated Ad infection and Ad pathogenesis in immunosuppressed
human patients. In our studies, following i.v. administration and depending on the dose
of virus used, both Ad6 and Ad5 infected the liver, replicated, caused extensive liver
pathology, and were lethal. However, about 10-fold more Ad5 than Ad6 was required

TABLE 1 Proportions of animals with gross lung pathology after intranasal infection

Virus, dose (PFU/kg)

No. of hamsters with gross pathology/
total no. in group at indicated day p.i.

3 6

Ad5, 3.3 � 109 1/6 0/6
Ad5, 1 � 1010 3/6 2/6
Ad5, 3.3 � 1010 4/6 3/6
Ad6, 3.3 � 109 4/6 4/6
Ad6, 1 � 1010 6/6 1/6
Ad6, 3.3 � 1010 4/6 3/6
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FIG 9 Intranasally administered Ad6 is more pathogenic and replicates better in the lung than Ad5. (A)
Body weight changes. Mean values � standard errors of the means (SEM) for each group are shown.
Vehicle versus Ad5 at 3.3 � 108, P � 0.2804; vehicle versus Ad5 at 1 � 109, P � 0.0771; vehicle versus
Ad5 at 3.3 � 109, P � 0.0017; vehicle versus any Ad6 group and Ad5 groups versus respective Ad6
groups, P � 0.0001 (two-way ANOVA). (B) Virus burdens in lungs. Each symbol represents the value from
an individual animal; the horizontal bars signify the mean value for each group. NQ, nonquantifiable.
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to cause these effects. In fact, the LD50 of Ad5 was greater than 2 � 1011 PFU/kg
(hamsters weigh about 100 g), whereas the LD50 of Ad6 was about 2 � 1010 PFU/kg
(Fig. 6A). At a dose of 6 � 1010 PFU/kg, Ad5 barely replicated in the liver, did not cause
an increase in serum ALT, and did not affect the weight gain of the hamsters. In
contrast, Ad6 at this dose infected many (most) hepatocytes, replicated to high levels
in the liver (�1010 TCID50/g of liver tissue), caused massive liver pathology, and was
lethal by 6 days postinfection (Fig. 6 and 7). Ad6 at doses of 6 � 1010 and 3 � 1010

PFU/kg was also found in the kidneys and lungs, whereas Ad5 at 6 � 1010 PFU/kg was
not detected in these organs (Fig. 8).

Ad6 and Ad5 commonly cause respiratory infections, so we examined replication
and pathogenesis following intranasal administration of these viruses in CP-treated
hamsters. We found that Ad6 replicated to �100-fold-higher levels than Ad5: �107

TCID50/g of lung tissue for Ad6 compared to �105 TCID50/g of lung tissue for Ad5 (Fig.
9B). Also, Ad6 at a dose of 3.3 � 109 PFU/kg caused greater weight loss than an Ad5
dose of 3.3 � 1010 PFU/kg (Fig. 9A).

Considering our data, the question arises as to why Ad6 replicates to higher levels
and is more pathogenic than Ad5. Ad6 has barely been studied compared to Ad5 (and
Ad2). As is the case with Ad5 and Ad2, the Ad6 genome has been sequenced, and it was
found to be 94% and 98% identical to those of Ad5 and Ad2, respectively (3, 48). The
transcription units and the genes appear to be very similar to those of Ad5 and Ad2.
Also, the Ad6 transcriptome has been sequenced and the early (6 h p.i.) and later (12 h
p.i.) RNAs quantitated; this study did not reveal notable differences between Ad6 and
Ad5/Ad2 (49).

One possible explanation for the difference in pathogenicities between Ad6 and

A. B.

D.C.

E. F.

Ad6 Ad5

Ad6 Ad5

Day 3

Day 6

FIG 10 Intranasally administered Ad6 replicates better than Ad5 in the lung. Results from animals
infected with 3.3 � 1010 PFU/kg are shown. Immunohistochemical staining of lung tissues of Ad6-
infected (A, C, E) and Ad5-infected (B, D, F) hamsters for the Ad fiber protein at 3 (A to D) and 6 (E, F)
days postchallenge.
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Ad5 is that macrophages appear to have different affinities for these viruses. It has been
known for some time that in mice, the majority of intravenously injected Ad5 is taken
up by resident macrophages in the liver, named Kupffer cells (47, 50), and sinusoidal
endothelial cells (51). It is known that Ads can bind to scavenger receptors and
complement receptors present on phagocytic cells and that blocking this interaction
results in increased infection of hepatocytes (52). Furthermore, circulating natural
antibodies can bind to Ad virions, and the resulting complexes can be taken up by cells
displaying Fc receptors (47). In both mice (53) and hamsters (Fig. 2), Kupffer cells are
responsible for the nonlinear dose response for hepatocyte transduction or infection;
i.e., the Kupffer cell compartment needs to be saturated before a significant number of
hepatocytes can get infected. Thus, Kupffer cells are a major barrier to infection of
hepatocytes by Ads. It was demonstrated that in mice, Ads 6, 11, and 35 are less
susceptible to Kupffer cell sequestration than Ad5 (41). This difference is mouse strain
specific, and it is dependent on the levels of circulating IgM (47). We have shown that
a similar difference between Ad5 and Ad6 exists in hamsters and that, similarly to mice
with high levels of IgM (54), the mechanism involves Kupffer cells in hamsters as well.
Depletion of Kupffer cells by treatment with clodronate-containing liposomes increased
the infectious virus burden in the liver of Ad5-infected hamsters. It is not known
whether natural antibody levels play a role in the process of virus uptake into Kupffer
cells in hamsters. Kupffer cells die shortly after getting infected, and thus, the infection
is abortive, effectively sequestering the infecting virus and preventing the infection of
hepatocytes. With mice, in which human Ads replicate very poorly, this means that the
liver pathology after intravenous Ad injection is mostly the result of the cytokine storm
released by the infected Kupffer cells (55). Similar symptoms were observed when large
doses of replication-defective Ad vectors were injected intravenously into human
patients (56). With Syrian hamsters, the situation is reversed; the liver pathology is the
result of the replication of Ads in permissive hepatocytes (Fig. 11), and it can be
alleviated with drugs inhibiting virus replication (32–35). In this model, the uptake of
virus by Kupffer cells reduces infection of the hepatocytes and, thus, mitigates patho-
genesis. This result is in accordance with findings described in a permissive mouse
model of hepatitis B infection, in which Kupffer cells were shown to accelerate the
resolution of pathology (57). Presently, it is not known whether Ad5 and Ad6 are
sequestered at a different rate by human Kupffer cells. However, it is reported that
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Kupffer cells play a major role in clearing intravenously injected Ad5-based vectors from
the bloodstream (56). It stands to reason that during a natural Ad infection, these cells
perform a protective role. We believe that the pathology seen after i.v. infection of
Syrian hamsters with replication-competent Ads reflects the pathogenesis of systemic
Ad infection in human patients.

MATERIALS AND METHODS
Animals. Female Syrian hamsters (Mesocricetus auratus) were purchased from Envigo (Indianapolis,

IN) at approximately 100 g of body weight. All studies were approved by the Institutional Animal Care
and Use Committee of Saint Louis University and were conducted according to federal and institutional
regulations.

Cells and viruses. HEK293 human embryonic kidney cells were purchased from Microbix (Missis-
sauga, Ontario, Canada) and cultured in Dulbecco’s modified Eagle’s medium (Sigma-Aldrich, St. Louis,
MO, USA) with 10% fetal bovine serum at 37°C. A wild-type human Ad5, named Ad5 wt500, was isolated
by our laboratory from an Ad5 stock purchased from the ATCC (Manassas, VA). The virus was purified by
isopycnic gradient centrifugation, and the titer was determined by plaque assay on A549 cells (ATCC), as
described in reference 58.

Infection of hamsters with adenovirus. Immunocompetent hamsters were infected by the intra-
venous (i.v.) route by injection of 6 � 1010 PFU of Ad5 or Ad6 into the jugular vein. In other experiments,
the hamsters were immunosuppressed using cyclophosphamide (32). CP was administered intraperito-
neally at a dose of 140 mg/kg and then twice weekly at a dose of 100 mg/kg for the duration of the study.
CP used in this manner reduced nearly all leukocyte types more than 7-fold within a few days (9, 16, 32).
Virus challenge was performed 5 to 7 days after the first administration of CP. For i.v. administration, the
animals were anesthetized with a ketamine-xylazine mixture, and Ad5 was injected i.v. (via the jugular
vein) in 200 �l of phosphate-buffered saline (PBS) (59). Intranasal inoculation was performed by
anesthetizing the hamsters with isoflurane (Isothesia; Henry Schein Animal Health) and then pipetting
the virus into the nostrils in 100 �l PBS. For both routes, control animals were administered PBS.

After challenge, hamsters were observed and weighed daily. Moribund animals and animals that lost
more than 20% of their body weight were sacrificed as needed. At necropsy, livers, lungs, and kidneys
were collected and the infectious virus burden was determined using a 50% tissue culture infectious dose
(TCID50) assay as described previously (32). TCID50 assays are less laborious than plaque assays and
enabled us to determine the virus load in a large number of samples. Generally, 1 PFU equals 2 TCID50.
Sera were assayed for alanine aminotransferase (ALT) (Advanced Veterinary Laboratory, St. Louis, MO).

Portions of the collected tissues were preserved in formalin and processed for histopathology
(Seventh Wave Laboratories, St. Louis, MO). Immunohistochemistry was provided by Deborah Berry and
the team at Histopathology & Tissue Shared Resource (HTSR) (via Science Exchange), using a 1:1,000
dilution of adenovirus Ab-4 antibody (4D2) (Lab Vision, Fremont, CA) and a 1:200 dilution of CD3-�
antibody (M-20) (Santa Cruz Biotechnology, Santa Cruz, CA) to stain for Ad fiber and hamster CD3
protein, respectively.

Depletion of Kupffer cells with clodronate liposomes. Hamsters were injected i.v. with 200 �l of
clodronate liposomes (Foundation Clodronate Liposomes, Amsterdam, Netherlands) or PBS liposomes
(control). At 24 h after the administration of clodronate, the animals were injected i.v. with Ad5 or Ad6
as described above.

Statistical analysis. Statistical analysis was performed using GraphPad Prism 4 (GraphPad Software).
Two-way analysis of variance (ANOVA) was used to compare body weight changes. For serum transam-
inase levels and virus burdens in the liver, the overall effects were calculated using the Kruskal-Wallis test
and comparisons between groups were performed using the Mann-Whitney U test. A P value of �0.05
was considered significant.
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