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Abstract
AIM
To investigate the regulation of Myopalladin (Mypn) and 
identify its gene network involved in restrictive cardio-
myopathy (RCM).

METHODS
Gene expression values were measured in the heart 
of a large family of BXD recombinant inbred (RI) mice 
derived from C57BL/6J and DBA/2J. The proteomics 
data were collected from Mypn  knock-in and knock-out 
mice. Expression quantitative trait locus (eQTL) mapping 
methods and gene enrichment analysis were used to 
identify Mypn  regulation, gene pathway and co-expression 
networks.

RESULTS
A wide range of variation was found in expression of 
Mypn  among BXD strains. We identified upstream genetic 
loci at chromosome 1 and 5 that modulate the expression 
of Mypn. Candidate genes within these loci include Ncoa2, 
Vcpip1, Sgk3, and Lgi2 . We also identified 15 sarcomeric 
genes interacting with Mypn and constructed the gene 
network. Two novel members of this network (Syne1 and 
Myom1) have been confirmed at the protein level. Several 
members in this network are already known to relate to 
cardiomyopathy with some novel genes candidates that 
could be involved in RCM. 

CONCLUSION
Using systematic genetics approach, we constructed Mypn 
co-expression networks that define the biological process 
categories within which similarly regulated genes function. 
Through this strategy we have found several novel genes 
that interact with Mypn that may play an important role in 
the development of RCM.

Key words: System genetics; Myopalladin; System pro-
teomics; Cardiomyopathy; Mutation

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Myopalladin (Mypn) is one of genes associated 
with many types of familial cardiomyopathies including 
dilated, hypertrophic and restrictive cardiomyopathy 
(RCM). Using systematic genetics approach, we con-
structed Mypn  co-expression networks of similarly 
regulated genes that function within defined biological 

processes. Several novel Mypn -interacting genes with 
potential important role in the development of RCM were 
discovered.
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INTRODUCTION
Cardiomyopathies are heterogeneous diseases of 
heart muscle with unknown etiologies in 60%-70% 
of cases[1]. Outcomes such as heart failure, transplant 
or death in children and adults due to lack of definite 
effective treatment make cardiomyopathies one of 
the most devastating diseases[2]. Familial restrictive 
cardiomyopathy (RCM), a rare form of cardiomyopathy, 
is characterized by diastolic dysfunction with restrictive 
physiology due to fibrosis and stiffness of the myo-
cardium. Familial RCM has high incidence of sudden 
cardiac death, particularly in children with 2-year survival 
of 50% which drops up to 25% in 5-year survival 
period[3]. History of familial RCM is documented in 30% 
of cases with possible presence of dilated or hypertrophic 
cardiomyopathies (DCM and HCM, respectively)[4]. Only 
a few genes, troponins (cTnI and cTnT), myosin-binding 
protein C (MyBP-C) - myosin heavy chain (MYH7), 
myosin light chain2 and 3 (MYL2, MYL3), desmin (DES) 
and myopalladin (MYPN), have been reported to be 
associated with familial RCM.  

The MYPN gene, located at chromosome 10q21.3, 
encodes a 147-kDa protein containing five immunoglobulin 
(Ig) domains[5]. MYPN localizes to the Z-discs and nucleus 
in striated muscle and functions in sarcomere assembly 
and regulation of gene expression. To date, twenty-three 
monoallelic heterozygous mutations in MYPN associated 
with DCM, HCM and RCM have been reported[6-8]. Clinical 
presentation of cardiomyopathy and heart failure typically 
exhibits in adulthood. Interestingly, different phenotypes 
were observed in family members and unrelated individuals 
carrying the same mutation. For instance, teenage 
siblings carrying the heterozygous c.1585C>T (p.Q529X-
MYPN) nonsense mutation exhibited signs of overlapping 
phenotypes of DCM, HCM and RCM. The c.1585C>T 
mutation escapes a nonsense-mediated mRNA decay and 
produces a truncated 65-kDa MYPN protein, acting as a 
“poison peptide”[7,9]. The phenotype of knock-in mutant 
mice carrying heterozygous Mypn-Q526X mutation (KI), 
equivalent to human MYPN-Q529X, resembles RCM[9]. On 
the other hand, the homozygous mutants with biallelic 
Mypn-Q526X acted as the Mypn-null model due to ablation/
knock-out (KO) of Mypn protein as a result of nonsense-
mediated mRNA decay. 
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Over the last decade, it has become clear that genes 
do not work in isolation but in a complex combination 
with other genes and the environment. Thus, it is 
critical to identify gene networks rather than individual 
gene for complex traits or many diseases, including 
cardiomyopathies. We hypothesized that Mypn as a 
cardiomyopathy causal gene interacts with many other 
genes in a gene network to cause cardiomyopathy 
symptoms. The purpose of this investigation is to define 
novel cardiomyopathy causative genes through Mypn 
network using combined approaches of systems genetics 
and proteomics. To explore the Mypn gene network, we 
used BXD mice, a recombinant inbred (RI) strains derived 
from C57BL/6J strain (B6) and DBA/2J (D2) mouse 
cross. The Mypn gene is highly expressed and highly 
variable in the myocardium of BXD RI muse strains. We 
identified an upstream modulator of Mypn and defined 
both pathway and gene network. Proteomics studies 
in Mypn KI and KO mice defined potential mechanisms 
through which Q526X-Mypn mutation induced RCM and 
familial cardiomyopathies in general.

MATERIALS AND METHODS
Animal care and use statement
BXD and Mypn KI and KO mice described earlier were 
used[9-11]. Mice were maintained in micro-isolator cages 
at 25 ℃ under a 14/10 h light/dark cycle with free 
access to water and food. PCR analysis of tail genomic 
DNA was used for genotyping of knock-in and knock-
out mice. Genotyping of BXD mice was generated using 
GigaMUGA genotyping array that typed approximately 
150000 SNPs. All animal studies were approved by 
institutional IACUC of the University of Tennessee Health 
Science Center (UTHSC).

Tissue harvest, RNA extraction and microarray
The animals were sacrificed under isoflurane anesthesia. 
Cardiac perfusion were performed after an overnight fast. 
Hearts were taken immediately after perfusion, and then 
frozen in liquid nitrogen no more than a minute after 
sacrifice. The pieces of tissue were taken from frozen heart 
(most of them from ventricles) randomly. The hearts were 
harvested from 40 strains of the BXD family (BXD43 - 
BXD103) and both parental strains (C57BL/6 and DBA/2). 
Five animals per strain were used for this study. 

RNA was extracted using QIAGEN RNA extraction kits 
(https://www.qiagen.com) as per the manufacturer’s 
instructions. In order to reduce the inhomogeneous nature 
of tissues due to the presence of different segments of 
the heart, the individual RNA sample from 5 mice at same 
strain were pooled evenly (by microgram of RNA) into a 
single RNA sample. The pooled RNA samples were then 
purified using RNEasy kit. The Agilent 2100 Bioanalyzer 
was used to evaluate RNA integrity and quality. The RNA 
integrity values had to be greater than 1.8 to pass quality 
control. The RIN of most samples were greater than 2. 
The Affymetrix Mouse Gene 2.0 ST arrays were used for 
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gene expression measurement and were run in a single 
batch.

Data processing
Raw microarray data were normalized using the Robust 
Multichip Array (RMA) method. The expression data 
were then re-normalized using a modified z-score 
described previously[12-15]. We calculated the log base 2 
of normalized values above, computed Z scores for each 
array, multiplied the Z scores by 2, and added an offset of 
8 units to each value. The reason for this transformation 
is to produce a set of Z-like scores for each array that 
have a mean of 8 and standard deviation of 2. The 
advantage of this modified Z score is that a two-fold 
difference in expression corresponds approximately to a 
1-unit change.

Expression QTL mapping
Expression QTL (eQTL) mapping was performed at 
gene and exon levels through the WebQTL module 
on GeneNetwork as published previously[12-14]. This 
methodology uses regression analysis to determine the 
association between variability in a trait vs variability in 
alleles at markers across the genome. Simple interval 
mapping was performed to identify potential eQTLs 
that regulate Mypn expression levels and estimate the 
significance at each location consistent to known genotype 
data for those sites. Composite interval mapping was 
also performed to control for genetic variance associated 
with major eQTLs as well as any potentially masked 
secondary eQTLs.  A quantitative measure of confidence 
of linkage between the observed phenotype, known 
genetic markers and expression level of Mypn was 
provided by creating a likelihood ratio statistic (LRS). 
Then, we established genome-wide significance for each 
eQTL using a permutation test that compared the LRS of 
our novel site with the LRS values for 1000-10000 genetic 
permutations[16]. 

Identification of upstream candidate genes
To identify upstream gene of Mypn, we determined the 
1.5-LOD location of the significant eQTL of Mypn. All genes 
in this eQTL region were used for candidate gene analysis. 
The following criteria were used to identify the most likely 
candidates: (1) the gene is highly expressed in the heart; 
(2) the gene is significant (P < 0.05) correlated with 
Mypn expression in the heart; and (3) the gene has non-
synonymous SNP, missense SNP or indel in coding regions 
of the gene, or the gene has significant cis-eQTL[14]. 

Genetic correlation and partial correlation analysis
We calculated Pearson product-moment correlations 
between expression of Mypn and expression of all 
other probe sets across the genome and produced sets 
of genetically correlated genes. After that, in order to 
identify biologically relevant correlates of Mypn, we 
also performed partial correlation analyses to remove 
linkage disequilibrium by controlling for cis-regulated 
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to discover possible posttranslational alterations at the 
onset of restrictive phenotype, 3-mo-old wild-type (WT), 
mutant heterozygous MypnWT/Q526X (KI) and homozygous 
MypnQ526X (KO) male littermate mice were used[9]. The 
total protein from left ventricular (LV) myocardium was 
isolated, aliquoted, snap-frozen in liquid nitrogen and 
kept at 80 ℃ until further analysis. Two-dimensional gel 
electrophoresis (2D-DIGE) including protein labeling, 
2D-electrophoreses, gel analysis and identification of 
proteins of interests using tandem mass spectrometry 
(MS) were performed by Applied Biomics (Hayward, CA) 
using established protocols as described previously[20]. 

MALDI-TOF (MS) and TOF/TOF (tandem MS/MS) 
Tandem MS/MS were performed on a 5800 mass sp-
ectrometer (AB Sciex) as described previously[20]. Can-
didates with either protein score CI% or Ion CI% greater 
than 95 were considered significant.

 
RESULTS
Mypn expression levels in heart of BXD mice 
Mypn which is highly expressed in the heart shows broad 
variability in expression among the BXD strains. The 
average expression of Mypn in all BXD strains was 12.29 
± 0.02 (log2 scale, mean ± SEM). The highest expression 
levels of 12.52 was found in BXD61 strain and the 
lowest of 11.89 was found in BXD87 strain (Figure 1), a 
difference more than 1.5 fold.

eQTL mapping and candidate regulator of Mypn
By performing simple interval mapping for Mypn at 
the transcript level, we found four suggestive eQTLs 
that are located on chromosome (Chr) 1, 5, 12 and X, 
respectively (Figure 2A). Simple interval mapping at 
exon level showed the expression of exons 6, 12 and 17 
map to the same locus on Chr 1; and the expression of 
exons 7, 14, 18 and 19 map to the same locus at Chr 
5. Principal component analyses were then performed 

genes near Mypn[14]. Both genetic correlation and 
partial correlation can be computed using the tools on 
GeneNetwork.

Gene set enrichment analysis 
The genes that have both significant genetic correlation 
and partial correlation with Mypn were selected for gene 
set enrichment analysis. After removing Riken clones, 
intergenic sequences, predicted genes, and probes not 
associated with functional mouse genes, the remaining 
list of correlates with mean expression levels above 
baseline in the heart were uploaded to Webgestalt 
(http://bioinfo.vanderbilt.edu/webgestalt/) for gene enri-
chment analysis[17]. The P values generated from the 
hypergeometric test were automatically adjusted to 
account for multiple comparisons using the Benjamini 
and Hochberg correction[18]. The categories with an 
adjusted P value (adjp) of < 0.05 indicated that the set 
of submitted genes are significantly over-represented in 
that categories. 

Gene network construction
The gene network was constructed and visualized using 
Cytoscape utility through “Gene-set Cohesion Analysis 
Tool (GCAT)” (http://binf1.memphis.edu/gcat/index.
py). The nodes in the network represent genes and 
the edge between two nodes represent cosine score 
of Latent Semantic Indexing (LSI) that determines the 
functional coherence of gene sets is larger than 0.6. 
The significance of the functional cohesion is evaluated 
by the observed number of gene relationships above a 
cosine threshold of 0.6 in the LSI model. The literature 
P-value (LP) is calculated using Fisher’s exact test by 
comparing the cohesion of the given gene set to a 
random one[19]. 

Protein isolation and 2D-DIGE analysis in Mypn KO and 
KI mice
To investigate genetic and proteomics correlations and 
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for gene level (Figure 2B). The first principal component 
captured 49% of the expression variance for exons 7, 
14, 18 and 19. Simple interval mapping for this PC1 
identified a suggestive eQTL with LRS of 14.7 at Chr 1 
and a significant eQTL with LRS of 17.2 (genome-wide 
P < 0.05) at Chr 5 whose locations are the same as for 

to identify the main factor contributing to the variable 
expression of those exons. The first principal component 
(PC1) captured 67% of the expression variance for 
exons 6, 12 and 17. Simple interval mapping for this PC1 
identified a significant eQTL with LRS of 19 (genome-
wide P < 0.05) at Chr 1 whose location is the same as 
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found to correlate significantly with that of Mypn (P < 
0.05). There are 1704 transcripts/probesets left after 
partial correction analysis. Among them, 1593 transcripts 
have unique Entrez gene IDs and were submitted for 
enrichment analysis. The most significant enrichments 
in the biological function category are “cellular process” 
(1026 genes, adjp = 0.000000000001) and “development 
process” (369 genes, adjp = 0.000000036) including 
“anatomical structure development” (321 genes, adjp = 
0.0000009), “muscle structure development” (64 genes, 
adjp = 0.00000084) and “muscle cell differentiation” (47 
genes, adjp = 0.0000031). The most relevant enrichments 
in the molecular function category are “cytoskeletal 
protein binding” (63 genes, adjp < 0.006), “SH3 domain 
binding” (19 genes, adjp < 0.01), “growth factor binding” 
(19 genes, adjp < 0.003), and “Protein serine/threonine 
kinase activity” (47 genes, adjp < 0.01). The most 
significant enrichments in the cellular component category 
that is relative to muscle function are “contractile fiber” (24 
genes, adjp < 0.009), “myofibril” (21 genes, adjp < 0.03), 
“sarcomere” (19 genes, adjp < 0.03), “Z disc” (13 genes, 
adjp < 0.05), “Phosphorylase kinase complex” (3 genes, 
adjp < 0.02), and “AMP-activated protein kinase complex” 
(4 genes, adjp < 0.02).

The disease enrichment analysis showed that those 
genes are significantly involved in 29 diseases (adjp < 
0.05, Table 1). Almost all of diseases shown in Table 1 
are cardiovascular related diseases, including cardiac 
arrhythmias, ventricular dysfunction and cardiovascular 
abnormalities. Diseases such myocardial ischemia, Ro-
mano-Ward syndrome, congenital heart defects, congenital 
long QT syndrome, atrial fibrillation (AF), atrioventricular 
block, nitrous oxide system (NOS) and coronary disease 
are the novel diseases that could be an interest.

The gene pathway analysis showed that those 
genes are significantly enriched in 10 pathways. Table 
2 demonstrates top seven pathways, including “Insulin 
signaling pathway”, “Hypertrophic cardiomyopathy”, 
“Arrhythmogenic right ventricular cardiomyopathy”, 
“ECM-receptor interactions”, and “Focal adhesion” that 
are known mechanisms involved in the development of 
cardiomyopathy. 

Genetic network
The strength of correlation among genes with which 
Mypn is involved can be evaluated by co-expression 
network. In order to identify known biological relations 
among co-expressed genes, we selected genes that 
statistically significantly enriched in sarcomere (19 genes, 
adjp < 0.03), and uploaded them to GCAT (http://binf1.
memphis.edu/gcat/index.py) for the functional coherence 
analysis and gene network construction. Three genes 
out of these 19 are not found in the database or have no 
functional relationship with other genes. The remaining 
16 genes showed significant functional cohesion with 
literature P value of 1.15e-10 (Figure 3). Multiple 
resources including Chillibot, GeneCard, and PubMed 
were used to determine whether members of the Mypn 
co-expression network had been previously associated 

gene level (Figure 2C). The first principal component for 
any other exons did not show any significant eQTLs by 
performing simple interval mapping. Composite interval 
mapping at both gene and exon levels revealed no other 
loci that modulate Mypn expression levels; so, Mypn 
expression in heart is regulated by two trans-eQTLs. The 
1.5 LOD intervals of trans-eQTLs are located from 3 to 
13.2 Mb of Chr 1 and 47 to 53 Mb of Chr 5 respectively. 

There are more than 70 genes/probesets in eQTL 
1.5 LOD interval at Chr 1 and there are 22 genes/
probesets whose expression is significantly correlated 
with Mypn expression (P < 0.05). After further filtering 
by expression value, sequence polymorphism, and eQTL 
type, there are only 3 genes that match the criteria for 
candidate genes. They are nuclear receptor coactivator 2 
(Ncoa2), valosin containing protein (Vcpip1), and serum 
(Sgk3). Ncoa2 and Vcpip have nonsynonymous SNP 
between B6 and D2, while Sgk3 is cis-regulated. All three 
genes are highly expressed in the heart and considered 
as candidate genes that regulate Mypn expression. 

There are more than 30 genes/probesets in eQTL 1.5 
LOD interval on Chr 5. The expression of four of them is 
significantly correlated with Mypn expression (P < 0.05), 
but only leucine-rich repeat LGI family member 2 (Lgi2) 
is cis-regulated and is highly expressed in the heart. 
Accordingly, this gene is considered as the candidate 
gene at Chr 5 locus that regulates Mypn expression.

Gene function enrichment
The expression of 2843 transcripts/probesets has been 

Table 1  The disease enrichment analysis

Disease Gene No. Adjusted value

Cardiovascular diseases 59 4.38E-05
Heart diseases 50 0.0002
Vascular diseases 49 0.0003
Cardiovascular abnormalities 27 0.0003
Bradycardia   9 0.0067
congenital long QT syndrome   6 0.0094
Metaplasia 26 0.0094
Cerebrovascular disorders 25 0.0094
Arrhythmias, cardiac 19 0.0094
Syncope 12 0.0094
Romano-ward syndrome   6 0.0094
Neovascularization, pathologic 24 0.0094
Atrial fibrillation 14 0.0094
Glycogen storage disease   8 0.0097
Myocardial ischemia 34 0.0097
Glycogen storage disease, type IV   5 0.0181
Heart murmurs   4 0.0207
Congenital abnormalities 61 0.0207
Adhesion 64 0.0207
Heart defects, congenital 17 0.0207
Ventricular dysfunction 14 0.0207
Atrioventricular block nitrous oxide system   8 0.0264
Heart block 11 0.0315
Parkinson disease 18 0.0450
Mesothelioma 10 0.0450
Coronary artery disease 31 0.0450
Stress 50 0.0450
Coronary disease 31 0.0450
Jervell-lange nielsen syndrome   4 0.0450
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and function[1]. Although many studies have identified 
disease-causative mutations in all forms of cardiomyopathy, 
etiology remains unknown in 60%-70% of cases[21,22]. Most 
of genetic studies consider individual genes and mutations 
rather than co-regulated genes networks. The systems 
genetics approach is a powerful tool in identifying candidate 
genes and constructing genetic networks that regulate 
complex traits and phenotypes of mono- and poly-genetic 
diseases[12]. Thus, we used the system biology methodology 
in BXD RI strains and genetically engineered KI and KO 
Mypn mice to reveal the gene network that is co-regulated 
with Mypn, a gene that contributes to the development of 
cardiomyopathies. 

The MYPN protein, a nodal messenger molecule, 
transmits stretch-signaling from Z-discs to the nucleus in 
cardiac myocytes[5]. It has been reported that mutations 
in Mypn cause autosomal dominant cardiomyopathies in 
humans with variable penetrance[6-8]. Murine models used 
in this study are well-characterized model of human RCM, 
which carries a Q526X-Mypn mutation[9]. Characteristic 
features of RCM phenotype in heterozygous mutant (KI) 
model include diastolic dysfunction with abnormal relaxation 
or impaired ventricular filling during diastole without systolic 
dysfunction due to “poison (mutant) peptide” effect. 
Homozygous mutants considered as a Mypn-null (KO) 
models due to ablation of Mypn gene did not manifest RCM 
phenotypes. Upon this functional knowledge, we sought to 

with cardiomyopathy. In addition to Mypn, another 6 
genes in this network (Ldb3, Des, Actn2, Fhod3, Tpm2, 
Syne1) are already known to relate to cardiomyopathy. 
Furthermore, 6 genes (Myo18b, Fhod3, Myom1, Bmp10, 
Myl4, Obscn, Pdlim5) in the network have missense SNP 
that could change their protein function.

Myocardial proteomics in Mypn-KI and Mypn-KO mouse 
hearts 
In order to confirm if the selected transcriptional networks 
are reproduced on a protein level, the proteomic profile 
of the myocardium from KI and KO Mypn mice were 
compared to the myocardial protein profile from WT 
littermates (n = 3). In 2D-DIGE analysis, about 2100 
matched spots on each 2D gel were detected by DeCyder 
software, among of which a relative abundance of 65 
polypeptides were altered between WT vs KI (Figure 4A), 
WT vs KO (Figure 4B) and KI vs KO (Figure 4C). Out of 
these 65 peptides, 27 are significantly changed (≥ 1.5 
fold and P ≤ 0.05) between WT and both of KO and KI 
mice. Table 3 demonstrates differential protein profiling 
in mutant mice vs control WT littermates and strong 
association of these 27 proteins with RCM phenotype. For 
example, proteins involved in regulation of focal adhesion, 
sarcomere, actin-cytoskeleton, microtubule organization 
and Ca-signaling are upregulated in KI mice compared to 
control WT mice, while KO hearts display downregulation 
of these proteins compared to WT. 

Out of these 27 proteins, 12 were also significantly 
correlated with Mypn in mouse hearts at the transcriptional 
level (Table 4). Further, two of them (Syne1 and Myom1, 
Tables 3 and 4, asterisks) have the closest connection with 
Mypn representing as potential members of Mypn gene 
network described above.

DISCUSSION
Cardiomyopathies are devastating heart muscle diseases 
with lack of definite, effective treatment, ultimately resulting 
in heart failure, transplant or death in children and adults[2]. 
Clinically, cardiomyopathies are heterogeneous diseases 
and classified into 5 distinctive groups characterized by 
changes in chamber size, thickness of myocardial walls, 

Table 2  The significantly enriched gene pathways

Pathway name No. Gene Adjusted value

Insulin signaling pathway 28 9.47E-06
Endocytosis 33 0.0003
Hypertrophic cardiomyopathy 15 0.0171
Arrhythmogenic right ventricular 
cardiomyopathy 

13 0.0385

Extracellular matrix-receptor interaction 14 0.0445
Focal adhesion 24 0.0462
Prostate cancer 14 0.0462
Tryptophan metabolism   9 0.0462
Pathways in cancer 35 0.0462
MAPK signaling pathway 30 0.0462

Bmp10

Myl7

Myl4

Syne1Myo18b

Des

Myom1 Ldb3

Mypn

Actn2

Tpm2

Obscn

Actn3

Pdlim5

Ank2
Fhod3

Figure 3  Mypn gene network graph created using Gene-set Cohesion 
Analysis Tool described in the methods. Gene symbols are located at 
nodes in circles and lines interconnecting the nodes are based on literature 
correlation.
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genes associated with cardiomyopathies. Interestingly, 
many genes from those categories could be candidates 
for further investigation as possible disease-causative 
genes for RCM. As shown in Figure 5, Mypn has several 
phosphorylation sites in the N-terminal Carp/Ankrd1 
binding domain. The rod domain of Mypn responsive 
for the SH3-nebulin/nebulette binding has also several 
phosphorylation sites at the proline rich domain. Related 
to this, we found 47 genes involved in the “protein serine/
threonine kinase activity”, suggesting possibly novel 
biological processes in which Mypn may be involved.

The gene ontology analysis also revealed several 
significant cellular component categories. They are 
especially enriched at “contractile fiber”, “myofibril”, 
“sarcomere”, and “Z-disc”. All these cytoskeletal genes 
encode a protein network team with distinct function of 
each that play key roles in the orchestrated contractile 
function of myocytes. We discovered posttranslational 
changes in Myom2 and Msn/moesin (Table 3) directing 
our attention to the genes from “phosphorylase kinase 
complex” and “AMP-activated protein kinase complex”. 
These findings support the idea that Mypn mutations 
may alter phosphorylation of other cytoskeletal proteins. 

The disease enrichment analysis showed that those 
genes are considerably involved in 29 diseases. Almost 
all of those 29 diseases are cardiovascular related, which 
support the involvement of Mypn and its networked genes 
in the development and progression of cardiovascular 
diseases including RCM. 

expand identifying loci that regulate expressions of Mypn 
and other genes whose expression levels are co-regulated 
along with Mypn. We have identified two loci of interest 
that regulate Mypn expression in the heart. The first locus 
located at proximal Chr 1 is associated with Mypn exon 
6, 12 and 17 (Figure 5). Three genes at this locus, Ncoa2 
(nuclear receptor coactivator 2, also know as Grip1), Vcpip1 
(valosin containing protein interacting protein 1), and Sgk3 
(serum/glucocorticoid regulated kinase family member 
3), match criteria of candidate genes. Interestingly, Ncoa2 
is shown in be required in regulation of muscle-specific 
gene expression for expression of MYOG (OMIM169980), 
CDKN1A (OMIM116899) and MEF2C (OMIM600662) in 
both proliferating and confluent myoblasts[23]. Second locus 
located at the middle of Chr 5 is associated with Mypn 
exons 7, 14, 18 and 19. Only one gene, Lgi2 (leucine-rich 
repeat LGI family, member 2), at this locus matches the 
criteria of candidate genes. 

To reveal the possible mechanisms by which Mypn 
variants affect individuals with RCM, we further performed 
gene enrichment analysis for genes that significantly 
co-vary with Mypn in the heart. The gene ontology 
analysis found multiple significant biological processes for 
Mypn and its correlated genes. It includes “cytoskeletal 
protein binding”, “SH3 binding domains”, “growth factor 
binding”, “muscle structure development”, and “muscle 
cell differentiation”. For example, genes such as Des, 
Plec, Flnc, Actn2, Actn3, Tpm2, Obscn and Ank2 from 
“cytoskeletal protein binding” are known cytoskeletal 

Table 3  Differentially expressed proteins identified by MALDI MS-MS

No.  Protein code Gene ID KI/WT KO/WT KO/KI Pathways

1 PKP1 18772  1.76 -1.13  -1.99 Focal adhesion, apoptosis
2 HRC 15464  1.62  1.06  -1.53 Calcium signaling
4 PYGB 53313  1.61  1.16  -1.39 Glucagon signaling, insulin signaling 
5 MSN1 17698 -2.68  4.71 12.57 Cell shape, actin-cytoskeleton
6 VINC 22330 -4.18  4.96 20.64 Cell-cell adhesion, cell shape, actin cytoskeleton
8 SYNE11 64009 -3.59  5.82 20.82 Nucleus-cytoskeleton connection
14 ADAM10 11487  1.71 -1.18 -2.02 Inflammation, amiloidosis
17 TNPO3 320938 -1.11  1.51  1.67 Nucleus-cytoskeleton connection
18 CAPN8 170725  2.15 -1.02 -2.19 Inflammation
19 CGNL1 68178  1.58 -1.03 -1.63 Focal adhesion
20 VIM 22352  1.43 1.40 -1.02 Cell division, fibrosis
23 MYH6 17888  1.02 -3.41 -3.49 Sarcomere, actin-cytoskeleton
24 NRAP 18175 -1.03  1.79  1.84 Focal adhesion, actin cytoskeleton
28 ANXA3 20480  1.23 -1.80 -2.23 Prostaglandin synthesis and regulation
29 LATS2 23805 -1.58 -1.51  1.04 Hippo signaling pathway, DNA damage
32 SPTB1 20741  1.56 -1.01 -1.59 Actin-cytoskeleton
33 GCC2 11426  1.04 -3.78 -3.92 Vesicle-mediated transport, retrograde transport at the trans-Golgi-network
37 ACADS 12306 -2.01  1.12  2.24 Mitochondrial fatty acid beta-oxidation
39 FHL2 14200  1.05 -2.25 -2.37 Focal adhesion, Wnt, calcineurin signaling
39 MYOZ2 59006  1.05 -2.25 -2.37 Cytoskeleton, calcineurin signaling, myofibrillogenesis 
47 FGF9 14180  2.93  5.90  2.01 Fibrosis
53 DST 13518  2.23  1.01 -2.21 Focal adhesion, actin cytoskeleton
59 FEZ2 56069  1.89 -1.11 -2.12 N/A
59 CSRP3 13009  1.89 -1.11 -2.12 Stress sensing, myogenesis
62 MYOM1 319565 -1.37  1.58 2.15 Striated muscle contraction
63 MYOM2 17930 +++ Sarcomere
65 EZR/MSN 17698 +++ Cell surface organization, adhesion, microtubule 

1Genes with statistically significant correlation with that of Mypn in mouse hearts. KI: Knock-in Mypn mouse; KO: Knock-out Mypn mouse; WT: Wild type 
littermates; -: Proteins downregulated compared to WT; +++: Proteins with differentially phosphorylated proteins in KI vs KO; N/A: Not applicable.
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such as Ldb3, Des, Actn2, Fhod3, Tpm2, and Syne1 in this 
network. Other genes in the network including Myo18b, 
Fhod3, Myom1, Bmp10, Myl4, Obscn, and Pdlim5 are 
likely to be modifier genes interacting with Mypn to induce 
cardiomyopathy, especially genes that have missense 
SNPs. For example, the Z-discs Myo18b (OMIM607295), a 
potential Mypn-partner gene with nonsynonymous SNPs at 
exons 7, 18, 22, may alter Mypn protein function and lead 
to similar phenotypes. A human homozygous p.S2302X 
nonsense mutation in MYO18B was reported as causative 
for Klippel-Feil syndrome with nemaline myopathy and 
facial dysmorphism[24]. We also found that nonsynonymous 
SNP at exon 2 in Myl4 (a fetal-specific myosin light chain 

The KEGG database was queried to identify pathways 
correlated to Mypn expression. We identified 10 signi-
ficant pathways, most of which are involved in known 
mechanisms of cardiomyopathy including for instance 
insulin signaling, HCM, focal adhesion and MARK signaling. 
We found novel pathways as well, such as ARVC and EMC-
receptor interactions that can be of high importance during 
development of cardiomyopathy. 

Further, we used 16 genes that are significantly enriched 
in the sarcomere to create a gene network. All genes 
from the “sarcomere” network are highly expressed in the 
heart and significantly correlated with Mypn expression. 
We found well-known cardiomyopathy-associated genes 

Green: WT
Red: KI

Green: WT
Red: KO

Green: WT
Red: KO

Figure 4  Two-dimensional gel electrophoresis of heart lysates from 12-wk-old mice. Comparative proteomics analysis revealed 10 non-redundant proteins in KI 
(heterozygote mutant) vs WT controls (A), 8 non-redundant proteins in KO (homozygote mutant) vs WT mouse hearts (B); 19 non-redundant protein changes in KO vs 
KI (C). Arrows indicate differential phisphorylation of proteins in WT vs KO and KI vs KO mice hearts (B and C, respectively).
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to cardiac ankyrin repeat protein (Carp/Ankrd1), the negative regulator of muscle gene expression. The rod domain contains proline rich domain with phosphorylation 
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the nucleus and cytoskeleton, suggesting that it may play 
a role in gene expression and stretch-induced signaling[29]. 
The only missense mutation, p.V1490I, that affects dim-
erization and elastic properties of MYOM1 was reported 
in a family with inherited HCM[30]. Important functions of 
MYOM1 in regulating titin, a giant molecular spring which 
is responsible for the passive elasticity of muscle further 
underscore such a possibilities[31]. We also hypothesize that 
posttranslational phosphorylation of MYOM1 may contribute 
to the development of RCM in Mypn mouse models. 

In summary, we have discovered two genetic loci that 
modulate the expression of Mypn. We have found Mypn 
co-varies with a different sets of genes and enriched in 
pathways involved in the development of cardiomyopathy. 
Finally, we constructed a sarcomeric Mypn gene network 
containing 16 genes. Moreover, expression changes in 
SYNE1 and MYOM1 were confirmed on a protein level in 
RCM model in vivo. We emphasize that systems genetic 
and genomics analysis in patients may define novel 
candidate genes and mechanisms of cardiomyopathies. 
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