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The assembly of DNA sequences de novo is fundamental to genomics research. It is the first of many steps toward elucidat-

ing and characterizing whole genomes. Downstream applications, including analysis of genomic variation between species,

between or within individuals critically depend on robustly assembled sequences. In the span of a single decade, the se-

quence throughput of leading DNA sequencing instruments has increased drastically, and coupled with established and

planned large-scale, personalized medicine initiatives to sequence genomes in the thousands and even millions, the devel-

opment of efficient, scalable and accurate bioinformatics tools for producing high-quality reference draft genomes is timely.

With ABySS 1.0, we originally showed that assembling the human genome using short 50-bp sequencing reads was possible

by aggregating the half terabyte of compute memory needed over several computers using a standardized message-passing

system (MPI).We present here its redesign, which departs fromMPI and instead implements algorithms that employ a Bloom

filter, a probabilistic data structure, to represent a de Bruijn graph and reduce memory requirements. We benchmarked

ABySS 2.0 human genome assembly using a Genome in a Bottle data set of 250-bp Illumina paired-end and 6-kbp mate-

pair libraries from a single individual. Our assembly yielded a NG50 (NGA50) scaffold contiguity of 3.5 (3.0) Mbp using

<35GB of RAM. This is a modest memory requirement by today’s standards and is often available on a single computer. We

also investigate the use of BioNano Genomics and 10x Genomics’ Chromium data to further improve the scaffold NG50

(NGA50) of this assembly to 42 (15) Mbp.

[Supplemental material is available for this article.]

De novo genome assembly remains a challenging problem, espe-
cially for large and complex genomes. The problem refers to recon-
structing the chromosome sequence(s) for a genome from
sequencing reads, which are orders of magnitude shorter than
the target genome (Nagarajan and Pop 2013). In practice, current
state-of-the-art assemblers do not fully reconstruct the chromo-
some sequences but rather reduce the input sequencing reads to
a smaller number of nonredundant, more contiguous sequences
(contigs). If further linkage information is available, such as in
the form of paired-end reads or physical maps, these contigs may
be ordered and oriented with respect to each other and reported
as scaffolds, where there may be undetermined sequences (repre-
sented as “N”s) between contigs. The quality of returned contigs
and scaffolds are conventionally measured by the contiguity of
the assembled sequences. Often assembly algorithms are also val-
idated using data from resequencing experiments, where assem-
bled sequences are compared against a reference genome for
their correctness in addition to their contiguity (Gurevich et al.
2013).

Performance of sequence assembly algorithms is closely cou-
pled with the sequencing technology used and the quality of the
data they generate, with highly accurate long reads always being
desirable. However, the genomics research landscape, especially

cancer genomics studies, has been heavily dominated by the
high-throughput sequencing platforms from Illumina. Although
longer (albeit noisier) sequences from Pacific Biosciences instru-
ments are proven to yield high-quality de novo human genome as-
semblies (Chaisson et al. 2014; Pendleton et al. 2015), they come at
a higher price relative to Illumina reads. The newer long-read in-
struments from Oxford Nanopore Technologies do not yet have
the necessary throughput or data quality to be of utility in human
genomics studies. As a result, most large cohort projects, as well as
price-sensitive personalized medicine applications, still use the
Illumina platforms.

Recently, new sequencing technologies have been introduced
that combine long-range linkage informationwith the strengths of
existing Illumina short-read technologies. The Chromium plat-
form from10xGenomics generates sequencing libraries that local-
ize sequence information onDNA fragments that are >100 kb long.
The technology employs microfluidics to isolate large DNA frag-
ments in partitions containing sequencing primers and a unique
barcode, preparing a library that is compatible with Illumina
paired-end sequencing (Weisenfeld et al. 2017). Another recent
technology for long-range linkage information is the optical map-
ping platform from BioNano Genomics. It has previously been
demonstrated in the Human Genome Project (International
Human Genome Sequencing Consortium 2001) and other pio-
neering de novo sequencing projects that linkage information
froma physicalmap is very valuable in building highly contiguous

1These authors are joint first authors and are listed in alphabetical
order.
Corresponding author: ibirol@bcgsc.ca
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.214346.116.
Freely available online through the Genome Research Open Access option.

© 2017 Jackman et al. This article, published in Genome Research, is available
under a Creative Commons License (Attribution 4.0 International), as described
at http://creativecommons.org/licenses/by/4.0/.

Method

768 Genome Research 27:768–777 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/17; www.genome.org
www.genome.org

mailto:ibirol@bcgsc.ca
mailto:ibirol@bcgsc.ca
http://www.genome.org/cgi/doi/10.1101/gr.214346.116
http://www.genome.org/cgi/doi/10.1101/gr.214346.116
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


assemblies. In this article, we show that 10x Genomics data and
BioNano Genomics data can be used in combination to substan-
tially improve the contiguity of a de novo assembly.

Of particular interest in this study is resequencing data from
human genome studies. The approach of de novo assembly of
data from these experiments prior to comparison to a reference se-
quence is a valuable approach in detecting structural variants be-
tween individuals or between tumor and normal genomes (Mose
et al. 2014; Li 2015b). Even though it is substantiallymore compu-
tationally intensive to analyze sequencing data by assembling the
reads first, the specificity gains and resulting savings in event verifi-
cation effortsmay justify the choice. However, whenworkingwith
mammalian-size genome data, de novo assembly is often plagued
with long assembly run times and prohibitively large memory re-
quirements—resource usages that warrant improvements.

In this domain, ABySS 1.0 was the first scalable de novo as-
sembly tool that could assemble a human genome, using short
reads from a high-throughput sequencing platform (Simpson
et al. 2009). However, the feat required aggregating a large amount
ofmemory distributed across a number of compute nodes commu-
nicating through the message-passing interface (MPI) protocol.
Although this enabling technology found applications in many
large cancer cohort studies (Yip et al. 2011; Roberts et al. 2012;
Ley et al. 2013; Morin et al. 2013; Pugh et al. 2013), its large mem-
ory consumption constituted a substantial bottleneck. This issue
was not unique to ABySS 1.0, with popular algorithms such as
SOAPdenovo2 (Luo et al. 2012) and DISCOVAR de novo requiring
>600 GB to assemble a typical human data set. Some noteworthy
assembly algorithms that have been developed to reduce memory
requirements include the following: (1) SGA (Simpson andDurbin
2011), which uses the Burrows-Wheeler transform to compress
and index sequencing data; (2) Minia (Chikhi and Rizk 2013),
which uses a Bloom filter (Bloom 1970) to represent the de
Bruijn graph; (3) BCALM 2 (Chikhi et al. 2016), which employs
minimizer hashing (Chikhi et al. 2014) to partition the de Bruijn
graph; and (4) MEGAHIT (Li et al. 2016), which employs the
Succinct de Bruijn graph data structure of Bowe et al. (2012).

In this article, we describe the implementation of ABySS 2.0,
which reduces memory requirements for de novo assembly by an
order of magnitude, while achieving results competitive with ex-
isting assemblers. ABySS 2.0 follows the model of Minia, wherein
a probabilistic Bloom filter representation is used to encode the
de Bruijn graph. We compare the performance of ABySS 2.0
against the latest version of ABySS 1.0, as well as two other scalable
assembly pipelines that include a scaffolding stage: SOAPdenovo2
and SGA. We note that there are other algorithms that can build
contigs without scaffolding, and we include comparison to
DISCOVAR de novo, MEGAHIT, Minia, and BCALM 2, scaffolding
the contigs of DISCOVAR de novo using the scaffolding tools
BESST (Sahlin et al. 2016), LINKS (Warren et al. 2015), and the
ABySS scaffolding algorithm. We also demonstrate how long-
range linkage information from Chromium reads and BioNano
mapsmay improve scaffold contiguity of draft genome assemblies.

Results

Overview of ABySS 2.0 assembly algorithm

ABySS 1.0 is a multistage de novo assembly pipeline consisting of
unitig, contig, and scaffold stages. At the unitig stage, we perform
the initial assembly of sequences according to the de Bruijn graph
assembly paradigm (Pevzner et al. 2001). At the contig stage, we

align the paired-end reads to the unitigs and use the pairing infor-
mation to orient and merge overlapping unitigs. At the scaffold
stage, we align the mate-pair reads to the contigs to orient and
join them into scaffolds, inserting runs of “N” characters at gaps
in coverage and for unresolved repeats. The most resource-inten-
sive stage of ABySS 1.0 is the unitig (de Bruijn graph) assembly
stage and is also its peak memory requirement. This stage of the
pipeline loads the full set of k-mers from the input sequencing
reads into a hash table and stores auxiliary data for each k-mer
such as the number of k-mer occurrences in the reads and the pres-
ence/absence of possible neighbor k-mers in the de Bruijn graph.
ABySS 1.0 addresses the largememory requirement by implement-
ing a distributed version of the de Bruijn graph assembly approach,
wherein the hash table of k-mers is split across cluster nodes, and
communication between nodes occurs via the MPI standard. By
these means, ABySS 1.0 enables the assembly of large genomes
on clusters of commodity hardware. For example, ABySS 1.0 was
used to assemble the 20-Gbp white spruce genome with 115 clus-
ter nodes and ∼4.3 TB of aggregate memory (Birol et al. 2013).

The main innovation of ABySS 2.0 is a Bloom filter-based im-
plementation of the unitig assembly stage, and it reduces the over-
all memory requirements by an order of magnitude, enabling
assembly of large genomes on a single machine. A Bloom filter
(Bloom 1970) is a compact data structure for representing a set of
elements that supports two operations: (1) inserting an element
into the set, and (2) querying for the presence of an element in
the set. In the context of Bloom filter-based de Bruijn graph assem-
bly algorithms, the elements of the set are the k-mers of the input
sequencing reads. The Bloom filter data structure consists of a bit
vector and one or more hash functions, where the hash functions
map each k-mer to a corresponding set of positions within the bit
vector (Fig. 1A); we refer to this set of bit positions as the bit signa-
ture for the k-mer. A k-mer is inserted into the Bloom filter by set-
ting the positions of its bit signature to one and is queried by
testing if all positions of its bit signature are one. While a Bloom
filter provides a very memory-efficient means of representing a
set, it has the caveat that it can generate false positives when the
bit signatures of different k-mers overlap by chance. In the context
of our application, this means that a certain fraction of k-mer que-
ries will return true even though the k-mers do not exist in the in-
put sequencing data. The false-positive rate (FPR) for a Bloom filter
(Bloom 1970) can be estimated using

FPR = 1− 1− 1
m

( )hn
( )h

≈ (1− e−(hn/m))h (1)

where m is the Bloom filter in bits, h is the number of hash func-
tions, and n is the number of distinct k-mers in the data.
Handling false positives was the main design challenge of ABySS
2.0, and we discuss the issue in further detail in Methods.

During unitig assembly, two passes are made through the in-
put sequencing reads. In the first pass, we extract the k-mers from
the reads and load them into a Bloom filter (Fig. 1A). To filter out
the majority of k-mers caused by sequencing errors, we discard all
k-mers with an occurrence count below a user-specified threshold,
typically in the range of two to four.We refer to the retained k-mers
as solid k-mers. In the second pass through the reads, we identify
reads that consist entirely of solid k-mers, which we term solid
reads, and extend them left and right within the de Bruijn graph
to create unitigs (Fig. 1C). During read extension, we adopt the
same approach to graph traversal as originally described for
Minia (Chikhi and Rizk 2013). Since only the nodes (k-mers) of
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the de Bruijn graph are stored in the Bloom filter andnot the edges,
we query all four possible k-mers neighboring the current k-mer
during each step of graph traversal. This step enables us to discover
outgoing edges (Fig. 1B). We note that during the read extension
phase of assembly, it is possible for multiple solid reads to result
in the same unitig. To avoid such duplicate sequences, we use an
additional tracking Bloom filter to record k-mers included in previ-
ous unitigs, and a solid read is only extended if it has at least one
k-mer that is not already in the tracking Bloom filter.

Effect of Bloom filter FPR

In the context of de Bruijn graph assembly, Bloom filter false pos-
itives have the effect of adding to the graph k-mers that are not pre-
sent in the input sequencing reads. To address this issue, we have
implemented a look-ahead mechanism to remove such k-mers
from the graph, as described in the Methods. However, in order
to confirm that Bloom filter false positives do not cause assembly
artifacts and to better understand the relationship between Bloom
filter FPR, assembly quality, RAMusage, and running time,we con-
ducted the following experiment.

By using the Caenorhabditis elegans data set DRR008444, we
conducted assemblies with a range of Bloom filter FPRs and mea-
sured the resulting NG50 lengthmetric, number of misassemblies,
and wall-clock time (Fig. 2). We note that the Bloom filter FPR is
not a directly tunable parameter of ABySS 2.0. Instead, we con-
trolled the FPR indirectly by changing the Bloom filter size from
250 to 3000 MB, with a step size of 250 MB. Further details of
the experimental setup are provided in “Effect of Bloom Filter

Positive Rate” in the Supplemental
Material. In Figure 2A, we observe that
the NG50 remains stable in the neigh-
borhood of 9600 bp as the Bloom filter al-
location decreases from 3000 to 500 MB,
corresponding to FPR values of 1.91%
and 10.9%, respectively, but drops sharp-
ly when Bloom filter allocation is de-
creased further from 500 to 250 MB
(FPR 10.9% and 20.7%, respectively).
Similarly, the number of major misas-
semblies (9) and local misassemblies
(30–31) reported by QUAST 3.2 remains
stable as the Bloom filter allocation is de-
creased from 3000 to 250 MB (Fig. 2B).
Additional QUAST metrics indicate that
genome assemblies are of similar quality
with a Bloom filter allocation as low as
500 MB (detailed in Supplemental Figs.
S1–S3; Supplemental Tables S1–S3).
Finally, in Figure 2C we observe that
the run time of ABySS 2.0 is inversely re-
lated to Bloom filter size. This behavior is
due to the use of a look-ahead algorithm
to trim false branches from the de Bruijn
graph, as described in the Methods and
depicted in Figure 1C. Run time increases
gradually as the Bloom filter allocation
decreases from 3000 to 500 MB but rises
sharply from 57 to 152 min when the al-
location is further decreased from 500 to
250MB. These plots demonstrate a trade-
off betweenmemory usage and run time,

with an FPR in the range of 5%–10% giving both goodmemory us-
age and time performance. It also indicates that any FPR <20% has
no adverse effects on assembly quality, considering both contigu-
ity and correctness.

Most false-positive k-mers result in a tip that is pruned by the
look-ahead algorithm. In a standard de Bruijn graph, two k-mers
that occur at distant locations in the genome but, coincidentally,
share an overlap of k− 1 nucleotides cause a branch in the de
Bruijn graph, stopping the assembly of a contig at that branching
point. The false-positive k-mers of a Bloom filter de Bruijn graph
can make a connection between two k-mers that overlap by fewer
than k− 1 nucleotides. Such a chance connection similarly creates
a branching point causing the contig to come to a premature end.
The probability of such a chance connection decreases exponen-
tially with a decreasing overlap, FPRk−1−o, where o is the amount
of overlap between the two k-mers. If these chance connections oc-
curred frequently, we would expect that varying the size of the
Bloom filter and thus the FPR to significantly affect the contiguity
of the assembly. However, we show empirically in Figure 2A that
the contiguity of the assembly is largely insensitive to the FPR,
and we surmise that these chance connections occur infrequently.

Assembler comparison

To assess the performance of ABySS 2.0, we compared it with other
leading assemblers for large genomes: ABySS 1.0 (Simpson et al.
2009), BCALM 2 (Chikhi et al. 2016), DISCOVAR de novo,
MEGAHIT (Li et al. 2016), Minia (Chikhi and Rizk 2013), SGA
(Simpson and Durbin 2011), and SOAPdenovo2 (Luo et al. 2012).

Figure 1. Overview of the ABySS 2.0 assembly algorithm. (A) k-mers from each input sequencing read
are loaded into the Bloom filter by computing the hash values of each k-mer sequence and setting the
corresponding bit in the Bloom filter. For clarity, we show a Bloom filter that uses a single hash function;
in practice, multiple bit positions are set for each k-mer using multiple independent hash functions. (B) A
path in the de Bruijn graph is traversed by repeatedly querying for possible successor k-mers and advanc-
ing to the successor(s) that are found in the Bloom filter. Each possible successor corresponds to single-
base extension of the current k-mer by “A,” “C,” “G,” or “T.” (C) ABySS 2.0 builds unitig sequences by
extending solid reads left and rightwithin the de Bruijn graph. A solid read is a read that consists entirely of
k-mers with an occurrence count greater or equal to a user-specified threshold (solid k-mers); the opti-
mum minimum occurrence threshold is typically in the range of two to four. Extension of a solid read
is halted when either a branching point or a dead end in the de Bruijn graph is encountered. A look-ahead
algorithm is employed to detect and ignore short branches caused by Bloom filter false positives and/or
recurrent read errors.
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Wenote that DISCOVAR de novo is thewhole-genome de novo as-
sembly successor to DISCOVAR (Weisenfeld et al. 2014). We con-
ducted our comparison using a recent, publicly available human
short-read data set provided by the Genome in a Bottle (Zook
et al. 2016) project. The NIST HG004 (Coriell cell line NA24143)
data were chosen for its deep 70× coverage of Illumina short-read
(paired-end 250 bp) data and the availability of sequences from
other platforms, including a 175× physical coverage mate-pair
data set (after trimming), 10x Genomics Chromium data, and
BioNanoopticalmappingdata.Wenote that paired-end250-bp se-
quencing data from an Illumina HiSeq 2500 in rapid-run mode is
currently roughly double the cost per base of paired-end 125-bp se-
quencing data on the same machine in high-throughput mode
(http://bit.ly/hiseq2500, http://bit.ly/cornell-price-list).

Each of the assemblers in the comparison was chosen due to
its significant contributions toward the goal of scalable de novo as-
sembly. The previous version of ABySS facilitates large genome as-
semblies by distributing the de Bruijn graph across cluster nodes
andwas the first software to assemble a human genome from short
reads. The BCALM 2 assembler introduces a novel method for par-
titioning the de Bruijn graph using minimizer hashing, which en-
ables subsets of the graph to be assembled iteratively or in parallel.
DISCOVAR de novo is a recent de Bruijn graph assembler for large
genomes. MEGAHIT utilizes a data structure called a succinct de

Bruijn graph (Bowe et al. 2012) to reduce the memory require-
ments for de Bruijn graph assembly. Minia is the first assembler
to employ a Bloom filter representation of the de Bruijn graph
and uses a novel algorithm for eliminating Bloom filter false posi-
tives. SGA demonstrates the use of an FM-index (Simpson and
Durbin 2011) as the core data structure for assembly, enabling
detection of variable-length overlaps between reads with a low
memory footprint. In addition to the aforementioned assemblers,
we also attempted to include ALLPATHS-LG 52488 (Gnerre et al.
2010) and MaSuRCA 3.1.3 (Zimin et al. 2013); however, we were
unable to run these assemblers to completion on the HG004
data set (for details, see “Assembler Scripts and Configuration
Files” in Supplemental Material). For the majority of assemblers,
we conducted assemblies across a range of k-mer sizes and selected
a single assembly for inclusion in the comparison that represented
the best tradeoff between maximizing contiguity (NG50 and
NGA50) and minimizing alignment breakpoints with respect to
reference genome GRCh38 (Supplemental Fig. S5; Supplemental
Tables S5–S9). Further details regarding k-mer size optimization
are described in “K-mer Size Sweeps” in the SupplementalMaterial.

In Figure 3A andTable 1, we compare the peak RAMusage and
wall-clock time of the assemblers. All assemblies fromFigure 3were

Figure 2. Effect of Bloom filter memory allocation on ABySS 2.0 assem-
blies of the C. elegans DRR008444 data set. (A) The assembly contiguity
(NG50) remains stable in the neighborhood of 9600 bp as the Bloom filter
allocation decreases from 3000 MB of 500 MB but drops sharply as the al-
location is further decreased from500 to 250MB. (B) The number of major
misassemblies (9) and local misassemblies (30–31) reported by QUAST re-
mains stable as the Bloom filter allocation is decreased from 3000 to 250
MB. (C ) The assembly wall-clock time increases gradually as the Bloom fil-
ter allocation is decreased from 3000 to 500 MB but rises sharply from 57
to 152 min when the allocation is further decreased from 500 to 250 MB.
(D) The relationship between Bloom filter false-positive rate and the Bloom
filter memory allocation. From these results, we conclude that a Bloom fil-
ter FPR in the range of 5%–10% provides a good balance between assem-
bly time and memory usage, without any detrimental effect on assembly
quality.

Figure 3. De novo assembly results for Genome in a Bottle HG004 hu-
man genome short-read data with ABySS 1.0, ABySS 2.0, BCALM 2,
DISCOVAR de novo, MEGAHIT, Minia, SOAPdenovo2, and SGA. To enable
comparison with ABySS, the DISCOVAR de novo assembly was scaffolded
with third-party scaffolders ABySS-Scaffold, LINKS (Warren et al. 2015),
and BESST (Sahlin et al. 2016). For panels B–D, on the y-axes we show
the range of NGA50 to NG50 to indicate uncertainty caused by real geno-
mic variants between individual HG004 and the reference genome
(GRCh38). On the x-axes, we show the number of breakpoints that oc-
curred when aligning the sequences to the reference genome. (A) Peak
memory usage and wall-clock time for the assemblers. (B) Contiguity and
correctness metrics for contig sequences. (C) Contiguity and correctness
metrics after scaffolding with mate-pair (MPET) reads. The SOAPdenovo2
result for this plot was excluded as an outlier with an NGA50 (NG50) value
of 103 kbp (172 kbp) and 10,610 breakpoints. (D) Contiguity and correct-
ness metrics after further scaffolding with BioNano optical mapping data,
using BioNano’s hybrid scaffolding pipeline.
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benchmarked on a server with 2.5 TB of RAM and four Xeon E7-
8867 v3 CPUs running at 2.50 GHz, providing a total of 64 cores.
Memory usage and run time of the assemblers varied from 5 GB
(BCALM 2) to 659 GB (SOAPdenovo2) and 9 h (BCALM 2) to
65 h (SGA). The tools that represent the de Bruijn graph suc-
cinctly—ABySS 2.0, MEGAHIT, Minia, and SGA—had memory
footprints many times smaller than ABySS 1.0, DISCOVAR de
novo, and SOAPdenovo2. BCALM 2 achieved both the smallest
memory footprint, by virtue of its novel partitioning strategy to
constructing the de Bruijn graph, and completed the assembly in
9 h, 8 h of which was spent counting k-mers with DSK (Rizk
et al. 2013). DISCOVAR de novo, which achieved the best se-
quence contiguity, required 618 GB of memory and 26 h to com-
plete, and SOAPdenovo2 required a similar 659 GB and 35 h. SGA
achieves its compact memory usage of 82 GB at the expense of run
time, requiring 65 h to complete the assembly. In addition to the
results of Figure 3A, we performed further benchmarking of ABySS
1.0 and ABySS 2.0 on other platforms (Supplemental Table S10).
Most notably, we ran the ABySS 2.0 assembly on a low-memory
machine with 48 GB RAM and 12 CPU cores, with a peak memory
usage of 34 GB and a wall-clock time of 80 h.

In Figure 3B and Table 2, we compare the contiguity and cor-
rectness of the contig sequences generated by the assemblers. To
extract contigs fromtheassemblies,we split the sequences atoccur-
rences of one ormore “N” characters. In addition to comparing the
contigs produced by each assembler, we included two additional
data points (“ABySS 1.0 + Sealer”, “ABySS 2.0 + Sealer”) in Figure
3B to show the contiguity improvement produced by closing scaf-
fold gapswith Sealer (Paulino et al. 2015), prior to splitting the scaf-
fold sequences at “N”s. Further details regarding the Sealer results
are provided in “Gap Filling with Sealer” in the Supplemental
Material. To assess the contiguity of the contigs, we calculated
both NG50 and NGA50 using a genome size of 3,088,269,832 bp.
To assess assembly correctness, we counted the number of break-
points when aligning the contigs to the primary chromosome se-
quences of the human reference GRCh38. Comparing the NG50
and NGA50 of the contigs, we observe that DISCOVAR de novo
achieves the highest sequence contiguity by a factor of approxi-
mately two (DISCOVAR de novo NG50 of 82 kbp vs. ABySS 1.0 +
SealerNG50of 38 kbp), although itsmemoryuse is the second larg-
est, exceeded only by SOAPdenovo2.Wenote that theNG50of the
ABySS 1.0 (30 kbp) and ABySS 2.0 (21 kbp) contigs noticeably ex-
ceeds those of BCALM 2 (1 kbp), MEGAHIT (8 kbp), and Minia (5
kbp), primarily due to the additional use of paired-end information
in ABySS. We also note that ABySS 2.0 achieves a lower contiguity
than ABySS 1.0 (21 kbp vs. 30 kbp). Upon investigation, we con-
clude that the main cause of this difference is the handling of low
coverage regions. Whereas ABySS 1.0 retains all k-mers in the de

Bruijn graph along with their counts, ABySS 2.0 discards k-mers
with counts below a user-specified threshold, as discussed in the
Methods. To further assess the assemblies, we calculated the per-
centage of sequence identity and percentage of genome coverage
of the contigs aligned to the reference genome. The percentage of
identity ranged from 99.5% to 99.8%, the percentage of genome
coverage from 93% to 98%, and ABySS 2.0 scored near the upper
ends of both measures with 99.7% identity and 96% genome cov-
erage (Supplemental Fig. S4; Supplemental Table S4).

In Figure 3C and Table 3, we compare the contiguity and cor-
rectness of the assemblies after scaffoldingwith Illuminamate-pair
data.We generally excluded assemblers from this stage of the com-
parison that did not implement their own scaffolding algorithms.
However, in light of the strong contiguity results of DISCOVAR de
novo at the contig stage, we chose to scaffold the DISCOVAR de
novo contigs with several third-party scaffolders: ABySS-Scaffold
(data not shown), LINKS (Warren et al. 2015), and BESST (Sahlin
et al. 2016). In comparison to Figure 3B, we note that the NG50
and NGA50 values of the DISCOVAR de novo and ABySS assem-
blies begin to converge, as do the values for the two versions of
ABySS compared. We also note that there are significant differ-
ences between the scaffold NG50 and NGA50 length metrics, par-
ticularly in the case of the DISCOVAR de novo + ABySS-Scaffold
assembly with an NG50 of 10.4 Mbp and NGA50 of 6.3 Mbp.
We understand this divergence to be caused by the differing as-
sumptions of the two contiguitymetrics.While the NG50 is calcu-
lated under the assumption that all sequences are correctly
assembled, the NGA50 metric penalizes breakpoints when align-
ing the sequences to the reference genome. While the NG50 is
an overly optimistic metric, the NGA50 is an overly pessimistic
metric because certain breakpoints may be attributed to real
structural variation between the sequenced individual and the
reference genome. For this reason, we show contiguity of the as-
semblies as a range between NGA50 and NG50, with the true un-
known value lying somewhere in between.

In Figure 3D and Table 4, we show the results after an addi-
tional round of scaffolding of the DISCOVAR de novo and ABySS
assemblies using the BioNano optical map for individual HG004,
as provided by the Genome in a Bottle project. The BioNano pro-
tocol generates an optical map of the genome by fluorescently
tagging occurrences of a particular endonuclease motif within
long DNA molecules, resulting in a barcode-like pattern for each
molecule. To perform the scaffolding, the BioNano software gener-
ates an analogous set of barcode patterns in silico for the sequences
of the input assembly and then aligns the two sets of bar
codes. Applying BioNano scaffolding to the mate-pair–scaffolded
sequences improved the NG50 by a factor of five or more across

Table 1. The peak memory usage and wall-clock run time with 64
threads of the assemblies of GIAB HG004

Assembly Memory (GB) Time (h)

ABySS 1.0 418 14
ABySS 2.0 34 20
DISCOVAR de novo 618 26
BCALM 2 5 9
MEGAHIT 197 26
Minia 137 19
SGA 82 65
SOAPdenovo2 659 35

Table 2. The sequence contiguity and number of breakpoints when
aligned to GRCh38 using BWA-MEM of the assemblies of GIAB HG004

Assembly NG50 (kbp) NGA50 (kbp) Breakpoints

ABySS 1.0 30.0 29.1 1898
ABySS 1.0 + Sealer 38.0 36.3 2268
ABySS 2.0 20.6 20.1 1813
ABySS 2.0 + Sealer 24.5 23.7 2089
DISCOVAR de novo 82.1 76.6 1947
BCALM 2 1.2 1.2 236
MEGAHIT 8.2 8.1 1709
Minia 4.8 4.7 949
SGA 7.9 7.9 820
SOAPdenovo2 3.8 3.7 609
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all assemblies, with NG50 reaching 52 Mbp with DISCOVAR de
novo + ABySS-Scaffold + BioNano. We observe that the distance
between the NG50 and NGA50 values grows even larger at this
stage of scaffolding, which we surmise is caused by a greater likeli-
hood of encountering real sequence variation between the se-
quenced individual and the reference genome.

Given the aforementioned limitations of our breakpointmet-
ric for assessing assembly correctness, we additionally performed
manual checks for assembly correctness. To this end, we investi-
gated large-scale misassemblies (>10 Mb) and found only two ma-
jor events within our ABySS 2.0 + BioNano scaffolds (Figs. 4, 5).
One of these large-scale events between Chromosomes 1 and 16
was identified in every assembly (Supplemental Figs. S7–S12),
which indicates that the event may be a real structural variant
with respect to the reference human genome GRCh38. The other
large scale event between Chromosomes 6 and 8 is interestingly
also found in the DISCOVAR de novo + BESST + BioNano assembly
(Supplemental Fig. S11), despite having fewer breakpoints and us-
ing an independent methodology. This suggests that the relative
correctness of the ABySS 2.0 + BioNano assembly is on par with
that of other assemblies.

Scaffolding with Chromium data

As the final step of our ABySS 2.0 assembly, we used the 10x
Genomics Chromium data available for individual HG004 to fur-
ther scaffold the BioNano assembly. The Chromium sequencing
platform augments existing short-read technologies by labeling
reads that originate from the same long DNA molecule with a
shared barcode sequence. This labeling is achieved during library
preparation by isolating long DNA molecules into droplets along-
side gel beads containing the barcoding oligos. The barcodes added
by the Chromium protocol provide additional long-range group-
ing information for the short reads, which can be leveraged for
scaffolding and other bioinformatics applications, such as phasing
sequence variants.

To scaffold our assembly with the Chromium data, we devel-
oped ARCS (Yeo et al. 2017). Briefly, we aligned the Chromium
linked reads to the inputBioNano scaffoldswithBWA-MEMand re-
corded the barcodes of the reads that aligned to each scaffold. Aswe
were only interested in the barcodes that joined scaffolds, we re-
duced noise by masking the interior portions of the input
BioNano scaffolds with “N” characters, preserving only the first/
last 30 kbp of sequence in each scaffold, prior to aligning the
Chromium reads. By using the information obtained from the
read alignments, we constructed a graph representation of the rela-
tionships between scaffolds, using nodes to represent scaffolds and
edge weights to represent the number of shared barcodes between
scaffolds. Finally, we supplied this graph as input to the LINKS

(Warren et al. 2015) scaffolding algorithm to identify high-confi-
dence paths within the graph and to output the corresponding
scaffolds. Additional information regarding the Chromium scaf-
folding with ARCS and LINKS is provided in “Assembler Scripts
and Configuration Files” in the Supplemental Material.

The Chromium scaffolding increased the scaffold NG50 of
our ABySS 2.0 assembly from26.9 to 41.9Mbp. At this scale of con-
tiguity, the largest scaffolds represent significant fractions of chro-
mosome arms. In Figure 4, we show the positions on the
chromosomes of the 89 scaffolds >3.2 Mbp that compose 90% of
the genome. We note that many chromosome arms are recon-
structed by one to four large scaffolds, exemplified in Figure 5.
We observe two regions indicative of a structural rearrangement
and/or misassembly. Interestingly, the t(1;16) translocation is
seen in every assembly (Supplemental Figs. S7–S12), and the
t(6;8) translocation is also seen in the DISCOVAR de novo +
BESST + BioNano assembly (Supplemental Fig. S11).

Discussion

The ideogram of Figure 4 demonstrates that correct and highly-
contiguous de novo assembly of human genomes is possible using
current short-read sequencing technologies combined with long-
range scaffolding techniques. While each of the scaffolding data
types usedhere (mate-pair, BioNano,Chromium) are capable of in-
creasing assembly contiguity by orders ofmagnitude on their own,
our results demonstrate that these data are even more powerful
when used in combination, also demonstrated by Mostovoy
et al. (2016). In the human assembly we have described here,
each scaffolding step feeds on the success of the previous assembly
stages. Longer contig sequences improve the results of mate-pair
scaffolding by allowing more mate-pairs to map to the contigs.
Longer mate-pair scaffolds improve the BioNano scaffolding by al-
lowing the optical map to align unambiguously to the mate-pair
scaffolds; for this reason, BioNano recommends that the input as-
sembly contains sequences of at least 100 kbp. Finally, longer
BioNano scaffolds improve the Chromium scaffolding by resolv-
ing ambiguities in ordering and orientation of the scaffolds that
are difficult to resolve using Chromium data alone.

Another observation that can be made from our assembler
comparison is that, in spite of more than a decade of research
and development related to de Bruijn graph assemblers, the mem-
ory and runtime efficiency of short-read assemblers can still be
greatly improved. This issue is particularly important for down-
stream studies that involve large numbers of de novo assemblies,
such as human population studies, cancer genome studies, and
clinical applications. The opportunity for improving the

Table 3. The scaffold contiguity and number of breakpoints when
aligned to GRCh38 using BWA-MEM of the assemblies of GIAB HG004

Assembly
NG50
(Mbp)

NGA50
(Mbp) Breakpoints

ABySS 1.0 4.82 4.36 2975
ABySS 2.0 3.49 2.97 2717
DISCOVAR de novo +

ABySS-Scaffold
10.42 6.32 3085

DISCOVAR de novo + LINKS 3.08 2.44 2655
DISCOVAR de novo + BESST 6.92 3.94 2657
SOAPdenovo2 0.17 0.10 11,219

Table 4. The scaffold contiguity and number of breakpoints when
aligned to GRCh38 using BWA-MEM of the assemblies of GIAB
HG004 with BioNano scaffolding

Assembly
NG50
(Mbp)

NGA50
(Mbp) Breakpoints

ABySS 1.0 + BioNano 32.5 15.3 3051
ABySS 2.0 + BioNano 26.9 12.8 2750
DISCOVAR de novo + ABySS-

Scaffold + BioNano
52.2 15.0 3121

DISCOVAR de novo + LINKS +
BioNano

25.7 13.6 2735

DISCOVAR de novo + BESST
+ BioNano

37.8 9.3 2672

ABySS 2.0
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throughput of de novo assemblies is evidentwhen comparing nov-
el de Bruijn graph implementations such as Minia and BCALM 2
against more mature assembly pipelines such as ABySS 1.0 and
DISCOVAR de novo (Fig. 3A). For example, the BCALM2 assembly
used only 5 GB RAM and 9 h to run, whereas the DISCOVAR de
novo assembly used >600 GB of RAM and over a day to run.
While Minia and BCALM 2 did not match the results of ABySS
and DISCOVAR de novo in terms of assembly contiguity (Fig.
3B), we posit that this is due to the limited error removal of the im-
plementations andnot a fundamental limitation of the algorithms
themselves. In the case of Minia, this hypothesis is borne out by
the results of ABySS 2.0 (Fig. 3A), which employs a Bloom filter-
based assembly approach similar to Minia but achieves contiguity
results that are on par with DISCOVAR de novo and ABySS 1.0.

The assembly of long reads has yielded highly contiguous ge-
nomeassemblies ofhuman (Pendletonet al. 2015;Chinet al. 2016)
and other organisms with sequence contiguity in the megabase
range. Long-read sequencing comes, however, at a cost premium.
For applications that are cost-sensitive, suchas sequencing for diag-
nostic medicine, algorithms that exploit high-throughput short-
read sequencing are valuable. We show that megabase scaffolds
are achievable using short-read sequencing with one paired-end
andonemate-pair library, and scaffolds approaching the size of en-
tirechromosomearmsarepossiblewhenscaffoldingwithaddition-
al BioNano and/or 10x Genomics data. A remaining challenge for
short-read assemblies is to improve their sequence contiguity,
which remains in the range of tens of kilobases, significantly short-
er than the megabases achieved with the assembly of long-read
sequencing.

Methods

Bloom filter de Bruijn graph assembly

The first stage of the ABySS 2.0 assembly pipeline is a de Bruijn
graph assembler that uses a compact, Bloom filter-based represen-

tation of the graph. The use of Bloom filters for de novo assembly
was first demonstrated in Minia (Chikhi and Rizk 2013), and
ABySS 2.0 builds on many aspects of that approach. The parts of
our assembly algorithm that are novel with respect to Minia are
(1) the use of solid reads to seed contig traversals (explained below),
(2) the use of look-ahead for error correction and elimination of
Bloom filter false positives rather than a separate data structure,
and (3) the use of a new hashing algorithm, ntHash (Mohamadi
et al. 2016), designed for processing DNA/RNA sequences
efficiently.

We will begin by describing the basic aspects of our assembly
algorithm that closely follow Minia, including the Bloom filter
representation of the de Bruijn graph and the use of a cascading
Bloom filter to remove low-occurrence k-mers. As in Minia, the first
step of the assembly algorithm is to load all k-mers from the se-
quencing reads into a Bloom filter (Fig. 1A). These k-mers represent
the set of nodes in the de Bruijn graph, but we do not explicitly
store the edges representing the k− 1 bp overlaps between k-
mers. Instead, as in Minia, we discover edges at runtime by query-
ing the Bloom filter for the four possible predecessors/successors of
the current k-mer during the course of a graph traversal (Fig. 1B).
Each possible successor (predecessor) corresponds to a single-
base extension of the current k-mer to the right (left) by “A,”
“C,” “G,” or “T.” Another technique shared with Minia is the
use of a cascading Bloom filter to eliminate low-occurrence k-
mers, the majority of which are caused by sequencing errors
(Vandervalk et al. 2015). Briefly, a cascading Bloom filter is a
chained array of Bloom filters where each Bloom filter stores k-
mers with a count that is one higher than the preceding Bloom fil-
ter. The procedure for inserting a k-mer into a cascading Bloom

Figure 4. Contigs from the 89 scaffolds >3.2Mbp that compose 90% of
the genome are aligned to GRCh38 using BWA-MEM. Contigs from the
same scaffold are shown in the same shade of gray, and alternating shades
of light anddarkgrayareused todistinguishbetweencontigs fromdifferent
scaffolds. Two translocations, t(1;16) and t(6;8), are shown in green and
blue. The segments of the genome that are not covered by alignments of
the largest 89 scaffolds are shown offset in black. Gaps in the reference ge-
nome, includingcentromeresandotherheterochromatin,areshowninred.

Figure 5. A Circos (Krzywinski et al. 2009) assembly consistency plot.
Scaftigs from the largest 89 scaffolds that compose 90% of the genome
are aligned to GRCh38 using BWA-MEM. GRCh38 chromosomes are dis-
played on the left and the scaffolds on the right. Connections show the
aligned regions between the genome and scaffolds. Contigs are included
as a part of the same region if they are within 1 Mbp on either side of the
connection, and regions <100 kbp are not shown. The black regions on
the chromosomes indicate gaps in the reference and the circles indicate
the centromere location on each chromosome.
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filter is to query each Bloom filter in succession and to add the k-
mer to the first Bloom filter where it is not already present. After
all k-mers from the reads have been inserted, the last Bloom filter
in the chain is then kept as the set of solid k-mers and the preceding
Bloom filters are discarded. We note that ABySS 2.0 assigns equal
sizes to each Bloom filter in the cascading chain, and so using c cas-
cading Bloom filter levels effectively multiplies the peak memory
requirement of the assembler by a factor of c. We used ntCard
(Mohamadi et al. 2017) to estimate the approximate number of
singleton k-mers in the data set. As we describe below, an addition-
al tracking Bloom filter is used to record k-mers that have been in-
cluded in previously assembled contigs, and so the total memory
multiplier is c + 1.

We now proceed to describe the unique aspects of the ABySS
2.0 algorithm in comparison to Minia. The first difference is the
method used to seed graph traversals in order to generate contigs.
While Minia identifies and stores branching points of the de
Bruijn graph to use as starting points for contig traversal, ABySS
2.0 instead extends solid reads left and right until either a dead
end or a branching point is encountered in the graph. A read is
considered to be a solid read if it consists entirely of solid k-
mers, and is thus likely to represent a correct path in the de
Bruijn graph. The percentage of solid reads in the data set depends
on the user-specified minimum k-mer occurrence threshold. In
the case of the Genome in a Bottle HG004 assembly, the k-mer oc-
currence threshold was set to three and the number of solid reads
was 782,886,725 of 868,593,056 (90.1%), after correction with
BFC (Li 2015a). The read extension approach to contig generation
has the advantage of being simple to implement but requires some
precautions to ensure that redundant contigs are not generated by
solid reads located in the same neighborhood of the de Bruijn
graph. We address this issue by using an additional tracking
Bloom filter to record the set of k-mers that have previously
been included in contigs; if all the k-mers of a solid read are already
contained in the tracking Bloom filter, it is not extended into a
contig but is instead skipped. We note that in order for this
scheme to work correctly, solid reads that span branching points
of the de Bruijn graph must be split at the branching points and
treated as separate candidates for extension. We note that the
tracking Bloom filter is assigned the same size in memory as the
chained Bloom filters that make up the cascading Bloom filter, de-
scribed in the previous paragraph.

A second important difference between Minia and ABySS 2.0
is the strategy used for handling of Bloom filter false positives.
While the Minia approach uses an additional nonprobabilistic
data structure to store critical false positives (Chikhi and Rizk
2013), ABySS 2.0 instead uses a look-ahead mechanism during
graph traversal to eliminate short branches that are caused by false
positives and recurrent sequencing errors (Fig. 1C). Themajority of
branches created by sequencing errors are removed by the cascad-
ing Bloom filter. In detail, we invoke a look-ahead step at each
branching point we encounter during contig extension, up to a
distance of k nodes. If the look-ahead step reveals that a branch
is less than or equal to k nodes in length, it is considered to be a
false branch, and its existence is ignored. If, on the other hand,
the branch point has two or more branches that are longer than
k nodes, then the unitig extension is halted. The use of look-ahead
incurs an additional computational cost to the graph traversal but
obviates the requirement for additional data structures to track
false positives and error k-mers.

A third difference between Minia and ABySS 2.0 is the use of
a specialized hash function called ntHash in ABySS 2.0. The
ntHash algorithm is an efficient method for computing the
hash values of all consecutive k-mers in a DNA sequence recur-
sively, in which the hash value for each k-mer is derived from

the hash value of the previous k-mer. More specifically, ntHash
is an adapted version of cyclic polynomial hashing and is used
to compute normal or canonical hash values for all k-mers in a
DNA sequence. A further feature of ntHash is fast computation
of multiple hash values for the same k-mer, without repeating
the entire hashing computation. This is a useful feature for bioin-
formatics applications such as ABySS 2.0 that employ a Bloom fil-
ter data structure.

Experimental sequencing data

In our experiment to assess the effects of Bloom filter FPRonABySS
2.0 assemblies, we used C. elegans N2 strain data set SRA
DRR008444, consisting of Illumina GAIIx 2 × 100 bp reads on
300-bp fragments with 75-fold coverage.

For the assembler comparison, we used the data for the
Ashkenazi mother (NIST HG004, Coriell cell line NA24143)
from the Genome in a Bottle project (Zook et al. 2016). The
Illumina WGS 2 × 250 bp paired-end sequencing data may be
downloaded from the URLs listed at http://bit.ly/hg004-2x250
(SRA SRR3440461–SRR3440495). The Illumina 6-kbpmate-pair se-
quencing data may be downloaded from URLs listed at http://bit.
ly/hg004-6kb (SRA SRR2832452–SRR283245). The BioNano opti-
cal map EXP_REFINEFINAL1_q.cmap may be downloaded from
the URLs listed at http://bit.ly/hg004-bionano, and the 10x
Genomics Chromiumdatamay be downloaded from theURLs list-
ed at http://bit.ly/hg004-chromium.

We corrected sequencing errors in the reads using the tool
BFC (Li 2015a) with the parameter -s3G. We constructed the
hash table of trusted k-mers using the paired-end reads and used
this hash table to correct both the paired-end andmate-pair reads.
We assembled both the BFC and uncorrected reads with each as-
sembler (Supplemental Fig. S6; Supplemental Tables S11, S12).

We removed adapters from the mate-pair reads using NxTrim
0.4.0 (O’Connell et al. 2015) with parameters --norc

--joinreads --preserve-mp. The tool also classifies the reads
as mate-pair, paired-end, single-end, or unknown. We discarded
the reads classified as either paired-end or single-end and, for scaf-
folding, used the reads classified as mate-pair and unknown,
which are composed primarily of mate-pair reads originating
from large fragments.

Assembler comparison

We assembled the GIAB HG004 data set using ABySS 1.9.0
(Simpson et al. 2009), ABySS 2.0, ALLPATHS-LG 52488 (Gnerre
et al. 2010), BCALM 2.0.0 (Chikhi et al. 2016), DISCOVAR de
novo 52488, MaSuRCA 3.1.3 (Zimin et al. 2013), MEGAHIT
1.0.6-3-gfb1e59b (Li et al. 2016), Minia 3.0.0-alpha1 (Chikhi and
Rizk 2013), SGA 0.10.14 (Simpson and Durbin 2011), and
SOAPdenovo 2.04 (Luo et al. 2012). We assembled with each
tool the paired-end reads corrected by BFC 181. The mate-pair
reads categorized by NxTrim 0.4.0 and corrected by BFC were
used for scaffolding, when applicable for that assembler. We scaf-
folded the DISCOVAR de novo assembly using BESST 2.2.4 (Sahlin
et al. 2016), LINKS 1.8.2 (Warren et al. 2015), and ABySS-Scaffold
1.9.0 (data not shown).

Most software used in these analyses was installed from the
Homebrew-Science software collection using Linuxbrew (http://
linuxbrew.sh) with the command brew install abyss all-

paths-lg bcalm bfc bwa discovardenovo masurca megahit

nxtrim samtools seqtk sga soapdenovo. The development
version of ABySS 2.0 used in the comparison was compiled from
the bloom-abyss-preview tag at https://github.com/bcgsc/abyss/
tree/bloom-abyss-preview, and we provide the source code in
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Supplemental Archive 1. Minia 3.0.0-alpha1 and LINKS 1.8.2 were
installed manually, as these versions are not yet available in
Linuxbrew as of this writing. The Python package besst was in-
stalled using pip install besst.

We provide the commands and configuration files used to
run the various assemblers and scaffolding tools in Supplemental
Listings S1 through S16 and as Makefile scripts in the
Supplemental Archive 2. The scripts are also available online at
https://github.com/bcgsc/abyss-2.0-giab. To calculate a suitable
Bloom filter size for ABySS 2.0, we counted distinct k-mers in the
reads with ntHash (Mohamadi et al. 2017) and targeted a Bloom
filter FPR of 5%; we provide further details in “Assembler Scripts
and Configuration Files” in the Supplemental Material. To assess
the correctness of each assembly, we aligned the contigs to the pri-
mary chromosome sequences of human reference GRCh38 with
BWA-MEM 0.7.13 and counted the number of resulting break-
points with abyss-samtobreak -G3088269832 -l500.

Data access

The FASTA files for the assemblies of the HG004 Genome in a
Bottle data from this study may be downloaded from NCBI at
http://bit.ly/ncbi-giab-abyss2 and are also mirrored at http://bit.
ly/abyss2-ftp.
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