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Neuronal circadian oscillators in the mammalian and Drosophila brain express a circadian
clock comprised of interlocking gene transcription feedback loops. The genetic clock regu-
lates the membrane electrical activity by poorly understood signaling pathways to generate
a circadian pattern of action potential firing. During the day, Naþ channels contribute an
excitatory drive for the spontaneous activity of circadian clock neurons. Multiple types of Kþ

channels regulate the action potential firing pattern and the nightly reduction in neuronal
activity. The membrane electrical activity possibly signaling by changes in intracellular Ca2þ

and cyclic adenosine monophosphate (cAMP) regulates the activity of the gene clock. A
decline in the signaling pathways that link the gene clock and neural activity during aging
and disease may weaken the circadian output and generate significant impacts on human
health.

Neurons in the suprachiasmatic nucleus
(SCN) function as part of a central timing

circuit that drives daily changes in our behavior
and underlying physiology. A hallmark feature
of SCN neurons is that they are electrically silent
during the night, start firing action potentials
near dawn, and then continue to generate action
potentials with a slow and steady pace all day
long. These rhythms in electrical activity are
critical for the function of the circadian timing
system. This article reviews what is known
about the ionic and molecular mechanisms
driving the rhythmic firing patterns in our

body’s clock. We raise the hypothesis that a
decline in neural activity in the central clock
may be a critical mechanism by which aging
and disease may weaken the circadian output
and contribute to a set of symptoms that im-
pacts human health.

THE IONIC MECHANISMS UNDERLYING
NEURAL ACTIVITY RHYTHMS

SCN neurons generate action potentials in the
absence of synaptic drive, and can therefore
be considered endogenously active neurons.
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To maintain spontaneous activity, a set of in-
trinsic currents must interact to depolarize the
cell membrane to threshold, elicit an action po-
tential, and return the membrane to negative
potentials from which the next spike can be ini-
tiated. This “spontaneous” firing arises from
specific combinations of intrinsic membrane
currents (Bean 2007). Conceptually, it can be
useful to divide the ionic mechanisms into, first,
currents that are responsible for providing the
excitatory drive required for all spontaneously
active neurons; second, currents that translate
this excitatory drive into a regular pattern of
action potentials; and third, currents that are
responsible for the nightly silencing of firing
because of the hyperpolarization of the mem-
brane (Fig. 1).

DAILY DEPOLARIZATION

During the day, SCN neurons are more depo-
larized than neurons that do not show sponta-
neous activity. They have a resting membrane
potential between 250 and 255 mV, which
places them close to the threshold for generating
an action potential (245 mV). A subset of SCN
neurons may even move to such a depolarized
state (230 mV) during the day that they cannot
generate action potentials (Belle et al. 2009).
This relatively depolarized resting potential

is the result of excitatory drive provided by
multiple cation currents (Pennartz et al. 1997;
Jackson et al. 2004; Kononenko et al. 2004;
Clay 2015). In dissociated SCN neurons, which
have been investigated in much detail, the spon-
taneous interspike depolarization was found to
be attributable primarily to sodium (Naþ) cur-
rents that flow at between 260 and 240 mV
(Jackson et al. 2004). Modeling work using
data from the action potential clamp also
emphasizes the role of the Naþ leak in driv-
ing excitability in SCN neurons (Clay 2015). A
recent experimental advance has been the
description of a voltage-independent Naþ con-
ductance via the NA/NALCN ion channel,
which depolarizes both SCN neurons and Dro-
sophila pacemaker neurons (Flourakis et al.
2015). This study represents a significant ad-
vance as it provides the first evidence for the
circadian regulation of an Naþ current. Also,
there are at least three other currents that con-
tribute to the daily depolarization of the SCN
neurons including the persistent Naþ current,
hyperpolarization-activated (IH) conductance,
and voltage-sensitive calcium (Ca2þ) currents
(see Colwell 2011 for review). In Drosophila,
there is also evidence that daily rhythms in in-
ward-rectifier Kþ channel expression contrib-
utes to daily rhythms in electrical excitability
(Ruben et al. 2012).
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Figure 1. Cellular signaling domains mediating the generation of circadian rhythms in suprachiasmatic nucleus
neurons. Molecular timekeeping signals generated in the nucleus are transmitted via intracellular signaling
pathways to alter the activity of ion channels located in the neuronal membrane. Changes in the membrane
electrical potential are communicated back to the molecular clock to synchronize and stabilize molecular
rhythms. NACLN, Voltage-insensitive nonselective cation channel; cAMP, cyclic adenosine monophosphate;
BKCa, large conductance calcium-activated potassium channel; ICa, voltage-gated calcium channels; IH, hyper-
polarization-activated channel; K2P, two-pore domain potassium channel; TASK, TWIK (two-pore domain
weak inward rectifying potassium channel)-related acid-sensitive Kþ channel; TREK, TWIK-related potassium
channel; FDR, fast delayed rectifier.
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FREQUENCY MODULATION

In response to the excitatory drive mediated by
cation ion channels, SCN neurons show sus-
tained action potential firing for 4–6 h in the
subjective day without spike adaptation. The
fast delayed rectifier (FDR) Kþ current may al-
low for this type of discharge. Within the SCN,
the FDR current is of particular interest
because, first, the magnitude of this current
shows a circadian rhythm, and, second, sus-
tained pharmacological blockade of the FDR
current reduced the amplitude of the daily
rhythm in firing in a brain slice preparation
(Itri et al. 2005). Two members of this family
are expressed in the SCN Kv3.1 (Kcnc1) and
Kv3.2 (Kcnc2) and these proteins may be rhyth-
mically regulated. SCN neurons from mice
lacking both Kcnc1 and Kcnc2 genes (double
knockout, dKO) show reduced spontaneous ac-
tivity during the day and reduced N-methyl-D-
aspartate (NMDA)-evoked excitatory responses
during the night (Kudo et al. 2011a). Also, the
width of the action potential in SCN neurons is
almost doubled in the dKO mice. Thus, the FDR
Kþ current is necessary for the circadian mod-
ulation of electrical activity in SCN neurons and
represents an important part of the ionic basis
for the generation of rhythmic output. The sub-
threshold-operating A-type Kþ current (IA) is
mainly involved in the regulation of neuronal
excitability and the timing of action potential
firing (Huang 1993; Bouskila and Dudek 1995;
Alvado and Allen 2008; Itri et al. 2010). The
magnitude of the IA current shows a diurnal
rhythm that peaks during the day in the dorsal
region of the mouse SCN (Itri et al. 2010). This
rhythm is driven by a subset of SCN neurons
with a larger peak current and a longer decay
constant (Itri et al. 2010). A detailed analysis
of SCN neurons in mice deficient in the pore-
forming (a) subunits of IA channels Kv1.4 or
Kv4.2 a subunits found that these neurons have
altered excitability but still show circadian
rhythms in repetitive firing (Granados-Fuentes
et al. 2012). Finally, Ca2þ activated Kþ channels
(large conductance potassium channel [BK])
are a major contributor to repolarization of
the membrane after an action potential in the

SCN. A study in which BK currents were inhib-
ited with iberiotoxin suggests that this current
may contribute 40% of the afterhyperpolariza-
tion that occurs after an action potential in the
SCN (Cloues and Sather 2003). Blocking the BK
current (iberiotoxin) can reduce daytime peak
firing rate in at least some SCN neurons (Pitts
et al. 2006) and genetic manipulation of the BK
channel also impacts daytime firing frequency
(Montgomery and Meredith 2012; Montgom-
ery et al. 2013). Recent work has found that
inactivating BK currents predominate during
the day in the SCN. Loss of the b2 subunit
eliminates inactivation and decreases daytime
firing. Importantly, selective restoration of in-
activation via theb2 amino-terminal “ball-and-
chain” domain rescues BK current levels and
SCN daytime firing rate (Whitt et al. 2016).
These studies provide firm evidence that the
BK current contributes to the daytime “upstate”
in SCN neurons. Therefore, FDR, IA, and BK Kþ

currents all appear to play a role in the regula-
tion of spontaneous action potential firing in
SCN neurons during the day.

NIGHTLY SILENCING

During the night, SCN neurons move into
“downstate” in which the membrane potential
is hyperpolarized (6–10 mV) and the cells are
electrically inactive (De Jeu et al. 1998; Kuhl-
man and McMahon 2004; Belle et al. 2009).
This day–night difference in resting membrane
potential is largely mediated by a hyperpolariz-
ing Kþ-dependent conductance that is active at
night at resting membrane potential and inac-
tive during the day (Kuhlman and McMahon
2004, 2006). Resting membrane potentials of
neurons are mainly set by a class of two-pore-
domain K channels (K2P and TASK/TREK)
(Bayliss and Barrett 2008). These Kþ channels
are active over the whole voltage range (unlike
other Kþ channels) and are referred to as “leak”
or background currents. The K2P channels are
coded for by the Kcnk gene family. The tran-
scripts for Kcnk1 and Kcnk2 are expressed in
the SCN (Lein et al. 2007), with transcripts
for Kcnk1 showing a robust rhythm in the
SCN (Panda et al. 2002). Unfortunately, specific
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pharmacological blockers are not available, but
the rhythmic pattern of expression in the SCN
makes the K2P channels a promising candidate
for driving the nightly hyperpolarization in
membrane potential. BK currents are also in-
volved in the nightly silencing of SCN neurons.
The expression of Kcnma1, the gene encoding
the pore-forming subunit of the BK channel,
peaks in the middle of the night (Panda et al.
2002; Meredith et al. 2006; Pitts et al. 2006) and
the relative contribution of the BK current to
the outward currents is larger in the night than
in the day. Also, deletion of Kcnma1 increases
nighttime firing in SCN neurons, although it
does not completely abolish the day–night dif-
ference in firing rate (Meredith et al. 2006; Kent
and Meredith 2008). Again, the recent work
from Meredith’s group indicates that the kinetic
properties of the BK current shifts from day to
night (Whitt et al. 2016). During the day, the
current is inactivating, whereas during the night
this inactivation is lost. The net result is a more
sustained BK current during the night, which
drives the hyperpolarization.

SCN NEURONAL HETEROGENEITY

SCN neurons are not a homogenous popula-
tion but show regional variation in the expres-
sion of neuropeptides, rhythmic expression of
clock genes, responses to light, and neuronal
activity. In particular, many SCN neurons do
not fire action potential in a circadian manner
or have rhythmic expression of clock genes
(Albrecht et al. 1997; Shigeyoshi et al. 1997;
Yan et al. 1999; Hamada et al. 2001; Yamamoto
et al. 2001). In mice, Per1 messenger RNA
(mRNA) expression is not uniformly distribu-
ted across the SCN but localized in light-sen-
sitive and -insensitive compartments (Albrecht
et al. 1997; Shigeyoshi et al. 1997). In the rat
SCN, under constant conditions, Per1 and Per2
show strong oscillations in the dorsomedial
SCN and weaker oscillations in the ventrolat-
eral SCN (Yan et al. 1999). Similarly in the
hamster, Per1 and Per2 mRNA show rhyth-
mic expression primarily in the dorsolateral
SCN but not in the compact subnucleus
(CBsn) (Hamada et al. 2001).

Rhythmic and nonrhythmic clock compo-
nents could also underly the functional diver-
sity among individual SCN neurons (Hamada
et al. 2001). Using a transgenic mouse in which
the expression of green fluorescent protein was
driven by the mPer1 promoter, Kuhlman et al.
(2000) observed that the molecular clocks of
individual neurons are not synchronized. This
heterogenous pattern of clock gene expression
suggests that SCN circadian output is the result
of a complex network of rhythmic and non-
rhythmic SCN neurons. To understand the
generation of SCN circadian output requires
knowledge of the functional properties of these
different SCN neuronal populations.

The mean action potential firing frequency
of SCN neurons shows a peak at CT6 and nadir
near CT18 (Inouye and Kawamura 1979; Green
and Gillette 1982). Similarly, Drosophila circa-
dian clock neurons show peak excitability in the
morning and trough in the evening (Sheeba
et al. 2007; Cao and Nitabach 2008; Cao et al.
2013; Kunst et al. 2014). However, not all SCN
neurons fire in a rhythmic pattern and some do
not fire action potentials spontaneously (Jobst
and Allen 2002). In dispersed cell culture,
25%–50% of rat SCN neurons do not display
a circadian rhythm in spontaneous firing rate
(SFR) (Welsh et al. 1995; Bina et al. 1998). In
organotypic SCN cultures, 87% of dorsal SCN
neurons showed a circadian rhythm in firing
rate, whereas in the ventral SCN, only 62% of
neurons were rhythmic (Nakamura et al. 2001).
Also, in organotypic SCN neurons, Herzog et al.
(1997) observed a group of neurons that fired in
antiphase to neighboring neurons, suggesting a
multiplicity of firing phenotypes (Herzog et al.
1997). Interestingly, this out-of-phase pattern is
similar to that observed in the per-GFP mouse
and in our studies of the intracellular Ca2þ

rhythms (Kuhlman et al. 2000; Ikeda et al.
2003). To date, the neurophysiological rhyth-
micity of only a limited number of phenotypi-
cally identified SCN neuronal types has been
investigated. In the rat, vasopressin neurons,
which are primarily located in the dorsomedial
region, show a circadian rhythmicity in SFR
(Pennartz et al. 1998; Schaap et al. 1999). In
contrast, calbindin-expressing SCN neurons
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fire action potentials in a rhythmic manner
(Jobst and Allen 2002). Similarly, gastrin-releas-
ing peptide (GRP)-expressing neurons do not
show a circadian pattern of clock gene expres-
sion, suggesting they may not fire action poten-
tials in a circadian pattern (Drouyer et al. 2010).
The circadian output is the combination of
rhythmically and nonrhythmically firing neu-
rons present in individual compartments of
the SCN. It is important, therefore, that the ac-
tion potential firing patterns of additional
groups of phenotypically identified SCN neu-
rons be described.

ACTION POTENTIAL ACTIVATION
OF SIGNALING PATHWAYS

Currently, the identity of the signaling pathways
mediating the interactions between membrane
potential and clock gene expression are largely
unknown and their identity remains a key un-
answered question in circadian neurobiology.
Of particular interest is whether the circadian
pattern of action potential firing is an output of
the circadian clock or an integral component of
the molecular timekeeping system. When an
SCN neuron fires an action potential, the result-
ing sequence of membrane depolarization and
hyperpolarization alters the activity of multiple
types of voltage-dependent ion channels (Jack-
son et al. 2004). One of the most important of
these is the voltage-gated Ca2þ channel, which,
when opened, will allow Ca2þ to enter the neu-
ron and increase the intracellular Ca2þ concen-
tration. Ca2þ is a widely used signaling mole-
cule linking membrane electrical activity to
intracellular signaling pathways. The magnitude
and duration of the Ca2þ signal is directly relat-
ed to the action potential firing frequency (Ir-
win and Allen 2007). Therefore, the tetrodotox-
in (TTX)-sensitive intracellular Ca2þ levels are
higher during the day than during the night,
secondary to the SCN neurons firing action po-
tentials, which are faster during the day than
during the night (Colwell 2000; Irwin and Allen
2007). Altering the membrane potential or in-
hibiting Ca2þ entry into the neuron modifies
clock gene activity. An early study found that
TTX infusion in the rat SCN eliminated free-

running locomotor rhythms, but without alter-
ing clock phase on restoration of rhythms fol-
lowing cessation of TTX infusion, suggesting
that TTX did not interfere with the timekeeping
mechanism itself (Schwartz et al. 1987). How-
ever, more recently it was shown that TTX treat-
ment of SCN organotypic slice cultures caused
severe damping of circadian gene transcription
rhythms and disruption of clock phase (Yama-
guchi et al. 2003). In addition, lowering mem-
brane potential, lowering extracellular Ca2þ, or
inhibiting Ca2þ entry with Ca2þ channel antag-
onists inhibits the rhythmic expression of the
clock genes per1 and per2 in cultured SCN neu-
rons (Lundkvist et al. 2005). These data are con-
sistent with the extracellular Ca2þ that enters the
neuron being required for the action of the
circadian clock (McMahon and Block 1987;
Lundkvist and Block 2005; Lundkvist et al.
2005). In addition, SCN neurons also express a
TTX-insensitive Ca2þ rhythm dependent on
Ca2þ release from intracellular stores (Fig. 2A)
(Ikeda et al. 2003). The relationship between
molecular and electrical circadian rhythms was
recently examined with optogenetic manipula-
tion of SCN firing rate with bioluminescence
imaging (Jones et al. 2015). Manipulating fir-
ing rate reset circadian rhythms both ex vivo
and in vivo, and this resetting required action
potentials. These findings add weight to the sug-
gestion that SCN firing rate is fundamental to
circadian pacemaking.

Interestingly, similar roles for membrane ac-
tivity and Ca2þ signals in circadian timekeeping
have been established in circadian pacemaker
neurons in the Drosophila brain (Fig. 2B). Elec-
trical silencing of fly pacemaker neurons via
transgenic expression of the hyperpolarizing
potassium channel Kir2.1 stops free-running
per and tim rhythms, while leaving diur-
nal molecular rhythms intact (Nitabach et al.
2002). This genetic manipulation was shown
to both eliminate action potentials and hyper-
polarize the plasma membrane to �280 mV,
near the reversal potential for potassium (Wu
et al. 2008). Intracellular Ca2þ signaling medi-
ated through calmodulin and CaMKII plays a
key role in setting the pace of the Drosophila
circadian timekeeping system (Harrisingh et al.
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2007). A more recent study showed that adult-
specific expression of Kir2.1, using a temporal-
ly controllable transgenic expression system,
eliminated free-running rhythmic locomo-
tor rhythms without stopping molecular time-
keeping rhythms (Depetris-Chauvin et al. 2011).
However, the relevance of this to the earlier
results obtained with constitutive Kir2.1 expres-
sion during both development and adulthood
(Nitabach et al. 2002) is rendered uncertain by

the failure to confirm that the adult-specific
expression of Kir2.1 was at a level sufficient
to not only block action potentials, but also
to hyperpolarize the plasma membrane to
�280 mV. This distinction is expected to be
very important, given the key role for Ca2þ in
cellular timekeeping and the likelihood that
low-voltage activated Ca2þ channels are activat-
ed by synaptic inputs even in the absence of
action potentials.
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Figure 2. Intracellular calcium rhythms are present in mouse and Drosophila pacemaker neurons. (A) Long-
duration intracellular calcium levels recorded cameleon expressed in a ventral SCN neuron (red dots). Simulta-
neous recording of multiunit activity was performed using a multielectrode array. The peak of the calcium
rhythm of neuron preceded the peak of the multiunit activity by 6 h. Asterisks indicate the timing of the culture
medium exchange, during which the firing frequency became temporarily unstable. (Panel A from Ikeda et al.
2003; reprinted, with permission, from Elsevier# 2003.) (B) Average calcium transients in five identified groups
of circadian pacemaker neurons in the Drosophila brain. The calcium transients were measured using GCaMP6s.
Note that the calcium levels peak at different times of the day in different neuron populations. (Panel B from
Liang et al. 2016; reprinted, with permission, from AAAS # 2016.)
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Neuronal gene expression, mediated by
Ca2þ-dependent signaling pathways, is activat-
ed by the membrane electrical activity changes
produced by synaptic transmission (Impey et al.
1998, 1999). L-type channels appear to play a
critical role in signaling neuronal activity to the
nucleus to alter gene expression (Bading et al.
1993; Hardingham et al. 1999; Zhang et al.
2006). For example, in the hippocampus, ac-
tivation of L-type Ca2þ channels is required
for cyclic adenyl monophosphate (cAMP)-
response element-binding (CREB)-responsive
element (CRE)-mediated gene expression (Ba-
ding et al. 1993). CRE activation is thought to
be a key step in light-induced changes of circa-
dian clock phase (Ginty et al. 1993). A signifi-
cant portion of the increased intracellular Ca2þ

that follows an action potential in SCN neurons
flows through open L-type Ca2þ channels (De
Jeu et al. 1998; Jackson et al. 2004; Irwin and
Allen 2007). Depolarization of cerebellar gran-
ule cells induced Per1 but not Per2 expression,
and inhibition of L-type Ca2þ channels reduced
the Per1 expression (Akiyama et al. 2001). Ni-
modipine, an L-type Ca2þ channel antagonist,
significantly reduced the amplitude of Per1
rhythms but did not completely block them
(Lundkvist et al. 2005). In Drosophila, electrical
hyperexcitation or silencing induced by ectopic
ion channel expression stabilizes the transcrip-
tional state of pacemaker neurons in the “morn-
ing” or “evening” states, respectively (Mizrak
et al. 2012).

Ca2þ acts as a second messenger by activat-
ing a number of intracellular signaling path-
ways, including adenyl cyclases and Ca2þ-de-
pendent kinases. Ca2þ modulation of adenyl
cyclase activity is one possible Ca2þ-mediated
signaling pathway linking membrane electrical
activity to molecular clock gene activity. cAMP
is an important component of the circadian
clock in addition to being a key regulator of
the synchrony of individual SCN neurons and
nonphotic entrainment (O’Neill et al. 2008).
O’Neill et al. (2008) observed that reducing or
increasing cAMP levels reduces rhythmic Per2
expression (O’Neill et al. 2008). cAMP can
phase shift the circadian clock, an effect that is
mediated by CREB (Kako et al. 1997; Tischkau

et al. 2003). Three adenyl cyclase isoforms (AC1,
AC3, AC8) are activated by Ca2þ in a calmodu-
lin-dependent manner, whereas two isoforms
(AC5, AC6) are inhibited by Ca2þ in a calmod-
ulin-independent manner (Sunahara and Taus-
sig 2002).

In this signaling pathway, Ca2þ binds to and
activates calmodulin, which then activates ade-
nyl cyclase increasing the production of cAMP
(Fukushima et al. 1997). Whereas adenylyl
cyclase II is the predominant cyclase in the
SCN adenylyl cyclases I and III have also been
found in the SCN Allen Brain Atlas (Fukuhara
et al. 2004). All three isoforms are activated by
Gsa with ACI and ACIII additionally activated
by Ca2þ-calmodulin (Sunahara and Taussig
2002). Of particular interest in this type of mod-
el is adenylyl cyclase isoform-1. Peptide recep-
tors for vasoactive intestinal peptide (VIP) and
GRP, which are believed to be critical for syn-
chronization of individual SCN neurons, acti-
vate Gs-type G proteins. Current models
suggest that G proteins mediate VIP synchroni-
zation of neuronal oscillators. Consistent with
this mechanism, the synchronizing effects of
VIP are blocked by cholera toxin (Aton et al.
2006). VIP acts with high affinity on VPAC2
receptors, which are coupled to Gs-type G pro-
teins (Laburthe et al. 2002; Dickson et al. 2006).
Activation of VPAC2 receptors will increase ad-
enylyl cyclase activity and intracellular cAMP
concentrations (Rea 1990; Laburthe et al.
2002). However, AC1 is not activated by Gs sub-
units alone but by Gs and an increase of intra-
cellular Ca2þ. These isoforms of adenyl cyclase
are frequently located close to the voltage-gated
Ca2þ channels so they can respond rapidly to
the Ca2þ entering the cell through the open
channel. Thus, the AC1 serves as a coincidence
detector coupling action potential firing to ac-
tivation of Gs-coupled receptors.

Regulators of G protein signaling (RGS) are
a family of proteins that increase the rate of
guanosine triphosphate (GTP) hydrolysis by
GTPases to turn off G protein–mediated signal-
ing pathways. In a well-described case, the levels
of RGS16, which inactivates Gia, increase at a
circadian time to produce a time-dependent el-
evation of intracellular cAMP signaling in the
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SCN. Deletion of the Rgs16 gene eliminates the
circadian rhythm of cAMP generation and
lengthens circadian period. The loss of the
cAMP signal disrupts the phase relationship be-
tween neurons in the dorsomedial ventrolateral
SCN (Doi et al. 2011). Also, knocking out the
RGS16 reduces the food-anticipatory behavior
observed when feeding is restricted to the day-
time (Hayasaka et al. 2011). RGS4 regulates
melatonin activity mediated by type 1 melato-
nin receptors (MT1) in the pars tuberalis and
could mediate melatonin signaling in the SCN
(Dupre et al. 2011).

In Drosophila, the neuropeptide pigment
dispersing factor (PDF) plays a similar role
in coordinating oscillation between circadian
clock neurons (Renn et al. 1999; Lin et al.
2004; Stoleru et al. 2004, 2005, 2007; Choi
et al. 2009, 2012), and its receptor PDFR also
signals through Gsa and ACIII or ACVIII (Hyun
et al. 2005; Lear et al. 2005; Mertens et al. 2005;
Duvall and Taghert 2012, 2013). Interestingly,
PDFR signaling through ACIII is limited to
one subset of circadian clock neurons, while sig-
naling through ACVIII in another (Duvall and
Taghert 2013). PDFR activation in a target cell
induces two parallel signaling pathways down-
stream of cAMP: protein kinase A (PKA)-de-
pendent regulation of the clock component
TIMELESS and PKA-independent regulation
of target neurons electrical excitability (Selu-
zicki et al. 2014). Perhaps related to the indepen-
dence of these two pathways, it was recently
shown that Drosophila circadian clock neurons
with the same phase of molecular oscillation
can show very different phases of intracellular
Ca2þ, and their specific phase relationships are
determined by PDF/PDFR signaling (Liang
et al. 2016).

HOW THE MOLECULAR CLOCKWORK
REGULATES NEURAL ACTIVITY?

The clearest links between the molecular clock-
work and neural activity comes from several
studies that have explored the impact of muta-
tions in the core clockwork on electrical activity
rhythms. The Tau (casein kinase 11) mutation
in hamsters shortens the period of wheel-run-

ning activity and neural activity rhythms (Liu
et al. 1997). Similarly, homozygote Clock mu-
tant mice are behaviorally arrhythmic, whereas
heterozygote animals show lengthened behav-
ioral rhythms, findings that are paralleled by
physiological recordings from the SCN (Herzog
et al. 1998; Nakamura et al. 2002). Furthermore,
Cry1/2 double mutants show behavioral ar-
rhythmicity and loss of rhythms in SCN neural
activity (Albus et al. 2002). In Drosophila period
null-mutant flies, which are behaviorally ar-
rhythmic, the daily rhythm of excitability of
pacemaker neurons is also eliminated (Cao
and Nitabach 2008). Even outside of central
clocks, neurons in the medial habenula express
rhythms in electrical activity that could be mea-
sured in a brain slice and these rhythms are lost
in the Cry1/2 dKO (Sakhi et al. 2014a,b); al-
though, in the hippocampus, the loss of Per2
did not alter excitability of CA1 neurons
(Wang et al. 2009). Still, the finding in the ha-
benula raises the possibility that the molecular
clock may influence the membrane properties
of neurons throughout the nervous system. To-
gether, these studies provide clear evidence that
the molecular clockwork can drive neural activ-
ity as an output.

Some of the mechanisms by which the mo-
lecular clockwork drives rhythms in neural ac-
tivity are beginning to be identified. The expres-
sion of the transcripts for the clock genes Per1
and Per2 peak in the midday (CT 4–6) in the
SCN, a little before the peak in neural activity.
So, at dawn, when electrical activity is rising,
CLOCK/BMAL are starting to drive transcrip-
tion of Per and Cry genes. A critical issue is
whether blocking this increase in Per or Cry
transcripts would alter the increase in neural
activity. A recent study transiently and selective-
ly decreased levels of PER1 through use of an
antisense oligodeoxynucleotide. This treatment
effectively reduced SCN neural activity and al-
tered the BK current (Kudo et al. 2015). In ad-
dition, work in Drosophila suggests that CRY
can alter membrane potential through a re-
dox-based regulation of a Kþ channel conduc-
tance (Fogle et al. 2011). In the SCN, the redox
state also regulates excitability through modu-
lation of multiple potassium currents (Wang
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et al. 2012). In addition, the molecular clock-
work is a potent regulator of transcription and
there is evidence of the rhythmic transcription
of several ion channels, including L- and T-type
Ca2þ channels, BK channels, and K2P Kþ chan-
nels and the Naþ leak current (Panda et al. 2002;
Colwell 2011). The genes encoding these chan-
nels could be under regulation from the Clock/
BMAL protein complex that acts directly on
E-box or other elements present in the regula-
tory sequences of these genes. To provide one
example in mammals, the expression of one of
the genes coding for L-type Ca2þ channels
(Cav1.2, Cacna1c) is rhythmic (peaking during
the late night) and is regulated by the circadian
clock component REV-ERBa (Schmutz et al.
2014). In Drosophila, circadian rhythms in
mRNA encoding a regulatory protein associated
with BK channels have been described (McDo-
nald and Rosbash 2001; Duffield 2003). A recent
study from the Allada laboratory (Flourakis
et al. 2015) showed that the circadian clock reg-
ulates excitability via an Naþ leak conductance
(as described above). This sodium leak current
depends on the expression of nonspecific cross-
reacting antigen (NCA) localization factor 1.
This localization factor NFL-1 is under clock
control and so this work provides a concrete
mechanism by which the molecular clock can
regulate membrane excitability.

Besides transcriptional regulation and circa-
dian trafficking of membrane proteins, post-
translational modifications of channels and as-
sociated auxiliary proteins are perhaps the most
likely explanation for the circadian variation in
the electrical activity of SCN neurons. In chick
photoreceptors, circadian oscillations in the ex-
pression of cone cGMP-gated channels have
been well described (Ko et al. 2004). Recent
work from Meredith’s group indicates that the
kinetic properties of the BK current shifts from
day to night (Whitt et al. 2016). During the day
the current is inactivating, whereas during the
night this inactivation is lost. The net result is a
more sustained BK current during the night,
which drives the hyperpolarization. This work
clearly implicates the regulation of the b2 sub-
unit as a driver of the rhythm in SCN firing but
the levels of the b2 subunit appears to be stable

through time. So this suggests that the circadian
clock regulation of the subunit is through post-
translational regulation. Within the SCN, there
is clear evidence for a daily rhythm in the levels
of cAMP and Ca2þ (reviewed in Colwell 2011).
More recent work used fluorescence/biolumi-
nescence imaging to visualize GCaMP3-report-
ed circadian oscillations of intracellular Ca2þ

alongside activation of Ca2þ/cAMP-responsive
elements (Brancaccio et al. 2013). This work
illustrates that key intracellular signaling path-
ways that are known to alter neural excitability
are rhythmically regulated within the SCN. The
daily rhythms in these signaling pathways would
be expected to drive daily rhythms in the activ-
ity of ion channels and membrane currents.

EFFECTS OF AGING AND DISEASE ON
NEURAL ACTIVITY

Disruptions in the circadian system are com-
monly associated with aging (Duffy et al. 2015).
Low amplitude, fragmented locomotor activity
has been documented in humans (Czeisler et al.
1992; Oosterman et al. 2009), nonhuman pri-
mates (Zhdanova et al. 2011), rodents (Farajnia
et al. 2012), and insects (Giebultowicz and Long
2015). Although undoubtedly many factors
contribute to these changes, a variety of data is
emerging that is consistent with the hypothesis
that an age-related decline in the neural output
of the central circadian clock may be key. Several
studies have shown the electrophysiological ac-
tivity of aged SCN neurons in vitro is altered
(Satinoff et al. 1993; Watanabe et al. 1995; Au-
jard et al. 2001; Nygard et al. 2005; Biello 2009).
To provide one example, in vivo multiunit re-
cordings were performed from the SCN and a
brain region that receives robust innervation
from the SCN (subparaventricular zone, SPZ)
in freely moving animals. The amplitude of the
day–night difference in neural activity was sub-
stantially reduced in both brain regions of mid-
dle-aged mice (10–12 mo) (Nakamura et al.
2011). Another striking feature was the increase
in variation in the levels of the spontaneous
activity. The mechanisms underlying the age-
related decline in SCN neural activity are start-
ing to be identified. The fast delayed rectifier Kþ
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current and also the transient A-type Kþ cur-
rent (described above) lost their circadian
modulation in aged SCN neurons (.2 years)
(Farajnia et al. 2012). In addition, the circadian
modulation of BK channel activity was lost be-
cause of a reduction in BK currents during the
night. This reduced current diminished the af-
ter-hyperpolarization, depolarized the resting
membrane potential, widened the action poten-
tial, and increased calcium in aged SCN neu-
rons (Farajnia et al. 2012).

Evidence for age-related disruption of cir-
cadian oscillations of clock genes in the SCN
has been equivocal. Some studies found robust
rhythms in the expression of Period genes in
old SCN neurons (Asai et al. 2001), whereas
other studies report age-related disruption in
Per2 mRNA (Weinert et al. 2001) as well as
Clock and Bmal1 mRNA (Kolker et al. 2003;
Wyse and Coogan 2010). A recent study found
a reduction of sirtuins (SIRT1) expression to-
gether with a reduction in BMAL1 and CLOCK
proteins in the SCN of old mice (Chang and
Guarente 2013). SIRT1 activates the transcrip-

tion of Clock and Bmal1 and SIRT1-deficient
young mice showed age-typical changes in cir-
cadian behavior such as fragmented activity and
reduced entrainment capacity. In our own
hands, the molecular clockwork in the SCN as
measured by PERIOD2 levels was not disrupted
in middle-aged mice held in a light–dark (LD)
cycle (Nakamura et al. 2011). However, when
these mice were placed in constant dark (DD)
for at least 2 weeks, differences in the biolumi-
nescence rhythms (PER2::LUC) emerged (Na-
kamura et al. 2015). In our view, the reduction
in the amplitude of the circadian timing signal
produced by the central clock will result in a
weakening in the control of peripheral oscilla-
tors as well as a decrease in amplitude and
precision of daily rhythms in physiology and
behavior. Support for this model comes from
work in Drosophila (Luo et al. 2012; Gill et al.
2015), which also found that the molecular cen-
tral clock continues to function during aging
even as the outputs weaken.

Patients suffering from neurodegenerative
disorders including Alzheimer’s disease (AD),
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Figure 3. Suprachiasmatic nucleus (SCN) neuronal activity in a mouse model of Huntington’s disease. The
spontaneous action potential firing frequency is reduced in the SCN of mice expressing the entire human
huntingtin gene (HTT) with 97 mixed CAA-CAG repeats (BACHD). The current-clamp recording technique
was used in the cell-attached configuration to record the spontaneous firing rate (SFR) of dorsal SCN neurons
during the day (ZT4-6, top row) and night (ZT16-18, bottom row). The reduced excitability of SCN neurons in
the BACHD mice are consistent with the hypothesis that reduced circadian output signals from the SCN
contribute to the phenotypes observed in the BACHD mice.
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Parkinson’s disease (PD), and Huntington’s dis-
ease (HD) commonly show sleep disorders.
These patients have difficulty sleeping at night
and staying awake during the day. These symp-
toms have a major impact on the quality of life
of the patients and on their caregivers. There is
some evidence linking these timing problems to
the central clock. In humans, prior work by
Swaab and colleagues has shown that there is
SCN pathology in aging and neurodegenerative
diseases (e.g., Swaab et al. 1985; Zhou et al.
1995; van Wamelen et al. 2013). One recent
study reported that the circadian rhythm am-
plitude of motor activity in both AD subjects
and age-matched controls is correlated with
the number of VIP-expressing SCN neurons
(Wang et al. 2015). AD was additionally associ-
ated with delayed circadian phase compared to
cognitively healthy subjects. Mouse models of
neurodegenerative disorders are used to deter-
mine whether SCN physiology is impacted by
these disease processes (Fig. 3). In both HD and
PD models, the SCN neural activity during the
daytime peak is reduced (Kudo et al. 2011a,b,
2014). Behaviorally, these models show low-
amplitude fragmented rhythms, which resem-
ble those seen in the aging mouse. Together, this
data in mouse models of AD, HD, and PD in
combination with the clinical symptoms in hu-
mans raises the possibility that a weakening of
circadian neural output is a core feature of neu-
rodegenerative diseases.
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