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Aims To resolve the controversy as to whether periostin plays a role in myocardial regeneration after myocardial infarc-
tion (MI), we created a neonatal mouse model of MI to investigate the influence of periostin ablation on myocardial
regeneration and clarify the underlying mechanisms.

....................................................................................................................................................................................................
Methods
and results

Neonatal periostin-knockout mice and their wildtype littermates were subjected to MI or sham surgery. In the
wildtype mice after MI, fibrosis was detectable at 3 days and fibrotic tissue was completely replaced by regen-
erated myocardium at 21 days. In contrast, in the knockout mice, significant fibrosis in the infarcted area was
present at even 3 weeks after MI. Levels of phosphorylated-histone 3 and aurora B in the myocardium, de-
tected by immunofluorescence and western blotting, were significantly lower in knockout than in wildtype
mice at 7 days after MI. Similarly, angiogenesis was decreased in the knockout mice after MI. Expression of
both the endothelial marker CD-31 and a-smooth muscle actin was markedly lower in the knockout than in
wildtype mice at 7 days after MI. The knockout MI group had elevated levels of glycogen synthase kinase
(GSK) 3b and decreased phosphatidylinositol 3-kinase (PI3K), phosphorylated serine/threonine protein kinase
B (p-Akt), and cyclin D1, compared with the wildtype MI group. Similar effects were observed in experiments
using cultured cardiomyocytes from neonatal wildtype or periostin knockout mice. Administration of
SB216763, a GSK3b inhibitor, to knockout neonatal mice decreased myocardial fibrosis and increased angio-
genesis in the infarcted area after MI.

....................................................................................................................................................................................................
Conclusion Ablation of periostin suppresses post-infarction myocardial regeneration by inhibiting the PI3K/GSK3b/cyclin D1 sig-

nalling pathway, indicating that periostin is essential for myocardial regeneration.
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1. Introduction
While it remains under debate whether the myocardium can regenerate
after ischaemic injury in the adult heart,1 neonatal mice show a capacity

for myocardial regeneration after injuries such as myocardial infarction
(MI) or resection of the left ventricular apex, but they lose this capacity
within 7 days after birth.2–4 Recent studies have revealed that certain
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relevant cytokines, proteins, physical and chemical factors, and genes
may be involved in myocardial regeneration.3,5–7

Periostin plays important roles during cardiac development and in the
epithelial-mesenchymal transition.8 It was also linked to cardiovascular
diseases such as dilated cardiomyopathy and MI.9,10 Several studies dem-
onstrated function for periostin in regeneration of tissues including the
myocardium.4,11,12 However, it remains controversial whether periostin
can promote myocardial regeneration.4,13 A previous study using an
adult MI model reported no significant differences in myocardial regener-
ation in periostin deficient or periostin transgenic mice, as compared
with their corresponding wildtype strains.13 Intriguingly, using a neonatal
heart resection model, a recent study demonstrated that signal trans-
ducers and activators of transcription 3 (STAT3)/periostin signalling is a
critical mediator of interleukin 13 signalling in the regenerating mouse
heart.4 Therefore, it may be a good way to resolve this controversy using
an MI model in neonatal periostin knockout mice. We therefore used
this approach to test our hypothesis that periostin is necessary for post-
infarction myocardial regeneration in the neonatal heart.

In our study, we compared the myocardial regenerative capacity of
neonatal periostin knockout and wildtype mice and further clarified the
influence of periostin on the phosphatidylinositol 3-kinase (PI3K)/glyco-
gen synthase kinase 3b (GSK 3b)/cyclin D1 signalling pathway.

2. Methods

All procedures were performed in accordance with our institution’s
guidelines for animal research that conform to the Guide for the Care
and Use of Laboratory Animals (National Institutes of Health
Publication, 8th Edition, 2011). Approval for this study was granted by
our university’s ethics review board.

2.1 Neonatal mouse MI model
Periostin knockout mice (B6; 129-Postntm1Jmol/J, Targeted: Null/
Knockout, Stock No: 009067. Donated by Jeffery D. Molkentin,
Cincinnati Children’s Hospital) were from the Jackson Laboratory (Bar
Harbor, ME, USA). The corresponding heterozygous mice were used
for breeding. MI surgeries were performed on neonatal mice as
described previously.3 Briefly, neonatal knockout mice and wildtype lit-
termates, on the second day after birth, were anesthetized on ice for
3–4 min and maintained on ice during the surgical procedure. Anesthesia
effectiveness was assessed based on reduced respiration. After disinfec-
tion of the incision area, the chest was opened with a horizontal incision
through the muscle between the third and fourth intercostal spaces. The
left coronary artery was permanently ligated with an 8-0 silk suture and
the thoracic wall and skin were closed, also with an 8-0 silk suture.
Sham-operated animals underwent an analogous surgical operation, but
without occlusion of the coronary artery. After surgery, the skin was dis-
infected and the animals revived, while maintained on a thermal insula-
tion blanket.14 Myocardial ischaemia was confirmed by an
electrocardiogram ST-segment elevation after the animal was revived.
Some mice were sacrificed at 1, 3, 7, or 10 days after surgery by putting
them on ice for 5 min until respiration ceased. At 14 or 21 days after sur-
gery, other mice were sacrificed by an overdose of pentobarbital sodium
anesthesia (150 mg/kg intraperitoneal injection) or cervical dislocation.

In some periostin knockout mice, SB216763 (Sigma Aldrich, St. Louis,
MO, USA), a GSK3b inhibitor, was administrated intraperitoneally
(10 mg/kg/day, in dimethyl sulfoxide vehicle) beginning on the first day
after surgery and continuing for 7 days.

2.2 Cell culture
Ventricular myocytes were isolated from neonatal periostin knockout and
wildtype mice as described previously.15 The neonatal mice were killed by
2% isoflurane inhalation and cervical dislocation. Cardiomyocytes were
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma Aldrich)
supplemented with 10% fetal bovine serum (Equitech-Bio, Kerrville, TX,
USA) for 72 h and then in serum-free DMEM for 48 h prior to use in ex-
periments. The cells were exposed to anoxia for 3 h and reoxygenation
for 24 h (AR) in the presence or absence of SB216763 (a GSK3b inhibitor,
3lM, in dimethyl sulfoxide, added 2 h prior to AR).

2.3 Triphenyl tetrazolium chloride (TTC)
staining
One day after surgery, some mice were killed, their hearts harvested and
each heart cut into three pieces. MI was confirmed by staining with 1%
TTC (Sigma Aldrich) at 37 �C for 20 min. Myocardial infarct size was
measured using Image J Analysis software (National Institutes of Health,
Bethesda, MD, USA).

2.4 Western blotting
Proteins were obtained from whole-heart homogenates, with tissue sam-
ples from three animals pooled for each biological replicate.
Immunoblotting was performed with primary antibodies against GAPDH,
PI3K, phosphorylated serine/threonine protein kinase B (p-Akt), Akt, p-
GSK3b (1:1000, Cell Signaling Technology, Boston, MA, USA), phospho-
histone3 (p-H3) (1:1000, Santa Cruz Biotechnology, Santa Cruz, CA,
USA), periostin (1:2000, Abcam, Cambrige, UK), GSK3b (1:1000, Santa
Cruz Biotechnology), cyclin D1 (1:10 000, Abcam) and atrial natriuretic
peptide (ANP) (1:1000, Santa Cruz Biotechnology). Samples containing
equal amounts of protein per lane were separated by 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and transferred onto
polyvinyl difluoride membranes. The membranes were blocked with 5%
bovine serum albumin (BSA) at room temperature for 2 h and then incu-
bated overnight at 4 �C with the appropriate primary antibody. The blots
were detected using a Super Signal ECL kit (Invitrogen, Carlsbad, CA,
USA) in a western blotting detection system (Kodak Digital Science,
Rochester, NY, USA) and quantified by densitometry using Image J
Analysis software. For detection of p-Akt and p-GSK3b proteins, a strip-
ping buffer (Thermo Fisher, Waltham, MA, USA) was used to remove
conjugated antibody and the blot was then incubated with the second pri-
mary antibody. Electrophoresis of each target protein and its loading con-
trol, GAPDH, was performed on the same gel, and then the gel was cut
into two parts, in accordance with the molecular weight of each protein.
Each gel protein was then processed separately for western blotting.

2.5 Histological examinations
Heart tissue from different groups was excised, rinsed with phosphate-
buffered saline (PBS), fixed in 4% paraformaldehyde, embedded in paraf-
fin and cut into 4–6 lm sections. Masson’s trichrome (Azan) staining was
used to evaluate myocardial fibrosis. For immunohistochemistry (IHC),
after antigen retrieval by incubation in citrate buffer (pH 6.0), sections
were incubated with rabbit anti-mouse periostin or rabbit anti-mouse
CD31 (Abcam) antibody overnight at 4 �C. The extent of new blood
vessels was evaluated based on the density of endothelial cells using the
ratio of positively stained area to gross area. To assess CD31 and perios-
tin staining, each tissue section was scanned entirely and its staining in-
tensity would be scored as 0 (negative), 1 (weak), 2 (medium), or
3 (strong). The extent of staining was scored as 0 (0%), 1 (1–25%),
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2 (26–50%), 3 (51–75%), or 4 (76–100%), according to the percentages
of positively stained areas in relation to those of the whole view field.
For each sample, the sum of these two scores was reported as the final
staining score (0–7).

For phospho-histone H3 (p-H3)/troponin T and aurora B/troponin T
co-staining, paraffin sections were washed three times in PBS, blocked in
buffer (10% BSA for 20 min) then washed three times in PBS. Antigen re-
trieval was achieved by boiling sections in sodium citrate solution for
20 min. Sections were then incubated overnight at 4 �C with primary
antibodies against p-H3 (Ser10) (1:100, rabbit polyclonal, Santa Cruz
Biotechnology) and cardiac troponin T (1:100, mouse monoclonal, Santa
Cruz Biotechnology) or aurora B (5lg/mL, Abcam) and cardiac troponin
T (1:100, mouse monoclonal, Santa Cruz Biotechnology). The next day,
slides were washed in PBS 3 times then incubated for 1 h at room tem-
perature with secondary antibodies conjugated to Alexa Fluor 488 or
555 (1:100 dilution, Santa Cruz Biotechnology) to stain for p-H3 or aur-
ora B, respectively. Slides were washed 3 times in PBS and stained with
4,6-diamidino-2-phenylindole (DAPI) for 30 min to label nuclei.

Apoptosis in the myocardium was determined using a terminal deoxy-
nucleotidyltransferase mediated (dUTP) nick-end labelling (TUNEL)
assay. Briefly, apoptotic cells were detected with an In Situ Cell Death
Detection Kit, TMR red (Roche, Basel, Switzerland). Heart tissues,
embedded in paraffin and sectioned, were used. After deparaffinization,
sections were treated with proteinase K for 20 min, incubated with the
TUNEL reaction mixture or a negative control solution for 60 min at
37 �C and then stained with DAPI solution for 10 min. Slides were
washed twice with PBS after each step. The ratio of positive TUNEL-
labelled nuclei was calculated from four different randomly selected
areas, visualized by confocal microscopy.

2.6 Quantitative real-time polymerase
chain reaction
Total RNA was extracted from heart tissues using Trizol reagent
(Invitrogen). Real-time quantitative real-time polymerase chain reaction
(qPCR) to detect mRNA for periostin, ANP and brain natriuretic pep-
tide (BNP) and STAT3 in heart tissues was performed using a Quantitect
SYBR RT-PCR kit (DRR420A, Takara, Japan). The primer sequences are
shown in Supplementary material online, Table S1.

2.7 Echocardiography
Heart dimensions and cardiac function of mice at 21 days after sur-
gery were evaluated by echocardiography using the Vevo 770
Ultrasound machine (VisualSonics, Toronto, Ontario, Canada) with a
30 M-Hz probe. After mice were anesthetized with 1.5% inhalational
isoflurane, two-dimensional parasternal short-axis images of the left
ventricle were obtained at the level of the papillary muscles. M-mode
echocardiography was performed to evaluate internal diastolic and
systolic left ventricular diameter (LVEDd, LVESd), and fractional
shortening (LVFS).

2.8 Statistical analysis
Data were expressed as means ± standard error of the mean (SEM), and
P < 0.05 was considered to be statistically significant. Statistical signifi-
cance between two experimental groups was determined using
Student’s two-tailed t-test, while comparisons of parameters among >_3
groups with two factor levels were analyzed by two-way ANOVA, fol-
lowed by Bonferroni’s correction for post hoc multiple comparisons.

3. Results

3.1 Periostin in the infarcted area was
upregulated in response to MI in adult
and neonatal mice
In neonatal mice, periostin mRNA was significantly upregulated at 1, 3,
and 7 days after MI (Figure 1A). IHC staining revealed that periostin ex-
pression in the infarcted area peaked at 7 days and returned to baseline
levels by 21 days after MI (Figure 1B and C). Periostin expression was de-
tectable in the infarcted, border, and remote areas, but its abundance was
greater in the border than in other areas (Figure 1C). In the adult mouse
heart subjected to MI, periostin expression was also significantly increased
(Supplementary material online, Figure S1A and B). Real-time qPCR and
western blotting showed that periostin was significantly increased at 7
days after MI, compared with in the sham group (Figure 1D and E). The
PCR results showed that periostin was expressed in both cardiomyocytes
and fibroblasts derived from the neonatal mouse heart (Figure 1F).

3.2 Wildtype neonatal mice had the
capacity to regenerate myocardium
after MI
To investigate whether wildtype mice would have the capacity to regen-
erate myocardium after cardiac injury, we created an MI model in neo-
natal mice. The left coronary artery was permanently ligated, as shown
in Figure 2A, and elevation of the ST segment after coronary ligation was
confirmed (Figure 2A). We further verified this model with TTC staining.
At 24 h after MI, the infarct size was about 60% of the left ventricular
area in both the periostin knockout and wildtype groups (Figure 2B). At 7
days after MI, immunofluorescence staining for p-H3 and aurora B, as
well as for cell cycle entry and cytokinesis markers, was detectable in the
infarcted, border and remote areas (Figure 2C and D). These findings indi-
cated myocardial regeneration. A time-course of Masson’s trichrome
staining patterns showed significant fibrosis in the infarcted area at 1, 3, 7,
10, 14, and 17 days after MI (Figure 2E). The fibrosis had almost com-
pletely disappeared by 21 days after MI, indicating that myocardial regen-
eration was complete (Figure 2E).

3.3 Periostin deficiency hindered recovery
of post-MI remodelling
At 7 days after surgery, there were no significant differences in the ratios
of heart to body weight (HW/BW) between knockout and wildtype
mice in either the sham or MI groups (Figure 3A). However, at 21 days
after surgery, HW/BW in knockout MI- and sham-treated mice was sig-
nificantly greater than in the corresponding wildtype groups (Figure 3A).
HW/BW in both wildtype and knockout mice was not increased in re-
sponse to MI (Figure 3A). At 7 days after MI, fibrosis, as detected by
Masson’s trichrome staining, was similar in knockout mice and their wild-
type littermates. However, at 21 days after MI, fibrosis was greater in the
infarcted area of the knockout mice, while it had almost completely dis-
appeared in the wildtype mice (Figure 3B and C). This suggested that peri-
ostin deficiency suppressed myocardial regeneration after MI. TUNEL
assay results showed no significant difference in apoptotic cell death be-
tween the wildtype and knockout groups at 7 days after MI (Figure 3D).
Echocardiographic LVFS at 21 days after MI was significantly lower in
the periostin knockout than in the wildtype group, while, in wildtype
mice, there was no significant difference between sham and MI groups
(Figure 3F). Echocardiographic data for left ventricular diameters are
shown in Supplementary material online, Table S2.
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3.4 Periostin deficiency suppressed
myocardial regeneration
Western blotting results showed significantly lower levels of p-H3 in
periostin knockout mice than in wildtypes at 7 days after MI (Figure 4A).
Immunofluorescence staining showed that p-H3 and aurora B expres-
sion at 7 days after MI was significantly lower in knockout than in wild-
type mice (Figure 4B and C), indicating involvement of periostin in
myocardial regeneration after MI. In wildtype mice, qPCR and western
blotting results showed, respectively, that myocardial mRNA of ANP
and BNP, and ANP protein were significantly downregulated in response
to MI at 7 days and ANP expression was, then, significantly upregulated
at 21 days (Figure 4D and E). In periostin knockout mice, the only notable
change was that ANP mRNA and protein expression were markedly

upregulated at 21 days after MI, though their levels were significantly
lower than in the corresponding wildtype MI group (Figure 4D and E). At
21 days after MI, ANP mRNA and protein expression were increased in
hearts of both wildtype and knockout mice (Figure 4D and E). Expression
of STAT3 mRNA was significantly lower in the knockout MI than in the
wildtype MI group (Figure 4F).

3.5 Periostin affected the PI3K/Akt/GSK3b/
cyclin D1 signalling pathway
At 7 days after MI, levels of PI3K, p-Akt, Akt and cyclin D1 in wildtype
mice were significantly higher than in periostin knockout mice. In con-
trast, levels of phosphorylated GSK3b were lower in the periostin
knockout than in wildtype mice subjected to MI (Figure 5A–C). We
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prepared cardiomyocytes from newborn wildtype and periostin knock-
out mice. When these cultured newborn mouse cardiomyocytes were
treated with AR, we obtained similar results to those from the in vivo ex-
periments (Figure 5D and E).

3.6 Periostin deficiency inhibited post-MI
angiogenesis
We next investigated whether myocardial angiogenesis was affected by
periostin ablation. CD31 was used to label endothelial cells, thus staining
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.the blood vessels. At 7 days after MI, periostin knockout mice had less
CD31 staining than wildtype mice (Figure 6A). To further confirm this re-
sult, we stained for a smooth muscle cell marker, smooth muscle actin
(a-SMA) (Figure 6B). a-SMA staining confirmed the marked decrease in
vascular area in knockout, compared with wildtype mice after MI
(Figure 6B). Because CD31 and a-SMA stains can label both pre-existing
and newly formed capillaries and arterioles, respectively, vascular density
was compared with that in the control mice, not receiving MI, to ascer-
tain which vessels had resulted from angiogenesis. Our findings sug-
gested a role for periostin in post-MI angiogenesis in neonatal mice.

3.7 GSK3b inhibition in periostin knockout
mice promoted myocyte regeneration and
angiogenesis
We further performed rescue experiments to test whether the GSK-3b
inhibitor SB216763 would improve cardiomyocyte regeneration and
angiogenesis in the periostin knockout mice. SB216763 (10 mg/kg/d) was
intraperitoneally injected for 7 d. Myocardial GSK-3b expression was

decreased and that of cyclin D1 was increased at 7 days after MI in the
SB216763 treated mice (Figure 7A). Histological immunofluorescence
staining showed significantly higher levels of p-H3 and aurora B in
SB216763 treated than in untreated mice at 7 days after MI (Figure 7B
and C). At 21 days after MI, myocardial fibrosis was significantly lower in
SB216763 treated than in untreated mice (Figure 7D). At 7 days after MI,
there was a larger area of a-SMA stained vessels in SB216763 treated
than in untreated mice (Figure 7E). SB216763 treatment significantly im-
proved echocardiographic LVFS at 21 days after MI (Figure 7F;
Supplementary material online, Table S3).

4. Discussion

Since the generation of periostin deficient mice, many studies examined
the roles of this factor in the regeneration of various tissues including
bone, heart and skin as well as in tumor growth.11 Based on results of
studies using MI models in adult rodents, the role of periostin in
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myocardial regeneration has been controversial. Kühn et al. reported
that periostin released from patches placed over the infarcted area of
the adult rat heart induced proliferation of differentiated cardiomyocytes
and improved cardiac function, while suppressing myocardial fibrosis and

hypertrophy.16 Cho et al.17 demonstrated that injection of mesenchymal
stem cells overexpressing periostin into the infarcted regions of rat
hearts attenuated post-MI remodelling. These findings supported in-
volvement of periostin in promoting myocardial regeneration in the
adult heart. However, Lorts et al.13 showed no significant difference in
post-infarction myocardial regeneration between mice with modulated
periostin expression (transgenic and knockout mice) and their corres-
ponding strain-matched controls. Taniyama et al.18 reported that inhib-
ition of periostin-exon 17 attenuated post-MI fibrosis in adult rats but
did not affect cardiomyocyte proliferation. These reports suggested, in
contrast to other findings, that periostin is not involved in post-infarction
myocardial regeneration in the adult heart. Similarly, based on results ob-
tained using neonatal rodent cardiomyocytes, the regeneration promot-
ing ability of periostin was disputed.13,16 A recent study by White
et al.19,20 indicated that the capacity of the neonatal mammalian heart for
regeneration required sympathetic innervation,19,20 which might explain
why periostin exerted no regenerative effect in cultured cardiomyo-
cytes, where sympathetic activity was not a factor.13 It is generally
believed that the capacity for cardiac regeneration is absent in the adult
mammalian heart, while recent studies confirmed its existence in the
neonatal mammalian heart.2,4,6,19 Accumulated evidence demonstrated
that a variety of injuries could induce heart regeneration, through cardio-
myocyte proliferation, in newt, zebrafish and newborn mice (review by
Leone et al.21). Based on such evidence, taken together, we postulated
that using an in vivo neonatal heart injury model could help resolve con-
troversies regarding the role of periostin in myocardial regeneration.
Therefore we designed this study.

The regenerative model of the murine heart is controversial.
Andersen et al.22 found no evidence of complete regeneration and ques-
tioned the utility of the apical resection model, whereas Konfino et al.23

observed significantly greater scar formation following left coronary ar-
tery ligation associated with a lack of induction of cardiomyocyte prolif-
eration. These findings contradicted substantial reports from various
laboratories, demonstrating that neonatal mice have the capacity for
heart regeneration in response to injuries, including resection of the
apex and occlusion of the left coronary artery.2,4,6,20,21,24–28 There is also
controversy regarding the capacity for heart regeneration in response to
cryo-injury. Strungs et al.29 demonstrated that the apex of the heart ven-
tricle, cryoinjured at 1 days after birth, had no visible scar and could fully
regenerate myocardium, but at least two groups reported that cryo-in-
jury30 or cryo-transmural infarction31 led to scar formation. The tech-
nical difficulties of inducing neonatal heart injury and various choices in
anesthesia may have contributed to the variations in results on regener-
ation reported by different laboratories.23,32 Blom et al.33 recently char-
acterized this model clearly with video recording and demonstrated that
the MI-induced scars completely disappeared by 21 days post-injury.

Periostin overexpression was proposed to promote re-entry of differ-
entiated cardiomyocytes into the cell cycle and, consequently, contrib-
ute to myocardial repair following MI.16 Negative results in some
studies13 were, therefore, not surprising because periostin may be ne-
cessary but not sufficient to induce cardiomyocyte regeneration. In neo-
natal mice, O’Meara et al.4 demonstrated that interleukin 13 induced
entry of cardiomyocytes into the cell cycle and identified STAT3 and
periostin as critical mediators of interleukin 13 signalling. This supports
the concept that periostin can contribute to inducing regeneration but,
alone, is not sufficient. In our study, we verified the regeneration-
promoting potential of periostin using periostin knockout mice. We
found that, in this strain of neonatal mice subjected to MI, periostin defi-
ciency impaired the regenerative capacity of cardiomyocytes. Similar
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Figure 6 Periostin deficiency suppressed post-MI angiogenesis. In
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ations, angiogenesis was examined by immunohistochemistry. (A)
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Figure 7 GSK3b inhibitor SB216763 improved cardiomyocyte regeneration and angiogenesis in periostin knockout mice. (A) SB216763 (SB) downregu-
lated GSK3b and upregulated cyclin D1 in periostin knockout (KO) mice at 7 days after myocardial infarction (MI). (B) Phosphorylated histone 3 (p-H3)
stained cells. (C) Aurora B stained cells. (D) SB216763 attenuated myocardial fibrosis in periostin knockout neonatal mice at 21 days after MI or sham oper-
ations. Fibrotic areas were detected by Masson’s trichrome staining. Scale bar = 1 mm (upper) and 100 lm (lower). (E) a-SMA (smooth muscle actin) im-
munofluorescence staining was used to determine arteriolar density in periostin knockout neonatal mice at 21 days after MI or sham operations. Scale
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results were described by others using non-cardiovascular disease mod-
els, with recent studies showing that periostin promoted pancreatic exo-
crine regeneration and neural stem cell proliferation.34,35

It was reported that plasma or myocardial ANP and BNP were ele-
vated shortly after MI in humans and adult rodents.36,37 However, no re-
ports described myocardial ANP expression in neonatal mice with MI.
We found that, in neonatal mice, myocardial ANP was downregulated at
7 days after MI but was upregulated at 21 d. Schoensiegel et al.38 re-
ported that plasma levels of the N-terminal propeptide of ANP were
not increased in adult mice subjected to non-ischaemic MI for 4 weeks.
In a recent report by Bielmann et al.,35 BNP stimulated cardiac progeni-
tor cell proliferation and differentiation in murine hearts after birth and
BNP administration induced heart regeneration. Becker et al.39 also dem-
onstrated in vitro that ANP induced proliferation of neonatal murine car-
diomyocytes. The potentially interesting association between periostin
and natriuretic peptides should be further investigated in the future.

With regard to regeneration mechanisms of periostin, it was previ-
ously reported that PI3K, extracellular-signal-regulated kinases and
STAT3/STAT6 were involved.4,40 Emerging evidence has shown that the
GSK3b-cyclin D1 signalling pathway is closely associated with cell prolif-
eration and cardiovascular diseases,41–44 but whether periostin is also
involved in this pathway is unknown. In our study, we found that perios-
tin ablation led to upregulation of GSK3b and downregulation of cyclin
D1, while a GSK3 inhibitor partially rescued the regeneration capacity of
the heart after MI in the neonatal periostin knockout mice.

In adult mice with MI, whether GSK3b is beneficial or detrimental for
cardiac remodelling has been controversial.42,45–47 However, it is gener-
ally believed that GSK-3b is critical for embryonic cardiomyocyte prolif-
eration and differentiation. GSK3b deletion induced embryonic lethality,
caused by near obliteration of the ventricular cavities by proliferating
cardiomyocytes. In addition, terminal cardiomyocyte differentiation was
substantially blunted in embryoid bodies with GSK3b deficiency.44,45

Ahmad et al. reported that cardiomyocyte-specific GSK3a deletion atte-
nuated post-infarction cardiac remodelling and heart failure.48 These re-
sults were consistent with our observations that increased GSK3b in
periostin knockout mice impaired post-MI regeneration of the myocar-
dium, while SB216763, a pan inhibitor of both GSK3a and GSK3b, im-
proved myocyte regeneration and attenuated cardiac remodelling in
post infarcted periostin knockout mice.

The role of periostin in myocardial fibrosis in adult animals is also un-
clear.12,16,49 In our study, we focused on the role of periostin in cardio-
myocyte regeneration in neonatal mice with MI. Unlike adult mammalian
hearts, that respond to injury with scar formation, neonatal mouse
hearts respond to MI with cardiomyocyte proliferation. We demon-
strated that, in wildtype mice, myocardial fibrosis was significantly
formed at 7 days after MI but was completely replaced by myocardium
at 21 d, in agreement with previous studies.2,6 In periostin knockout
mice, myocardial fibrosis in the infarcted area was still present at 21 days
after MI, possibly a net result of impaired cardiomyocyte regeneration
capacity, counterbalancing the anti-fibrotic effects of periostin deficiency
on cardiac fibroblasts.50,51 In addition, other mechanisms may have also
contributed to the impaired cardiomyocyte regenerative capacity in the
periostin knockout mice. Periostin can affect collagen formation and re-
cruitment of macrophages.52,53 Schwanekamp et al. showed that loss of
periostin decreased macrophage recruitment to atherosclerotic le-
sions.54 Although periostin deficiency induced a large set of differentially
expressed genes related to fibroblast function and contributed to post-
MI rupture by attenuating scar (fibrosis) formation in adult mice,52 it was
also likely to reduce macrophage recruitment. This would, in turn, inhibit

myocardial regeneration and eventually lead to replacement of the in-
farcted myocardium with fibrotic tissue in newborn mice.24 Therefore, it
would be worthwhile to, in future studies, investigate the contribution of
macrophages to impairment of myocardial regeneration associated with
periostin deficiency.

We further found that periostin ablation impaired post-MI angiogen-
esis, results supported by previous studies in adult animals. Kühn et al. re-
ported that periostin improved post-MI ventricular remodelling,
reduced fibrosis and increased angiogenesis.16 Hakuno et al.55 demon-
strated that periostin induced angiogenesis and promoted tube forma-
tion by mobilization of endothelial cells. We noted a significant decrease
of CD31 positive endothelial cells, indicating capillaries, in periostin
knockout mice with MI, suggesting that periostin affected angiogenesis-
associated endothelial cells. Our findings were consistent with previous
reports showing that periostin promoted tube formation by mobilization
of endothelial cells.55,56 In the postnatal heart, endocardial cells contrib-
uted to postnatal vascular development in the heart, an effect that was
enhanced in response to hypoxia.57 This was consistent with our finding
that, in wildtype mice, capillary density was higher in the infarcted areas
of hearts from the MI group than in the corresponding areas of hearts
from the sham group. However, it remains unclear whether periostin
can affect the response of endocardial cells to ischaemia.

Although it was believed that the majority of newly formed cardio-
myocytes are derived from pre-existing cardiomyocytes,2 there is evi-
dence that resident non-myocytes can also be reprogrammed into
cardiomyocyte-like cells by addition of Gata4, Mef2c and Tbx5, an affect
confirmed by using genetic lineage tracing and periostin-Cre R26R-lacZ
mice in a murine MI model.58,59 It would interesting to investigate the
contributions of periostin on non-myocyte derived cardiomyocyte re-
generation using genetic lineage tracing.

In conclusion, our findings indicate that a lack of periostin impairs
post-MI regeneration of cardiomyocytes and angiogenesis, effects medi-
ated by the PI3K/GSK3b/cyclin D1 signalling pathway.
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