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Abstract

Automated texture analysis of lung computed tomography (CT) images is a critical tool in 

subtyping pulmonary emphysema and diagnosing chronic obstructive pulmonary disease (COPD). 

Texton-based methods encode lung textures with nearest-texton frequency histograms, and have 

achieved high performance for supervised classification of emphysema subtypes from annotated 

lung CT images. In this work, we first explore characterizing lung textures with sparse 

decomposition from texton dictionaries, using different regularization strategies, and then extend 

the sparsity-inducing constraint to the construction of the dictionaries. The methods were 

evaluated on a publicly available lung CT database of annotated emphysema subtypes. We show 

that enforcing sparse decompositions from texton dictionaries and unsupervised dictionary 

learning can achieve high classification accuracy (>90%). The flexibility of sparse-inducing 

models embedded either in the representation stage or dictionary learning stage has potential in 

providing consistency in classification performance on heterogeneous lung CT datasets with 

further parameter tuning.
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I. Introduction

Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by 

limitation of airflow, and is currently the third leading cause of death in the United States, 

affecting over 11 million people [1]. Pulmonary emphysema, which is defined 

morphologically by the enlargement of airspaces with destruction of alveolar walls, overlaps 

considerably with COPD.

Computed tomography (CT) is a vital tool in the analysis of lung structures. There are three 

primary subtypes of pulmonary emphysema with distinct visual characteristics on CT 

images, defined as follows [2]: centrilobular emphysema (CLE), defined as focal regions of 

low attenuation, surrounded by normal lung attenuation, located within the central portion of 

secondary pulmonary lobules; paraseptal emphysema (PSE), defined as regions of low 

attenuation adjacent to visceral pleura (including fissures); and panlobular emphysema 
(PLE), defined as diffuse regions of low attenuation involving entire secondary pulmonary 

lobules.
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Illustrations of the visual appearance of normal tissue (NT) and the three emphysema 

subtypes are provided in Figure 1. There are clear texture differences among the emphysema 

subtypes and normal lung tissue. These emphysema subtypes are associated with distinct 

risk factors and clinical manifestations [3, 4]. They likely represent different diseases and 

could help with the diagnosis of COPD.

Traditional interpretation of emphysema subtypes relies on radiologists’ labeling, which is 

labor-intensive, has high cost and limited inter-rater agreement [2]. Texture analysis of lung 

CT images enables automated quantitative assessment of different subtypes of emphysema 

and could benefit COPD diagnosis and follow up, bringing robustness and reproducibility.

Textons are very powerful tools to encode and label textures in computer vision, and have 

shown better performance for emphysema subtypes labeling compared with classic texture 

features [5]. Compared with deep-learning based method [6], they are more adaptable to 

classification tasks with small training sets. Classic texton-based methods construct textons 

as dictionaries of image texture patches, characterize textures via labeling of patches within 

regions of interest (ROIs) with the most similar texton and generate texton frequency 

histograms. Such labeling can be interpreted as a sparse decomposition of an n-D image and 

can be extended in this context. Textons are comprised of centroids from a k-means 

clustering of patch features, which is based on Euclidean distance. The elements belonging 

to a certain cluster are thus distributed in an n-D sphere, which might not reflect the intrinsic 

underlying distribution of the data in the feature space [7].

In this work, we first explore characterizing lung textures with sparse decomposition from 

texton dictionaries using three variants of the sparsity-inducing constraint. We then explore 

alternative unsupervised texton dictionary learning approaches exploiting sparsity 

regularization which can provide more flexibility in characterizing data distribution in 

feature space.

II. Method

A. Labeling Framework Overview

The lung texture labeling framework is divided into training and testing stages. A dictionary 

encoding the texture information is trained using the training ROIs. Specifically, we adopted 

two strategies for dictionary construction in this work: texton-based construction and 

dictionary learning with sparsity regularization. For the texton-based construction method, 

we extend the original nearest-texton frequency histogram model, which can be viewed as a 

special case of sparsity-inducing regularization, to other sparsity-inducing constraints, 

detailed in Section II-B. For the dictionary learning with sparsity regularization, ROIs are 

modeled using three strategies, detailed in Section II-C. Textures of the training ROIs are 

modeled in the learning stage, and are used to train the classifier. Textures of the test ROIs 

are modeled with the same formulation as the training ROIs, and are classified in the testing 

stage. A graphical overview of the lung texture labeling framework is shown in Figure 2.
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B. Texton-based Models

To construct a texton dictionary, small-sized local patches are randomly extracted from 

training images. Patches from the same class are clustered in feature space using k-means. 

For lung texture on CT images, the features are the patch intensity values directly. The 

centroids constitute the textons in the dictionary. ROIs are modeled via projection 

coefficients of patches extracted from each ROI onto the dictionary. The projection 

coefficients can be generated in multiple ways, as described below.

1) Texton histogram model—In the original texton histogram model, a ROI is modeled 

via the normalized frequency histogram A of the nearest textons of its patches in the 

dictionary D with a Euclidean distance metric. Formally, , where n is the number 

of patches from the ROI, and ai is the projection coefficient vector of patch pi subject to:

(1)

The projection coefficient vector can be alternatively obtained by relaxing or changing the 

sparsity-inducing constraints as follows:

2) l0 norm regularization model

(2)

3) l1 norm regularization model

(3)

4) Elastic-net regularization model

(4)

C. Dictionary Learning-Based Models

Instead of using the texton dictionaries, we can alternatively model the ROIs based on 

dictionary learning with sparsity regularization, using the following strategies:

1) Multiple-dictionary model—Separate dictionaries for each class are built by [8]:
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(5)

where Dk denotes the dictionary for the kth class, and m is the number of all training patches 

in ROIs belonging to the kth class. For a test ROI with n patches, the classification is 

achieved via k̂ = argmin kL(k), where:

(6)

2) Single-dictionary model—Instead of constructing separate dictionaries using class-

specific data, a single and general dictionary is built with m training patches from all classes, 

as:

(7)

The sparse representation of each ROI of n patches with respect to dictionary D is calculated 

as , where:

(8)

3) Concatenated-dictionary model—A single and general dictionary is built for all 

classes. Instead of training on data from all classes as in 2), the single dictionary is 

constructed by concatenating the dictionaries Dk constructed following Equation (5). The 

sparse representation is again generated following Equation (8).

In the last two models, the sparse histogram-like representations of the training ROIs, 

defined as A, are used to train a multi-class classifier. We used a random forest classifier 

with 100 trees (heuristically determined). We generated one random forest classifier per 

dictionary of textons.

III. Results

A. Data and Experimental Settings

The dataset used in this work is the publicly available Computed Tomography Emphysema 

Database [9], which contains 168 manually annotated 2D ROIs of size 61×61 pixels (slice 

thickness of 1.25 mm; in-plane resolution of 0.78 mm × 0.78 mm) from three different 

classes of lung tissue: normal lung tissue (NT, 59 ROIs), centrilobular emphysema (CLE, 50 
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ROIs), paraseptal emphysema (PSE, 59 ROIs). PLE is excluded in this work due to the low 

number of cases in the dataset.

Experiments based on sparsity regularizations were implemented using the Sparse Modeling 

Software (SPAMS) [10]. The l0 norm regularization problem was implemented using a 

greedy approach. The ROIs were randomly divided into training and testing sets, with a ratio 

of 3:1. All classification accuracy values reported in the sections below are averaged values 

over 50 permutations.

B. Texton-based Dictionary Construction

For the classification using texton-based dictionaries, the parameters in the texton histogram 

model include the number K of textons per class and the size of local patches. Parameters in 

l0 norm regularization are the same as the original model. Two additional parameters are 

introduced in the l1 norm and elastic net regularization models: λ1 and λ2. Parameter 

selection was done via a grid-search manner.

Parameter values were set as follows: K in the range [10, 40], patch size in the range [3×3, 

8×8] pixels, λ1 in the range [0.001, 0.5], and λ2 in the range [0.001, 0.1]. Example of a 

texton dictionary (K=10, patch size = 8×8 pixels) is shown in Figure 3. We illustrate in 

Figure 4 the evolution of the classification accuracy when varying some parameter values, 

for the different regularization strategies.

With the original texton histogram model, accuracy tends to increase with a larger K and a 

smaller patch size. The best classification accuracy achieved is 93.9%. With the l0 norm 

regularization model, accuracy tends to increase with a larger K but with a larger patch size. 

The best classification accuracy achieved is 92.1%. With the l1 norm regularization model, 

accuracy tends to increase with a larger K, a larger patch size and a smaller λ1 within the 

tested ranges. The best classification accuracy achieved is 91.8%. With the elastic net 

regularization model, the trend is similar to the l1 regularization model, and we found that 

λ2 =0.01 yields the best accuracy, which is 92.4%. Overall, the classification accuracies 

obtained with the four sparse texture representation models based on texton dictionaries are 

very similar.

C. Dictionary Learning-Based Construction

The best classification accuracy achieved is 89.4% using the single-dictionary model, and 

91.7% using the concatenated-dictionary model, which compares to the performance 

obtained with the texton dictionary-based models. Using the multiple-dictionary model, the 

best accuracy achieved is only 83.3%. Best accuracies obtained with the different models are 

summarized in Table I. All models except for the multiple-dictionary model achieve 

classification accuracy around 90%. The multiple-dictionary model uses the dictionary 

learning encoding cost function rather than the projection coefficients for the classification 

task. This model was shown to achieve excellent performance in previous studies on 

classifying images of digital numbers [8], but it is not discriminative enough for this lung 

texture database. However, models based on classifiers might gain power from the 

discriminative capabilities of the classifiers. That may be part of the reason behind the 

current poorer performance of the multiple-dictionary model.
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Examples of dictionaries (single dictionary and multiple dictionaries) are shown in Figure 5. 

Examples of feature vectors for the single-dictionary model are shown (as a matrix of 

concatenated test ROIs) in Figure 6. It is clear that the NT and CLE classes are not easily 

distinguishable, whereas feature vectors of the PSE class are clearly different, which is 

reflected in the final classification results.

IV. Discussion and Future Work

In this work, we investigated seven texture models for the classification of emphysema 

subtypes and normal lung tissue, on CT lung images, including four models based on texton 

dictionaries (texton histogram, l0 norm regularization, l1 norm regularization, and elastic net 

regularization), and three models based on dictionary learning with sparsity regularizations 

(multiple-dictionary, single-dictionary and concatenated-dictionary model). All models 

except for the multiple-dictionary model achieved high classification accuracy (~90%). The 

multiple-dictionary model, which uses the dictionary learning encoding cost function rather 

than the projection coefficients for texture labeling, is shown to be less discriminative and 

suboptimal for the classification task in this lung texture database.

In practice, automated labeling of emphysema subtypes is a challenging task in the presence 

of heterogeneous visual properties of lung CT images across scanners and subjects. We 

validate in this work the feasibility of using both the classic texton-based models and 

sparsity-inducing models for the classification of emphysema subtypes using a dataset 

acquired with a single scanner type and protocol. Compared with classic texton-based 

models, the higher flexibility of sparse-inducing models embedded either at the 

representation stage or dictionary learning stage has potential in providing consistency of 

texture classification in heterogeneous lung CT dataset with finer parameter tuning, which 

could be a future work for this study.

Another perspective of the study is to use histogram features or filter-based features in 

addition to raw CT intensity values used in this work. The filtered data can incorporate 

additional desired property, such as translation-invariance and rotation-invariance. Other 

strategies such as data augmentation and convolutional sparse modeling can also be 

investigated.
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Figure 1. 
Illustration of visual appearances of normal lung tissue and emphysema subtypes, adapted 

from [2].
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Figure 2. 
Overview of the lung texture labeling on ROIs.

Yang et al. Page 9

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2017 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Example of a texton dictionary. The three rows correspond to the trained centroids from 

three classes of lung tissue (From top to bottom: NT, CLE, PSE).
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Figure 4. 
Classification accuracy of the different texton dictionary construction approaches. (a) 

Accuracy vs. K and patch size for the texton histogram model; (b) accuracy vs. K and patch 

size for the l0 regularization model; (c) accuracy vs. λ1 and patch size for the l1 

regularization model; (d) accuracy vs. λ1 and K for the l1 regularization model. The trend 

for elastic net model, not shown here, is similar to the l1 regularization model.
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Figure 5. 
Examples of learned dictionaries. (a) Single dictionary generated with data from all classes; 

(b) Separate dictionaries generated for separate classes (From left to right: NT, CLE, and 

PSE).
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Figure 6. 
Feature vectors of different emphysema subtypes and normal lung tissue based on a single 

dictionary (From top to bottom: NT, CLE, PSE).
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Table I

Summary of Classification Accuracy

Texton-based models Freq. Hist. l0 l1 Elastic net

Accuracy (%) 93.9 92.1 91.8 92.4

Dictionary learning-based models Single Dict. Multiple Dict. Concatenated Dict.

Accuracy (%) 89.4 83.3 91.7
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