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Abstract

This study examined the morphology of frontal-parietal regions relevant to motor functions in 

children with autism spectrum disorder (ASD) with or without attention deficit hyperactivity 

disorder (ADHD). We also explored its associations with autism severity and motor skills, and the 

impact of comorbid ADHD on these associations. Participants included 126 school-age children: 

30 had ASD only, 33 had ASD with ADHD, and 63 were typically developing. High resolution 3T 

MPRAGE images were acquired to examine the cortical morphology (gray matter volume, GMV, 

surface area, SA, and cortical thickness, CT) in three regions of interest (ROI): precentral gyrus 

(M1), postcentral gyrus (S1), and inferior parietal cortex (IPC). Children with ASD showed 

abnormal increases in GMV and SA in all three ROIs: (a) increased GMV in S1 bilaterally and in 

right M1 was specific to children with ASD without ADHD; (b) all children with ASD (with or 

without ADHD) showed increases in the left IPC SA. Furthermore, on measures of motor 

function, impaired praxis was associated with increased GMV in right S1 in the ASD group with 

ADHD. Children with ASD with ADHD showed a positive relationship between bilateral S1 

GMV and manual dexterity, whereas children with ASD without ADHD showed a negative 

relationship. Our findings suggest that (a) ASD is associated with abnormal morphology of 

cortical circuits crucial to motor control and learning; (b) anomalous overgrowth of these regions, 

particularly S1, may contribute to impaired motor skill development, and (c) functional and 

morphological differences are apparent between children with ASD with or without ADHD.
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Introduction

Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder with an 

estimated prevalence of 1 in 68 children [Centers for Disease Control and Prevention, CDC, 

2014]. In addition to the core diagnostic features of deficits in social communication, and 

restricted and repetitive behaviors, children with ASD often present with motor 

abnormalities [Kanner 1968; Ghaziuddin & Butler, 1998; Miyahara et al., 1997; Szatmari, 

Archer, Fisman, Streiner, & Wilson, 1995; Vilensky, Damasio, & Maurer, 1981]. Prior 

studies of ASD have revealed abnormalities in both basic and postural motor control 

[Freitag, Kleser, Schneider, & von Gontard, 2007; Jansiewicz et al., 2006; Minshew, Sung, 

Jones, & Furman, 2004], and in imitation and execution of skilled or learned motor actions 

[Dziuk et al., 2007]. Impaired ability to perform skilled gestures on praxis examination (i.e., 

developmental dyspraxia), has been reported in children with ASD [Dowell, Mahone, & 

Mostofsky, 2009; Dziuk et al., 2007; MacNeil & Mostofsky, 2012; Mostofsky et al., 2006] 

and is hypothesized to be secondary to abnormalities of procedural/sequential learning 

mechanisms that lead to the formation of internal action models that guide the execution of 

learned skilled/complex motor actions [Dowell et al., 2009; Mostofsky & Ewen, 2011]. 

Motor system dysfunction may be recognized earlier in ASD than core diagnostic features 

such as communication deficits, thus may help with early intervention [Bhat, Galloway, & 

Landa, 2012]. Furthermore, the study of motor dysfunction may offer a potentially reliable 

and quantifiable way to elucidate the neural basis of altered developmental trajectories and 

the associated impairments in children with ASD.

Neuroimaging studies of developmental trajectories have delineated a pattern of anomalous 

brain development in children with ASD: an early rapid and pervasive increase in brain size 

in infancy and toddlerhood [Aylward, Minshew, Field, Sparks, & Singh, 2002; Carper, 

Moses, Tigue, & Courchesne, 2002; Courchesne, Campbell, & Solso, 2011; Hazlett et al., 

2005; Herbert et al., 2004] followed by arrested development in later childhood and a 

potential decline in preadolescence into adulthood [Courchesne et al., 2007; Courchesne, 

Campbell, & Solso, 2011]. Regional variations (primarily increases) have been reported in 

ASD in gray matter (GM) and white matter (WM) in prefrontal cortices [Knaus, Tager-

Flusberg, & Foundas, 2012], sensorimotor cortices [Herbert et al., 2003; Mostofsky, 

Burgess, & Gidley Larson, 2007; Rojas et al., 2006], temporal and posterior parietal regions 

[Ecker et al., 2013; Palmen et al., 2005], and subcortical structures including the basal 

ganglia [Estes et al., 2011; Qiu, Adler, Crocetti, Miller, & Mostofsky, 2010], and the 

cerebellum [Allen & Courchesne, 2003; Fatemi et al., 2012]. These regional increases in 

cortical volumes have been associated with a number of impairments, including those in 

motor control [Mostofsky et al., 2007].

In concert with aberrant cortical maturation in ASD, motor impairments may be associated 

with anomalous development within a frontal-parietal network crucial to sensorimotor 

control and learning, comprising primary motor (M1) and primary somatosensory (S1) 

cortices, as well as premotor cortex (PMC) and inferior parietal cortex (IPC). The 

perception-action coupling process subserved by this network involves communication of 

proprioceptive and haptic information from the afferent pathways to S1; which, in turn, is 

interconnected with motor and parietal association areas, in particular the IPC. The IPC, 
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which is also central to the mirror neuron system responsible for imitation, is involved in 

encoding spatio-temporal representations of movement; these representations are then trans-

coded into action sequences in the PMC, needed for guidance of a motor command within 

M1. This process underlies the formation of internal action models which are maintained 

within a network of reciprocal connections between the PMC and IPC. These internal action 

models are important for guiding the execution of a wide array of behaviors ranging from 

simple motor actions (e.g., reaching and grasping) to complex motor/behavioral skills such 

as those used during social communication; they are also necessary to understanding the 

meaning of these actions as performed by others. This network is thereby central to learning 

movement patterns crucial to motor as well as social communicative skills. Consistent with 

this construct, several studies have suggested that dysfunction within this frontal-parietal 

network may be salient to ASD, contributing to autism-associated impairments in 

development of a range of skills, motor as well as social-communicative [above is reviewed 

at length in Mostofsky & Ewen, 2011].

Psychiatric comorbidity is frequent in ASD and the presence of these comorbidities may be 

relevant to abnormalities in sensorimotor development. In particular, attention deficit 

hyperactivity disorder (ADHD) is highly comorbid with ASD, with reported rates of 16–

78% [Hanson et al., 2013; Murray, 2010]. ADHD itself is also associated with abnormalities 

in motor development such as slower and variable response latencies [Leth-Steensen, Elbaz, 

& Douglas, 2000], excessive motor overflow [Denckla & Rudel, 1978], and reduced 

response inhibition that may reflect immature motor circuitry [Cole, Mostofsky, Larson, 

Denckla, & Mahone, 2008; Gillberg, 2003; Moll, Heinrich, Trott, Wirth, & Rothenberger, 

2000; Mostofsky, Newschaffer, & Denckla, 2003; Vaidya & Stollstorff, 2008; Wodka et al., 

2007]. While studies directly comparing children with ASD and children with ADHD have 

revealed similar degrees of impairment in basic motor control, dyspraxia appears to be more 

specific to ASD compared to ADHD [Dewey, Cantell, & Crawford, 2007; MacNeil & 

Mostofsky, 2012]. Children with ADHD have been shown to have deficits in the execution 

of motor control as compared to children with ASD who specifically show deficits in motor 

learning [Gidley Larson & Mostofsky, 2008].

Unlike ASD, children with ADHD (without ASD) show cortical maturation that may be 

delayed by several years compared to typically developing (TD) children; however, typical 

cortical volumes may be attained by late adolescence or early adulthood [Shaw et al., 2007]. 

Neuroimaging studies of children with ADHD have revealed thinner cortices and smaller 

brain volumes when compared to TD children [Carmona et al., 2005; Shaw et al., 2007; 

Wolosin, Richardson, Hennessey, Denckla, & Mostofsky, 2009], especially in prefrontal and 

premotor regions [Mostofsky, Cooper, Kates, Denckla, & Kaufmann, 2002]. These regional 

changes have also been associated with impaired motor control and response control 

[Mostofsky & Simmonds, 2008; Suskauer et al., 2008]. Although, ASD and ADHD have a 

phenotypic overlap [Reiersen & Todd, 2008; Sinzig, Walter, & Doepfner, 2009; Stam, 

Schothorst, Vorstman, & Staal, 2009], it is unclear how the presence of comorbid ADHD 

may affect the brain development of children with ASD. Despite the high rates of 

comorbidity and divergent cortical development, there has been limited investigation of the 

relationship between the two—in one recent study [O’Dwyer et al., 2014], ASD symptoms 

were significantly elevated in ADHD subjects (without ASD) relative to both controls and 
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unaffected siblings; furthermore, increasing ASD score was associated with greater GM 

volume. To our knowledge, there is no current neuroimaging study that has examined the 

brain development in children with ASD with or without ADHD.

To investigate the motor circuit in ASD, the main objectives of this study were: (1) to 

examine the motor circuit anatomy in the frontal-parietal regions of interest (ROIs) known to 

be relevant to motor skill development: precentral gyrus (roughly corresponding to M1) and 

postcentral gyrus (roughly corresponding to S1), and the IPC; (2) to explore anatomical 

associations with severity of autistic features as well as motor skills in children with ASD; 

(3) to explore the effect of comorbid ADHD on these associations of ASD. We hypothesized 

increased surface area (SA) and GM volume (GMV) of sensorimotor regions in children 

with ASD, and that these increases will be associated with impairments in basic motor 

control and praxis, as well as core social communicative features of autism.

Methods

Subjects

A total of 126 children participated in the study, ages 8–12 years (mean age=10.4±1.4 

years). Sixty-three were TD (9F; 52 right handed, 7 left handed, 4 mixed handed) children. 

Sixty-three children (9F; 52 right handed, 6 left handed, 5 mixed handed), had ASD; of 

these 33 had comorbid ADHD (ASD+ADHD; 4F; 27 right handed, 3 left handed, 3 mixed 

handed) and 30 did not have comorbid ADHD (ASD-only; 5F; 25 right handed, 3 left 

handed, 2 mixed handed). Sources of recruitment included advertisements posted in the 

community, local pediatricians’ and psychologists’ offices, local schools, and social service 

organizations and chapters of the Autism Society of America, the Interactive Autism 

Network database, outpatient clinics at Kennedy Krieger Institute, and word of mouth. This 

study was approved by the Johns Hopkins Medical Institutional Review Board. Written 

consent was obtained from a parent/guardian and assent was obtained from the participating 

child.

Psychopathology was assessed using the Diagnostic Interview for Children and Adolescents-

IV, Parent version (DICA-IV) [Reich, Welner, & Herjanic, 1997]. The DICA-IV is a well-

established semistructured measure for ascertaining DSM-IV psychiatric disorders in 

children and adolescents. It has strong psychometric properties and can measure current and 

past psychiatric diagnoses [Reich et al., 1997] None of the children had intellectual 

disability (ID), a seizure or other neurological disorder, any severe chronic medical disorder, 

a diagnosed genetic disorder, or a psychotic disorder. In the TD group, additional exclusions 

were any psychiatric disorder (except specific or social phobia), a speech and language 

disorder, and to preclude broader autism phenotype effects [Piven, Palmer, Jacobi, Childress, 

& Arndt, 1997], a family history of first-degree relatives with ASD.

Intellectual ability was assessed by the Wechsler Intellectual Scale for Children 4th edition, 

WISC-IV [Wechsler, 2003]. All TD subjects and 58 out of the 63 ASD subjects had a Full 

Scale IQ (FSIQ) ≥ 80. Two ASD-only and three ASD+ADHD subjects with a FSIQ below 

80 were also included, as they had a Perceptual Reasoning Index (PRI) score of 85 or greater 

on WISC-IV. PRI is a measure of the nonverbal abilities, which are an area of strength for 
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children with ASD and may be a better measure of their cognitive abilities. This is in line 

with recommendations to individualize the measures best suited for the participants to get an 

accurate estimate of their cognitive abilities [Mottron, 2004]. One ASD-only subject 

completed only the PRI and Verbal Comprehension Index (VCI) sections of the WISC-IV; 

therefore, the full scale IQ was not calculated. Yet a comparable score, Wechsler General 

Ability Index (based off the VCI and PRI) was scored at 128; the subject was therefore 

included in the study.

ASD Diagnosis

Diagnosis of ASD was based on DSM-IV criteria (4th ed., text rev.; DSM-IV-TR; American 

Psychiatric Association, 2000) and confirmed using the Autism Diagnostic Interview—

Revised (ADI-R) [Lord, Rutter, & Le Couteur, 1994] and the Autism Diagnostic 

Observation Schedule—Generic (ADOS-G) [Lord et al., 2000] module 3, administered by a 

master’s level or higher research reliable psychologists. All participants met criteria for ASD 

based on the ADOS-G or ADI-R and the clinical impression of a child neurologist with 

extensive experience in autism diagnosis (S.H.M.). Two families did not complete the ADI-

R; their inclusion in the ASD group was solely based on the ADOS-G and clinical 

impression.

Four subjects (one ASD-only, three ASD+ADHD) completed the more recent Autism 

Diagnostic Observation Schedule—Second Edition (ADOS-2) [Lord et al., 2012] instead of 

the ADOS-G. To create comparable ADOS total scores, two categories from the ADOS-G 

(1: insight part of the Social Interaction subscore and 2: compulsions part of the Stereotyped 

and Restricted Behaviors subscore) were also assessed in these four subjects. Additionally, 

amount of reciprocal social communication (part of the Social Affect subscore) in the 

ADOS-2 was not included in the calculation of the ADOS total score. The ADOS total score 

was then recalculated to match the ADOS-G total score.

ADHD Diagnosis

Comorbid diagnosis of ADHD was based on DSM-IV criteria using DICA-IV [Reich et al., 

1997]. Further, ADHD-specific standardized rating scales commonly used in clinical and 

research settings were also administered to assess for ADHD symptoms. These included the 

Conners’ Parent and Teacher Rating Scales-Revised, Long Version (CPRS-R and CTRS-R) 

[Conners, Sitarenios, Parker, & Epstein, 1998] and the ADHD Rating Scale-IV, home and 

school versions (ADHD-RS) [DuPaul, Power, Anastopoulos, & Reid, 1998]. A comorbid 

ADHD diagnosis was confirmed by the following criteria: (1) an ADHD diagnosis on the 

DICA-IV and (2) a T-score of 60 or higher on scale L (DSMIV: inattentive) and/or M 

(DSM-IV: hyperactive-impulsive) on the CPRS-R:L or CTRS-R:L, when available, or a 

score of 2 or 3 on at least 6/9 items on the Inattentive and/or Hyperactivity/Impulsivity 

scales of the ADHD-RS. Final confirmation was based on clinical judgment of the 

investigators. In the ASD+ADHD group, 23 subjects met criteria for Combined Type (2F), 3 

subjects met criteria for Hyperactive-Impulsive Type (1F), and 7 met criteria for Inattentive 

Type (1F).
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Psychiatric Comorbidity and Psychotropic Medications

Presence of other comorbid psychiatric disorders was also assessed using the DICA-IV. Of 

the 63 subjects in the ASD group (ASD-only and ASD+ADHD), 23 met criteria for 

oppositional defiant disorder, 5 for generalized anxiety disorder, 16 for specific or social 

phobia, and 4 for obsessive-compulsive disorder. Five subjects met criteria for a past episode 

of major depressive disorder. None met for somatization, hypomania/mania, or psychosis 

currently or in the past. None, except two TD subjects had any psychiatric diagnosis: one 

met for simple phobia (being alone), the other had specific phobias (spiders, the dark, and 

thunderstorms). These subjects were included in the TD group as the phobias were 

circumscribed and they were not thought to have a severe anxiety disorder.

Subjects in the ASD-only and ASD+ADHD groups on prescribed psychotropic medications 

at the time of assessment, were as follows: stimulant medications (methylphenidate, 

dexmethylphenidate, amphetamine salts): 18 ASD whole group (3 ASD-only, 15 ASD

+ADHD), antidepressants (fluoxetine, sertraline, citalopram, escitalopram, and bupropion): 

13 ASD whole group (7 ASD only, 6 ASD+ADHD), antipsychotics (only risperidone): 3 

ASD whole group (2 ASD-only and 1 ASD+ADHD), alpha agonists (only clonidine): 1 

ASD-only, and others (atomoxetine: 2 ASD whole group, 1 ASD-only, and 1 ASD+ADHD; 

Lithium: 1 ASD-only). None were on anticonvulsants or benzodiazepines. None of the TD 

subjects were on prescribed psychotropic medications. To avoid effects on cognitive and 

behavioral measures, stimulant medications were discontinued the day prior to and the day 

of testing. Participants were, however, allowed to continue treatment with other psychotropic 

medications that would normally require a longer washout period, for both ethical and 

practical reasons.

Motor Assessment

Basic motor control was assessed using the Movement Assessment Battery for Children—

Second Edition (MABC-2) [Henderson, Sugden, & Barnett, 2007]. MABC-2 is a widely 

used measure to identify and describe motor impairments in children 3–17 years of age. It is 

composed of two parts: the Performance Test and The Checklist. The Performance Test 

further includes series of fine and gross motor tasks in three categories—manual dexterity 

(three items), aiming and catching (two items), and balance (three items). Items from each 

component are scored and then transformed into standard scores. The Checklist is a parent/

other adult rating of motor competence on a 30-item scale (see Brown & Lalor, [2009] for 

further details). Only the Performance Test was used in the study. Eighty participants (40 

TD, 6F; 20 ASD-only, 4F; 20 ASD+ADHD, 2F) completed the Performance Test. The ASD 

subgroups were matched on age, PRI (WISC-IV), socioeconomic status (SES), and 

handedness.

A version of the Florida Apraxia Battery [Rothi et al., 1997], modified for children 

[Mostofsky et al., 2006], was used to assess ability to perform skilled gestures (Praxis). 

Children had to perform skilled gestures in the response to three different standardized 

verbal prompts: verbal command (gesture to command, GTC), imitation of the examiner 

performing the gesture (gesture to imitation, GTI), and actual tool use in response to the tool 

being placed on the table (gesture with tool use, GTU). Each subject’s examination was 
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video recorded and later scored independently by two raters, both blinded to diagnosis. 

There were 25 GTC items, 34 GTI items, and 17 GTU items that were each evaluated for the 

occurrence of errors (See Dowell et al., [2009] for a detailed summary of errors). Inter-rater 

reliability of at least 80% was achieved for each subject. Average total errors were used to 

assess praxis performance. (For comprehensive descriptions of the modified praxis 

examination, scoring methodology, and reliability data, references Mostofsky et al., [2006] 

and Dziuk et al., [2007].)

MRI Image Acquisition and Processing

Before each scanning session, all participants underwent a practice (mock scan) session to 

acquaint them with the scanner and the scanning environment. The practice session 

consisted of an abridged version of the actual scanning protocol (sliding into the scanner, 

wearing ear plugs, hearing loud magnetic resonance imaging (MRI) scanner noises, and 

being alone in the scanner for 10 min). An instructor trained the child until he/she was 

willing to be alone in the mock scanner room and lie still comfortably.

All scanning was completed using a 3.0T Philips GyroscanNT scanner. High resolution 

magnetization prepared rapid acquisition by gradient echo (MPRAGE) images (Slice 

thickness=1.0mm; FOV=26cm; Matrix size: 256×256) were acquired on all subjects used for 

anatomical segmentation. Cortical reconstruction and volumetric segmentation was 

performed with the Free-Surfer image analysis suite, (available at http://

surfer.nmr.mgh.harvard.edu/); the technical details of these procedures are available in prior 

publications: Fischl, Sereno, & Dale [1999] and Dale, Fischl, & Sereno [1999]. Free-Surfer 

morphometric procedures have good test-retest reliability across scanner manufacturers and 

across field strengths. Atlas-based ROIs and total cerebral volume measurements were 

obtained using FreeSurfer [Fischl et al., 2004]. The Desikan Killiany (DK) atlas was used to 

extract the cortical measures of interest [Desikan et al., 2006]. Three ROIs associated with 

the motor circuitry that involves the frontal-parietal networks were chosen for the regional 

measurements. These included the precentral gyrus (roughly, M1), the postcentral gyrus 

(roughly, S1), and the IPC bilaterally. The DK atlas does not include a PMC ROI but rather 

includes large anatomically defined frontal lobe ROIs that combine multiple functional 

subregions, therefore, a PMC ROI was not included in this analysis. Cortical thickness (CT), 

GMV, and SA were extracted using FreeSurfer and were used as measures of cortical 

morphometry in these regions.

Statistical Analysis

Separate MANCOVAs for GMV, SA, and CT were used to examine the effect of diagnosis 

(TD, ASD-only, and ASD+ADHD) across the three motor control ROIs (M1, S1, and IPC) 

while controlling for age and total brain volume (TBV). Age and TBV were used as 

covariates due to established findings on age dependent changes in brain volume and 

increased brain volume in children with autism in this age range. Given findings of left 

hemispheric abnormalities in autism, ROIs were also divided by hemisphere to explore any 

laterality of the findings [Dziuk et al., 2007; Escalante-Mead, Minshew, & Sweeney, 2003a; 

Kleinhans et al., 2008; Mostofsky et al., 2006]. Planned post hoc comparisons included TD 

vs. ASD-only, TD vs. ASD+ADHD, and ASD-only vs. ASD+ADHD. Pearson correlations 
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were used to better understand the behavioral significance of differences observed in cortical 

morphology. Motor relevant ROIs that showed diagnostic differences unique to the ASD-

only group (S1 GMV only) were used in the correlation analysis with motor control and 

symptom severity. In line with the goal of the study, correlations were limited to the ASD-

only and ASD+ADHD group to investigate the association between motor-relevant ROIs and 

behavior in autism. A regression analysis was conducted to test the association between 

ROIs with significant group effects and ADOS-total score, with Akaike information criterion 

(AIC) used to test quadratic vs. linear fit. Due to the exploratory goal of the correlation 

analysis, we did not correct for multiple comparisons. IBM SPSS Statistical Version 20 

(IBM, Chicago) was used for the statistical analyses.

Results

Demographic Information and Other Characteristics

Please see Table 1 for details. There were no significant group differences in age, gender, 

racial composition, SES, handedness, and PRI on WISC-IV.

ROI Analysis

The GMV MANCOVA (P=0.023) and the SA MANCOVA (P=0.005) revealed a significant 

overall effect of diagnosis (ASD > TD). Region-wise, a significant effect of diagnosis was 

noted on some of the ROIs (ASD > TD). For GMV MANCOVAs, this included only the 

right M1 (P=0.023), and left S1 (P=0.007). A marginal effect of diagnosis was noted on left 
IPC (P=0.066). The rest of the regions (left M1: P=0.147; right S1: P=0.114; and right IPC: 

P=0.520) did not show a significant effect of diagnosis on GMV.

For SA MANCOVAs, a significant effect of diagnosis (ASD>TD) was noted on the right M1 
(P=0.015), the left M1 (P=0.038), and the left IPC (P=0.005). A marginal effect of diagnosis 

was noted on the left S1 (P=0.067) only. The rest of the regions (right S1: P=0.51; and right 

IPC: P=0.132), did not reveal a significant effect of diagnosis.

The CT MANCOVA did not show a significant effect of diagnosis, (P=0.106). There was, in 

addition, no significant effect of diagnosis on CT in any of the ROIs (left M1: P=0.366; right 

M1: P=0.441; left S1: P=0.440; right S1: P=0.101; left IPC: P=0.106; and right IPC: 

P=0.147).

Further region-wise results for the GMV and SA are as below; also see Figure 1; Post hoc 

Analysis.

Table 2 summarizes the post hoc analysis findings. Planned post hoc analyses revealed the 

following:

a. Precentral Gyrus—For GMV, TD vs. ASD-only contrast (ASD-only> TD; P=0.007) 

and the ASD-only vs. ASD+ADHD contrast (ASD-only>ASD+ADHD; P=0.048) were both 

significant for right M1. A marginally significant effect of diagnosis was observed in left M1 
(ASD+ADHD>TD; P=0.066). No other comparisons were significant (P > 0.21).
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For SA, the TD vs. ASD-only contrast was significant for right M1 (ASD-only>TD; 

P=0.011), while TD vs. ASD+ADHD contrast was significant for left M1 (ASD

+ADHD>TD; P=0.004). No other comparisons were significant (P>0.16).

b. Postcentral Gyrus—For GMV, TD vs. ASD-only contrast (ASD-only> TD; P=0.004) 

and the ASD-only vs. ASD+ADHD contrast (ASD-only>ASD+ADHD; P=0.007) were both 

significant for left S1. A marginal effect of diagnosis, which was similar to left S1 GMV 

results, was apparent for right S1 GMV (ASD-only>TD; P=0.056; ASD-only> ASD

+ADHD; P=0.072). No other comparisons were significant (P > 0.8).

For SA, TD vs. ASD-only contrast was significant for left S1 (ASD-only>TD; P=0.028), 

while ASD-only vs. ASD+ADHD contrast was marginally significant for left S1 (ASD-

only>ASD+ADHD; P=0.058). No other comparisons were significant (P>0.33).

c. Inferior Parietal Cortex—For GMV, the TD vs. ASD+ADHD contrast was significant 

only for the left IPC, (ASD+ADHD>TD; P=0.032). No other comparisons were significant 

(P>0.11).

For SA, the TD vs. ASD-only (ASD-only>TD; P=0.032) and the TD vs. ASD+ADHD 

(ASD+ADHD>TD; P=0.002) contrasts were both significant for left IPC. TD vs. ASD-only 

(ASD-only>TD; P=0.047) contrast was significant for the right IPC. No other comparisons 

were significant (P>0.32).

Association of GMVs With Basic Motor Control and Praxis—In line with the aim 

of this study, to understand brain-behavior associations for motor impairment particular to 

ASD and ASD+ADHD, we investigated the association between motor control and the 

ASD-only specific finding that emerged from the 3-groups analyses: increased S1 GMV. 

Pearson correlations were used to test for associations between S1 GMV and motor control 

using the MABC-2 and Praxis. Although right S1 GMV showed marginally significant 

differences, left and right S1 were combined into a single ROI when testing the association 

between S1 GMV and MABC-2’s manual dexterity score due to the mixed-handed nature of 

the groups as well as the similarity in the diagnostic effects seen in left and right S1 GMV.

The ASD-only group showed a significant negative relationship between bilateral S1 GMV 

and the manual dexterity MABC-2 subscore (Fig. 2; r=−0.520, P=0.032); no other 

correlations were significant. In contrast, the ASD+ADHD group showed a significant 

positive relationship between bilateral S1 GMV and the manual dexterity subscore on the 

MABC-2 (r=0.40, P=0.036); none of the other scores were significant.

The ASD+ADHD group showed a significant correlation between right S1 GMV and Praxis 

total score (r=−0.370, P=0.044); no relationship was observed for left S1 GMV (r=−0.156, 

P=0.41). Follow-up analyses in the ASD+ADHD group using the Praxis subscores revealed 

a similar trend across all subscores; GTC (r=−0.343, P=0.055), GTI (r=−0.334, P=0.071), 

and GTU (r=−0.359, P=0.051). The ASD-only group did not show a significant association 

between the Praxis total score and left or right S1 (P>0.3), therefore a follow-up analysis on 

S1 GMV associations with Praxis subscores was not conducted.
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Association of Brain Volumes With Symptom Severity—The ASD-only group also 

showed a U-shaped/parabolic relationship (Fig. 3) between left S1 GMV and ADOS total 

score, such that increasing ADOS scores were associated with deviations from the TD mean 

GMV in the left S1 (r=0.503, P=0.022). A quadratic fit was a better fit for the data 

(quadratic fit AIC=76.31, linear fit AIC=79.83). This approach is in line with other studies 

of complex brain development where there may be a variation, for example, in CT with age 

[Shaw et al., 2008]. The ASD+ADHD group did not show a significant relationship, linear 

or quadratic, between the post-central gyrus and ADOS total score.

Discussion

Consistent with previous studies and our hypothesis, we found significant increases in 

cortical GMV and SA across frontal-parietal regions comprising a network crucial to motor 

control and learning (M1, S1, and IPC) in children with ASD as compared to TD children. 

Furthermore, to our knowledge, this was the first study to have examined the effects of 

comorbid ADHD upon the morphology of this network in ASD. Increased GMV and SA in 

left S1 were found to be specific to ASD children without comorbid ADHD, whereas 

increased GMV and SA in the left IPC were seen in children with ASD irrespective of the 

presence of comorbid ADHD. For M1, the presence of comorbid ADHD impacted the 

laterality of the findings, such that children with ASD without comorbid ADHD showed 

increased GMV and SA in the right M1, while those with ASD and comorbid ADHD had 

increased GMV and SA in the left hemisphere. Further details of the findings are discussed 

below.

Cortical Metrics

While GMV and SA were consistently larger in children with ASD, surprisingly, we did not 

observe any differences in CT. Prior studies [reviewed in Shaw et al., 2011] examining CT in 

ASD have reported conflicting findings, with some revealing no differences in CT [Ecker et 

al., 2013; Raznahan et al., 2010], some revealing increased CT, [Hardan, Muddasani, 

Vemulapalli, Keshavan, & Minshew, 2006] and others revealing decreased CT [Hadjikhani, 

Joseph, Snyder, & Tager-Flusberg, 2006; Hardan, Libove, Keshavan, Melhem, & Minshew, 

2009]. The discrepancies in CT findings might be due to age, with older adolescents and 

adults showing a decline in CT, and the regions studied [Wallace, Dankner, Kenworthy, 

Giedd, & Martin, 2010]. Increases in cortical SA in ASD have been suggested to be 

associated with increased gyrification [Courchesne, Campbell, & Solso, 2011; Hardan, Jou, 

Keshavan, Varma, & Minshew, 2004] as well as increased underlying WM volume [Hardan 

et al., 2004; Zikopoulos & Barbas, 2010], which may reflect distinct genetic and epigenetic 

processes as compared to CT [Winkler et al., 2010]. SA is thought to reflect the number of 

ontogenetic columns in a cortical region during neuronal migration in early brain 

development; CT, on the other hand, may be a reflection of the number of cells within a 

column [Rakic, 1988]. Although, cortical volume depends upon both SA and CT (cortical 

volume=SA×CT), SA expansion is the principal driving factor in cortical volume after 2 

years of age in children, with 97% of adult CT attained by 2 years of age as compared to 

69% of that for SA [Lyall et al., 2014]. By 8–12 years of age, both TD and ASD children 

have reached peak CT and show signs of cortical thinning whereas SA continues to increase 

Mahajan et al. Page 10

Autism Res. Author manuscript; available in PMC 2017 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



into adolescence [Ecker et al., 2013; Shaw et al., 2012]. Our CT findings may, thus, be a 

reflection of the age of the participants who may have attained peak CT, before thinning in 

adolescence, while the SA may still be on the increase.

Precentral Gyrus

Children with ASD (i.e., both with and without ADHD) showed increased M1 GMV and 

SA. This finding is consistent with other studies [Ecker et al., 2013] that have found similar 

increases in M1 in ASD. The findings are also in line with previous evidence of autism-

associated functional disorganization of M1, including atypical functional connectivity 

patterns [Nebel, Eloyan, Barber, & Mostofsky, 2014; Nebel, et al., 2014], as well as an 

anomalous association between increased M1 WM volume and impairments in basic motor 

control [Mostofsky et al., 2007]. Additionally, given the extensive cortical and subcortical 

connections (as with cerebellum and basal ganglia), this disorganization of the M1 may 

affect modulation of voluntary action as well as repetitive behaviors and other complex 

motor abnormalities (such as involving a dysfunction of the fronto-cerebello-thalamo-frontal 

network) [Nobile et al., 2011].

There was a laterality effect of comorbid ADHD on the M1 findings. For children with ASD 

without ADHD, increases in M1 GMV and SA were localized to the right hemisphere, in 

contrast to ASD children with comorbid ADHD who showed increases in SA only in the left 

hemisphere. This finding highlights the need to carefully investigate ADHD symptoms in 

children with ASD, particularly, in light of previous reports of disproportionate left sided 

GMV enlargement in ASD [Hazlett et al., 2005]; the results in this study may accord with 

abnormal brain lateralization and atypical cerebral dominance reported in ASD [Dawson, 

Warrenburg, & Fuller, 1982; Escalante-Mead et al., 2003a; Escalante-Mead, Minshew, & 

Sweeney, 2003b]. Such lateralized abnormalities may affect interhemispheric 

communication as well as normal hemispheric specialization of their functions. Thus, more 

significant right hemispheric cortical volume increases, implying greater dysfunction, may 

cause greater visuospatial processing abnormalities such as lack of awareness of 

peripersonal space, as well as dysprosody and limited affective tone in communication 

[McKelvey, Lambert, Mottron, & Shevell, 1995; Ozonoff & Miller, 1996]. Greater left 

hemispheric increases, on the other hand, may imply greater motor skill abnormalities—in 

basic motor skills, execution of motor actions as well as in praxis, and via parallel 

connections involving prefrontal lobe, abnormalities in language, socialization and Theory 

of Mind [reviewed in Mostofsky and Ewen, 2011]. Future investigations may shed more 

light on the possible functional consequences of comorbid disorders (including ADHD) on 

such laterality differences in children with ASD.

Inferior Parietal Cortex

This is the first study, to our knowledge, to specifically examine for autism-associated 

abnormalities in IPC structure. This, despite the well-established role of the IPC in motor 

imitation and praxis, both of which have been consistently found to be impaired in children 

with ASD [Bernier, Dawson, Webb, & Murias, 2007; Dewey et al., 2007; Dowell et al., 

2009; Dziuk et al., 2007; Jones & Prior, 1985; MacNeil & Mostofsky, 2012; Mostofsky et 

al., 2006; Rogers, Bennetto, McEvoy, & Pennington, 1996; Stieglitz Ham et al., 2011; 
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Vanvuchelen, Roeyers, & De Weerdt, 2007; Vivanti, Nadig, Ozonoff, & Rogers, 2008]. The 

IPC is identified as a core node in the mirror-neuron system, important for motor imitation, 

but is more generally understood to be fundamental to the visuomotor processing stream 

necessary to translating visual inputs into motor outputs [Cisek & Kalaska, 2010; Mostofsky 

& Ewen, 2011]; it is thereby crucial to development of a wide range of visuomotor skills. 

Our finding of IPC abnormality that was localized to the left hemisphere, in both ASD 

groups, is thereby consistent not only with impaired praxis and imitation in autism, but also 

with reported difficulty with adjusting reach-to-grasp movements in response to visual input 

[Fabbri-Destro, Cattaneo, Boria, & Rizzolatti, 2009] along with a tendency to discount 

visual input when learning novel movement patterns [Haswell, Izawa, Dowell, Mostofsky, & 

Shadmehr, 2009; Izawa et al., 2012].

Post-Central Gyrus

In contrast to differences observed in the IPC, increases in S1 GMV and SA were specific to 

ASD children without comorbid ADHD. S1, is crucial to representation of haptic and 

proprioceptive feedback, receiving sensory information via afferent pathways. Consistent 

with these findings, recent research has revealed that children with ASD show differences in 

tactile discrimination [Blanche, Reinoso, Chang, & Bodison, 2012; Tomchek & Dunn, 

2007], and an atypical over-reliance on proprioceptive, instead of visual, feedback when 

learning a novel movement pattern [Haswell et al., 2009; Izawa et al., 2012].

Post-Central Gyrus Volume, Autism Severity, and Motor Functions

Our examination of brain-behavior correlations revealed that left S1 volume was associated 

with autism symptom severity. ADOS total score was observed to have a quadratic 

relationship with S1 GMV (Fig. 3), such that the GMVs closer to the TD mean (10,980mm3; 

SD 1316) were associated with lower symptom severity; this association was specific to the 

left S1 in ASD children without comorbid ADHD. Although overall, this group’s GMV was 

significantly larger than the TD group’s, there were some subjects with a GMV lower than 

the TD group’s mean; the total ADOS scores for these children (with lower than TD GMV) 

were similar to those with GMV greater than TD group mean. Thus, it may be inferred that 

variation from the TD mean in S1 GMV, especially in the left hemisphere, may be 

associated with severity of core deficits of ASD; these may also reflect the left hemispheric 

dysfunction that has been associated with both impairments in language [Escalante-Mead et 

al., 2003a, 2003b] and praxis [Dziuk et al., 2007; Kleinhans et al., 2008; Mostofsky et al., 

2006] in children with ASD. It follows that increased left S1 GMV may be associated with 

an over-representation of proprioceptive information during motor learning, with resulting 

impairments in acquisition of skilled behaviors (dyspraxia) crucial to motor, as well as 

social-communicative functions.

Our examinations of motor control associations with S1 GMV revealed difference between 

the ASD groups. In the ASD with ADHD group, impaired praxis was associated with 

increased right S1 GMV; no association was observed in the ASD group without ADHD. In 

contrast, both ASD groups showed a significant yet divergent association between bilateral 

S1 GMV and manual dexterity. For children with ASD-only, larger S1 GMV was associated 

with poorer motor dexterity, again suggesting that autism-associated overgrowth within S1 
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may contribute to impaired motor development. In contrast, for children with ASD with 

ADHD, larger S1 GMV was associated with better motor dexterity, raising the question 

whether, in the context of comorbid ADHD, impaired basic motor control may be associated 

with merely delayed cortical maturation with limited cortical disorganization as has been 

reported in children with ADHD only [Shaw et al., 2007; Vaidya & Stollstorff, 2008].

Effects of Comorbid ADHD

As discussed above, the effects of comorbid ADHD on the motor circuit in children with 

ASD are, varied. S1, in particular, showed the greatest effect of comorbid ADHD both upon 

the morphology and in associations with measures of motor control and symptom severity. 

One could posit a potentially “protective” effect of co-occurrence of ADHD in children with 

ASD (in other words, the delayed cortical maturation in ADHD may moderate the effect of 

greater cortical disorganization in ASD). Conversely, given the remarkable neurogenetic and 

clinical heterogeneity of autism, it may be more likely that ASD with comorbid ADHD may 

signify an independent neuroendophenotype as has been proposed in several studies 

[Reiersen & Todorov, 2011; Sinzig et al., 2009; Smalley et al., 2002]. That the Connors scale 

total T-scores (Table 1) are not notably different in children with ASD with ADHD (70) as 

compared to children with ASD only (64) also appears consistent with this possibility. 

Approaches such as imaging genomics focused on neurodevelopmental endophenotypes 

may potentially shed more light upon such findings in the future.

Our study adds to the ever-increasing evidence for abnormal brain developmental 

trajectories in children with ASD and the effect of a common psychiatric comorbidity. This 

study has a moderately large cohort size, although, even larger cohorts of the specific 

subgroups, would be needed to confirm these findings. The use of gold standard diagnostic 

instruments for ASD diagnosis, and standardized measures for confirming diagnoses of 

ADHD and assessment of basic and more complex motor control are strengths of the study. 

Further, we focused on the anatomy of a particular circuit rather than the whole brain, to 

correlate the neuroimaging findings with a measurable clinical effect, i.e., motor 

functioning, which has a well-defined neural circuit; thus, our findings have implications at 

the anatomical/neuropathological, neural circuits, and clinical/behavioral levels.

Like other similar studies, the subjects are all high functioning with FSIQ in at least the 

average range; therefore, this data may not be directly applicable to lower functioning 

children in the intellectually disabled range. Additionally, the ROI approach, while useful for 

addressing specific brain-behavior hypotheses, may also limit the specificity of our findings, 

with more localized changes obscured within the regional analyses. Future voxel-based 

analyses may help further shed light on more localized changes. The study is also limited in 

not including PMC due to the absence of a functionally defined region in the DK atlas, thus 

allowing for a partial investigation into the frontal-parietal network crucial for sensorimotor 

control; the use of other atlases with well-defined premotor region [such as the Ranta frontal 

atlas; Ranta et al., 2014] may allow for investigation of PMC. Furthermore, our data captures 

a limited age range of preadolescents between the ages of 8–12 years, thus limiting 

generalization to all ages; conversely, this may also be a strength, from the perspective of 

capturing findings in specific developmental age groups.
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In essence, the effect of ADHD on cortical development, particularly motor circuits, is still 

not fully understood and deserves more research in order to understand the variability within 

the ASD diagnosis. Whether ASD and ADHD are phenomenologically co-occurring 

heterotypic psychiatric disorders [Angold, Costello, & Erkanli, 1999]; as is frequently 

assumed in ASD comorbidity studies [Matson & Nebel-Schwalm, 2007], with separate 

etiopathophysiological pathways or if there is a unique endophenotype, characterized by 

features of both ASD and ADHD [Ronald, Simonoff, Kuntsi, Asherson, & Plomin, 2008], 

remains an area of ongoing and future research.

Conclusions

Consistent with our hypothesis, we found that school-age children with ASD showed 

abnormal morphology of cortical regions crucial to motor control and learning, with 

increases in both GMV and SA. Furthermore, the presence of comorbid ADHD impacted 

regional cortical morphology within these frontal-parietal regions. While regional increases 

in the IPC GMV (ASD>TD) were observed in children with ASD regardless of the co-

occurrence of ADHD, this was not the case for S1 in which increases in GMV were specific 

to children with ASD-only. This increase in S1 GMV was particularly relevant to altered 

motor function in children with ASD. Increased S1 GMV was associated with impaired 

praxis, but better manual dexterity in children with ASD with ADHD. The findings thereby 

suggest that ASD is associated with altered development of cortical circuits crucial to motor 

control and learning and that anomalous overgrowth of these regions, particularly S1, may 

contribute to impaired motor skill development. These structural and functional differences 

suggest that the presence of comorbid ADHD in children with ASD may possibly be an 

independent neuroendophenotype.
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Figure 1. 
Cortical metrics (a) mean gray matter volume, GMV (mm3) and (b) mean surface area, SA 

(mm2) plotted for the postcentral gryus, M1, and IPC for the TD (clear bars), ASD-only 

(solid bars), and ASD+ADHD (bars with crossed lines). GMV and SA in children with ASD 

were increased in all 3 motor circuit ROIs as compared to TD children. (Key: + P < 0.1; * P 
< 0.05; ** P < 0.01; solid lines: TD vs. ASD-only; large dashes: TD versus ASD+ADHD; 

small dashes: ASD-only versus ASD+ADHD).
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Figure 2. 
Partial correlations (covarying for age) between bilateral postcentral cortex and MABC-2’s 

manual dexterity component score. Higher scores signify better performance. Notably, ASD-

only group (solid line and closed circles) shows a negative correlation (r=−0.52, P=0.032) 

suggesting that the increased GMV is associated with impaired manual dexterity. The ASD

+ADHD group (dashed line and open circles) shows the opposite relationship (r=0.40, 

P=0.036). (MABC-2: Movement Assessment Battery for Children, Second Edition).
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Figure 3. 
Quadratic regression between ADOS total score (dependent variable) and left postcentral 

gyrus GMV. The GMV at the trough (10,833mm3) corresponds to almost exactly the mean 

of GMV of the TD group for left postcentral gyrus (10,980mm3; SD 1316). This suggests 

that a deviation from the TD mean is associated with increased autism severity (r=0.503, 

P=0.022).
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Table 1

Demographic and Other Characteristics

TD (N=63) ASD Total (N=63) ASD-only (N=30) ASD+ADHD (N=23)

Age (SD) years 10.5 (1.3) 10.4 (1.5) 10.5 (1.7) 10.3 (1.4)

Gender (M/F) 54/9 54/9 25/5 29/4

TBV (SD) 10692667 (96713) 1098231 (103806) 1101079 (97588) 1095642 (110601)

SES (SD) 52 (10) 53 (10) 54 (11) 53(9)

FSIQ (SD) 112 (11) 102 (15) 102 (14) 103 (17)

VCI (SD) 115 (14) 108 (18) 107 (18) 110 (18)

PRI (SD) 110 (12) 107 (14) 110 (14) 105 (13)

Connor’s Total T-Score 46 (4.5) 67(11) 64 (11) 70 (9.4)

ADOS-Total – 16 (3.8) 16 (3.9) 15 (3.7)

Handedness (SD) 0.62 (0.57) 0.64 (0.54) 0.65 (0.55) 0.63 (0.55)

Racial Composition

 Caucasian 46 52 26 26

 African American 10 5 2 3

 Asian 2 3 0 3

 Latino 0 1 1 0

 Biracial 5 2 1 1

ADHD subtype

 Combined 23

 Hyperactive/Impulsive 3

 Inattentive 7

TBV, total brain volume; SES, Hollingshead four-factor index of socioeconomic status; PRI, perceptual reasoning index from the WISC-IV; 
Handedness, Edinburgh handedness inventory.
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Table 2

Summary of the Post Hoc ROI Analysis

Cortical Metrics by ROI ASD-only vs. TD ASD+ADHD vs. TD ASD-only vs. ASD+ADHD

Precentral Gyrus

GMV R** L+ R*

SA R* L**

CT

Postcentral Gyrus

GMV L**,R+ L**,R+

SA L* L+

CT

Inferior Parietal Cortex

GMV L*

SA L*, R* L**

CT

ROI, region of interest; GMV, gray matter volume; SA, surface area; L, left; R, right;

+
P < 0.1;

*
P < 0.05;

**
P < 0.01.

No effect of diagnosis was noted for CT in any region.
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