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Abstract
Many different methods are used to disaggregate census data and predict population densities to construct

finer scale, gridded population data sets. These methods often involve a range of high resolution geospatial

covariate datasets on aspects such as urban areas, infrastructure, land cover and topography; such covari-

ates, however, are not directly indicative of the presence of people. Here we tested the potential of geo-

located tweets from the social media application, Twitter, as a covariate in the production of population

maps. The density of geo-located tweets in 1x1 km grid cells over a 2-month period across Indonesia, a

country with one of the highest Twitter usage rates in the world, was input as a covariate into a previously

published random forests-based census disaggregation method. Comparison of internal measures of accu-

racy and external assessments between models built with and without the geotweets showed that increases

in population mapping accuracy could be obtained using the geotweet densities as a covariate layer. The

work highlights the potential for such social media-derived data in improving our understanding of popu-

lation distributions and offers promise for more dynamic mapping with such data being continually pro-

duced and freely available.

1 Introduction

The global population is projected to increase from 7 billion to over 9 billion over the next four

decades, with much of this growth concentrated in low-income countries (UN 2011). The

effects of such rapid demographic growth are well documented, with impacts on the econo-

mies, environment and health of nations (Bongaarts 2009). To measure the impact of this pop-

ulation growth, as well as progress towards development goals, there is a need for

contemporary, spatially explicit, high resolution maps that accurately identify population

distributions.
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High-income countries often have mapping expertise and substantial resources at their dis-

posal to create accurate and contemporary spatial population datasets. However, across the

lower income regions of the world, equivalent resources and relevant data can often be either

lacking or are of poor quality (Tatem and Linard 2011). Over the past few decades there

has been increasing interest in creating large-area gridded population distribution datasets (Cher-

iyadat et al. 2007; Balk et al. 2006; Linard et al. 2012) to support applications such as disease

burden estimation, climate change and human health adaptive strategies, disaster response, acces-

sibility modelling, transport and city planning, and environmental impact assessment (Balk et al.

2006; Linard et al. 2010, 2012; McMichael et al. 2006; Rasul and Thapa 2003; Tatem, et al.

2007). Current global gridded population datasets include the Gridded Population of the World

(GPW) database (Balk and Yetman 2004; Tobler et al. 1997) and the Global Rural Urban Map-

ping Project (GRUMP) (Balk et al. 2005). In addition, there is the LandScan Global Population

database (Bhaduri et al. 2007; Dobson et al. 2000), and the United Nations Environment Pro-

gramme (UNEP) compiled gridded datasets for Latin America, Africa, and Asia (Nelson 2004;

Deichmann 1996). The WorldPop project(http://www.worldpop.org.uk/) provides freely avail-

able gridded population data for Africa, Asia and the Americas (Linard and Tatem 2012; Linard

et al. 2010; Stevens et al. 2015). With the exception of GPW, all of these datasets use spatial

covariate datasets on factors related to the way that humans distribute themselves on the land-

scape to disaggregate areal-unit based census counts to grid squares.

Spatial covariate datasets used in the population disaggregation process tend to include

factors known to correlate with population densities, such as satellite-derived maps of

human settlements, urban areas, topography, lights at night, and land cover. Additionally,

infrastructure-related variables have been used, including road networks and health facilities

(e.g. Stevens et al. 2015). However, all of these covariates are typically static in nature and not

direct measures of the presence of people. Recent efforts have shown the potential of “big

data” sources, such as mobile phone call data records, to map populations dynamically using

the communication patterns of phone users (Deville et al. 2014), but such data are generally

difficult to obtain and are highly sensitive, both commercially and for privacy reasons. The rise

in data availability of user communications and check-ins through social media presents oppor-

tunities however, in terms of a data-source that is freely available, dynamic and without the

data sensitivity restrictions of mobile call data records. However it is important to consider

that a limitation of utilizing social media is that Internet connected smartphones are often

expensive resources in low-income countries and the applicability of these methodologies might

be limited (Ramaswamy et al. 2009).

One of the most popular social media applications over the past decade has been Twitter

(https://twitter.com). Twitter is an online social networking service that allows users to post

140-character messages called “tweets” to a publicly viewable microblog platform, and since

its inception in 2006, the service has gained worldwide popularity. Despite the relative lack of

tweets with geographic metadata (around 2.02% of tweets are posted with such metadata glob-

ally), many useful geographic applications have been derived from tweet data (Takhteyev et al.

2012; Leetaru et al. 2013; Hawelka et al. 2014; Blanford et al. 2015). The maps of geo-located

tweets in countries where Twitter is popular show detailed depictions of human activity, with

the location of tweets indicative of settlements, transportation networks, and building locations

(Leetaru et al. 2013). Such data therefore have the potential to provide a valuable ancillary

covariate layer in the population mapping process, and also one that changes dynamically, but

its utility has yet to be tested.

Here we assess the potential of geo-located tweets to improve population distribution

maps. Tweets are integrated as a covariate layer into a census data disaggregation model.
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We compare the accuracy of gridded population maps produced with and without geotweet

data and discuss the advantages and disadvantages of such social media in improving popula-

tion mapping accuracies in low and middle income settings.

2 Methods

2.1 Study Area

Indonesia has one of the highest Twitter user levels in the world (Leetaru et al. 2013) and it

also has recent, very high spatial resolution census data. These characteristics combined make

the country an ideal case study for the utility of geotweet data for census count disaggregation.

The study area is the country of Indonesia, an archipelago made up of thousands of islands,

with a total land area of approximately 1.9 million km2. For the purposes of this study,

boundary-matched census data at the Kecamatan administrative level (Level 3, 6,463 units)

and Desa/Kelurahan administrative level (Level 4, 79,618 units), were obtained (Figure 1).

2.2 Mapping Geotweets

Two months of geo-located tweets (7/8–8/8 and 10/12–11/15, 2013) were extracted from the

Twitter Streaming API (https://dev.twitter.com/streaming/overview) for Indonesia. Morstatter

et al. (2013) show the Twitter Streaming API provides around 90.1% coverage of the total

Figure 1 Map of Indonesia administrative boundaries levels 3 and 4, focused around Jakarta, with
administrative units shaded to show population counts per administrative unit
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available set of geotagged tweets. Note that the geotagged tweets with exact latitude and longi-

tude make up about 1.6% of the total number of tweets, which is about 79% of tweets posted

with general geographic metadata; see Twitter Places attributes (https://dev.twitter.com/over-

view/api/places#attributes) (Leetaru et al. 2013). Similar to the process described in Morstatter

et al. (2013), the data streaming was performed by utilizing the Tweetpy library (https://github.

com/tweepy/tweepy) on an Amazon Web Service (http://aws.amazon.com/) Instance. Further

reference on Twitter Streaming API and the most up-to-date usage agreements can be found at

https://dev.twitter.com/.

The collected data was automatically uploaded to a storage bucket on Amazon Simple

Storage Services (S3) (http://aws.amazon.com/s3/) every day during the study period. An

Apache Pig (https://pig.apache.org/) process was initiated on the Amazon Elastic MapReduce

(http://aws.amazon.com/elasticmapreduce/) web service to extract all the tweets within the geo-

graphic boundary constraint of Indonesia and to aggregate the raw tweet activity counts into a

0.001 by 0.001 degree grid in an unprojected geographic coordinate system. During the aggre-

gation process, the origin latitude and longitude from the geotagged tweets were rounded

down to three decimal digits. The list with latitude, longitude and tweet counts were imported

into ArcGIS Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop) to produce a

raster layer for testing as a covariate in population mapping (Figure 2).

The geotweets raster dataset was then integrated into a population mapping process

along with other ancillary covariates to disaggregate the administrative unit level 3 census data

to a 100 by 100 m grid using a population mapping process detailed in the next section.

Figure 2 Results of a two-month aggregation of geo-located tweets over the full extent of Java
(top) and a view focused on Jakarta (bottom)
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2.3 High Resolution Population Mapping Method

The population mapping method detailed in Stevens et al. (2015) was utilized to undertake two

tests – mapping the entire Republic of Indonesia, and disaggregating administrative unit level 3

data with and without the extracted geotweets to assess whether the inclusion of the tweets

improved mapping accuracies when compared with the administrative level 4 data.

2.3.1 Data processing

Indonesian census counts for 2010 were obtained from the Indonesian Government and

matched to GIS-administrative boundaries at administrative level 3 (6,463 units, total spa-

tial area calculation from shapefile 5 3,364,560.063 km2) and administrative level 4

(79,618 units, total spatial area calculation from shapefile 5 3,362,579.043 km2). Both data

sets have a total population of 243,530,782 and an average spatial resolution (ASR) of 22.8

and 6.50, for the administrative level 3 and the administrative level 4, respectively. The

ASR is calculated as the square root of its surface area (in square kilometers) divided by the

number of total administrative units (Balk and Yetman 2004) and provides a broad measure

of mean administrative unit size across the country. When calculated by province (adminis-

trative unit level 2), the ASR varies from 1.68 to 68.9 for level 3 units and from 0.919 to

30.8 for level 4 units. The administrative level 3 census data was used in the actual model

implementation while the administrative level 4 data was held in reserve for model assess-

ment purposes.

The modeling process uses a suite of continuous and discrete data layers to generate an

estimated population density-weighting layer. The majority of these data sets are contemporary

and freely available (Table 1). The rationale behind using the datasets detailed in Table 1 is to

include geospatial data that may correlate with human population presence on the landscape as

cited in Stevens et al. (2015).

The MDA-land cover data was modified with the inclusion of a classified urban/rural land

cover informed by an urban extent delineation using the Google Earth Engine platform (Patel

et al. 2015). The resulting infusion of the binary urban/rural raster layer represents an

improved “built” class within the MDA land cover classes.

Each covariate layer contributes to a better understanding of landscape features across

Indonesia, both natural and man-made, as each may relate to population densities. In addi-

tion, to assess the added value of including spatially-explicit social media data as a covari-

ate in the model the best available ancillary data were combined with the geotweets. To

compare model output and accuracy we create one set of outputs with geotweets included

and one set of outputs without geotweets, both using the administrative level 3 census

data.

In addition to census data, MDA-derived land cover and additional covariates included

those outlined in prior Random Forest-based WorldPop datasets (Stevens et al. 2015). Raster-

based covariates included the HydroSheds-based digital elevation data (also converted to slope

estimates), the Suomi VIIRS-derived lights at night raster layer, MODIS-derived estimates of

net primary productivity, WorldClim average temperature and precipitation data, and of

course the custom geo-located tweets. Vector-based covariates, which are then processed to

raster-based derived products (Stevens et al. 2015) include Open Street Map derived datasets,

NGA data (NGA Vector Map 2005) and the World Database of Protected Areas boundaries.

These are outlined and cited in Table 1.
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Table 1 Test-specific data sources and variable names used for population density estimation
with dasymetric weights

Type Variable Name(s)* Description Indonesia Data

Census Country-specific census
data that isused for
disaggregation

2010, Admin-level 3 and
Admin-level 4 (census
datasets received from
the Government of
Indonesia)

Land Cover lan_cls011, lan_dst011 Cultivated terrestrial
lands

Landcover utilizing 3-year
Google Earth Engine
data & MDA GlobCover
with methods from
Patel et al. (2015).

lan_cls040, lan_dst040 Woody/Trees
lan_cls130, lan_dst130 Shrubs
lan_cls140, lan_dst140 Herbaceous
lan_cls150, lan_dst150 Other terrestrial

vegetation
lan_cls160, lan_dst160 Aquatic vegetation
lan_cls190, lan_dst190 Urban area
lan_cls200, lan_dst200 Bare areas
lan_cls210, lan_dst210 Water bodies
lan_cls230, lan_dst230 No data, cloud/shadow
lan_cls240, lan_dst240 Rural settlement
lan_cls250, lan_dst250 Industrial area
lan_clsBLT, lan_dstBLT Built, merged urban/

rural class
Continuous
Raster-Format

Lig Lights at night data Suomi VIIRS-Derived
(NOAA 2012)

Npp MODIS 17A3 2010
estimated net primary
productivity, 1 km

Extraction from MODIS
package in R (Running
et al. 2004)

Tem Mean temperature,
1950–2000

WorldClim/BioClim
(Hijmans et al. 2005)

Pre Mean precipitation,
1950–2000

WorldClim/BioClim
(Hijmans et al. 2005)

Ele Elevation HydroSHEDS
(Lehner et al. 2006)

ele_slope Slope HydroSHEDS-Derived
(Lehner et al. 2006)

Twe Tweets Tweets data obtained
from method detailed
in Section 2.2
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2.3.2 Random forest population disaggregation method

The general process used for data preparation, modeling and validation for the population

mapping is documented in Stevens et al. (2015). In brief, the aggregated population counts and

the raster and vector layers shown in Table 1 are used to create a Random Forest-based model

(Breiman 2001), parameterized on census unit population densities to estimate population den-

sity using the ancillary covariates. The Random Forest (RF) algorithm, as a non-parametric,

Table 1 Continued

Type Variable Name(s)* Description Indonesia Data

Converted
Vector-Format roa_cls, roa_dst Roads OSM (2014)

riv_dst Distance to rivers/streams VMAP0 merged†
pop_cls, pop_dst Populated Places OSM (2014)
wat_cls, wat_dst Water bodies VMAP0 merged†
pro_cls, pro_dst Protected areas IUCN and UNEP (2012)
poi_cls, poi_dst Populated Points of

Interest
OSM (2014)

bui_cls, bui_dst Buildings OSM (2014)
use_cls, use_dst Delineated land uses OSM (2014)
cit_cls, cit_dst Cities OSM (2014)
dwe_cls, dwe_dst Dwellings OSM (2014)
ham_cls, ham_dst Hamlets OSM (2014)
hos_cls, hos_dst Hospital OSM (2014)
loc_cls, loc_dst Localities OSM (2014)
pol_cls, pol_dst Police OSM (2014)
sch_cls, sch_dst Schools OSM (2014)
sub_cls, sub_dst Suburbs OSM (2014)
tow_cls, tow_dst Towns OSM (2014)
vil_cls, vil_dst Villages OSM (2014)
ind_cls, ind_dst Industrial land use OSM (2014)
res_cls, res_dst Residential land use OSM (2014)
pri_cls, pri_dst Primary roads OSM (2014)
sec_cls, sec_dst Secondary roads OSM (2014)
ter_cls, ter_dst Tertiary roads OSM (2014)
rro_cls, rro_dst Residential roads OSM (2014)
ser_cls, ser_dst Service roads OSM (2014)
nei_cls, nei_dst Neighborhoods OSM (2014)

*The variable names are used in the Random Forest model output and throughout the text to refer to
the specific data they were derived from. The first three letters are derived from the data type (e.g. “lan”
indicates land cover) and the last three letters, if present, indicates what type of data each variable repre-
sents (e.g. “_cls” is a binary classification and “_dst” is a calculated Euclidean distance-to variable.
†The default data for populated places is merged from several VMAP0 data sources. There are three
VMAP0 data sets used: The point data pop/builtupp and pop/mispopp are buffered to 100 m and merged
with the pop/builtupa polygons creating a vector-based built layer. This layer is then converted to binary
class and distance-to rasters for use in modeling (NGA 2005).
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ensemble statistical approach, provides flexibility in the modeling process for inclusion of dis-

parate data types (Breiman 2001). The process involves growing a “forest” by generating indi-

vidual, unpruned decision trees that are then aggregated to represent a final prediction for each

grid cell in the weighting layer (Breiman 2001; Liaw and Wiener 2002). The resulting popula-

tion density map is then used as a weighting layer for a standard dasymetric mapping approach

as described for WorldPop population map products (Stevens et al. 2015; Gaughan et al. 2013,

2015; Linard et al. 2012; Linard and Tatem, 2012; Tatem et al. 2007). This process is depicted

in Figure 3.

The RF model includes an internal cross-validation component that provides additional

insight into the prediction error of the model. During the estimation of the random forest, at

each node of each tree, one-third of the data is held in reserve from the iterative, bootstrapping

process and used to generate an out-of-bag (OOB) error. The OOB error provides an unbiased

estimate of prediction error for new, non-reference data points (assuming those points contain

covariate data that fall within combinations present in the training data). Another metric that

Figure 3 General structure of the data processing and map production procedure used to com-
pare the methodology outlined in Stevens et al (2015). The orange boxes represent items that are
specific to the research presented here and not part of end-user map data product generation.
The green boxes represent data pre-processing stages. Items in blue represent Random Forest
model estimation, per-pixel prediction and dasymetric redistribution of census counts
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is provided post-hoc from the forest-growing algorithm is the variable importance measures for

each model which are presented as the mean decrease in the residual sum of squares OOB esti-

mates when the variable is included in the tree split.

2.3.3 Accuracy assessment

The population mapping was undertaken using administrative level three census data as input,

then the output high resolution map was aggregated at administrative level four and compared

with the counts at this level, following Gaughan et al. (2013) and Stevens et al. (2015). Sum-

mary statistics were calculated, including root mean square error (RMSE), the RMSE divided

by the mean census unit count (%RMSE) and the mean absolute error (MAE). Together these

statistics were used to compare the predictive ability of the mapping with and without the

geotweets.

3 Results

3.1 Random Forest Statistical Outputs

Figure 4 shows the importance of the variables outlined in Table 1 in the mapping process as

estimated by the increase in mean squared error (MSE) when the specified covariate is ran-

domly permuted and predictions re-calculated for OOB data. The most important variables

include the built land cover covariates, indicating “Built” areas, which include urban and rural

settlements that were created using the processes detailed in Section 2.3.1. The built covariates

Figure 4 Covariate importance plots for tests: (a) without geotweets; and (b) with geotweets
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as well as the Suomi NPP Lights-At-Night-derived covariate have been documented in previous

literature as strong indicators of population (Patel et al. 2015). Here, the Lights-At-Night and

Distance to Villages (derived from Open Street Map data) variables are the most important pre-

dictors in the model without geotweets. When the geotweets are included in the modelling pro-

cess (Figure 4b), differing covariates become key contributors, and the geotweets density

variable enters into the top three most important predictors. In comparing the performance of

both models, the test without tweets could explain 93% of the variance within the RF model,

and the test with tweets could explain 94% of the variance within its RF model.

Figure 5 shows visual examples of the mapping without (Figure 5a) and with (Figures

5b, c) the inclusion of the geotweet density covariate. Visually the maps are very different, with

the geo-located tweet inclusion resulting in a more constrained and higher density mapping of

population density, specifically clustered around settlements and transportation networks.

3.2 External Accuracy Assessment

Table 2 presents the results of the comparison of administrative level 3 census data based map-

ping with and without geotweets against administrative level 4 census counts. The inclusion of

the geotweet data as a covariate produced a significant reduction in estimation error for both

the root mean square error (RMSE) and mean absolute error (MAE) when considering the

Figure 5 Map of Persons Per Pixel (PPP) produced using high resolution population mapping
method (Stevens et al. 2015), showing the final population maps for a region on the island of Java
with: (a) no geotweet data; (b) geotweet data included; and finally (c) the output dataset for the
entirety of Indonesia with geotweet data included
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sheer difference in this particular comparison on the amount of census units in administrative

level 3 versus administrative level 4. The results in Table 2 indicate that the inclusion of geo-

tweets reduced errors relative to the model without the geotweets data.

Figure 6 shows the results from comparing the geotweet and non-geotweet population

maps constructed using administrative unit level 3 population count data and applying zonal

statistics to see how they compare with the finer administrative level 4 counts. It is evident that

both datasets produced using administrative level 3 data result in some over- and under-estima-

tions of population counts when assessed at administrative level 4. Unsurprisingly, the biggest

differences are in Jakarta, where population totals are larger and vary more over shorter distan-

ces. Figure 6 does show, however, that generally lower levels of over and under-estimation

occur using the geotweet model.

Table 2 Accuracy assessment results for tests

RMSE (persons) %RMSE MAE (persons)

Admin 3 without tweets 2284.14 74.58 1123.44
Admin 3 with tweets 2213.99 72.29 1120.16
Difference (Without - With) 70.15 2.29 3.28

Figure 6 Differenced map produced through comparing the population maps generated with: (a)
no geotweet data; and (b) geotweet data constructed from administrative level 3 census population
counts and differencing the zonal sums against administrative level 4 census population count data
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Figure 7 compares the final output population models (with and without geotweets)

spatially, subtracting the geotweets model from the non-tweets model to illustrate spatial pat-

terns in differences. In addition to producing a more accurate model (Table 2, Figure 6), the

figure highlights how the geotweets model concentrates populations into settlements more

tightly, with less spread into more rural areas.

4 Discussion and Conclusions

Spatially-disaggregated gridded population distribution datasets are becoming widely used, due

principally to their flexibility in integration with other spatial datasets and summarization to

any chosen level of aggregation. The accuracy with which this disaggregation can be achieved

is related to the resolution and age of the input census data, but also to the quality, resolution

and relevance of the spatial covariate layers used to statistically aid the disaggregation. The

covariate layers typically used are often static in nature and their relationship to population

densities can be unclear or interact in non-linear ways. Despite these difficulties, high mapping

accuracies can be achieved with suites of these static covariate layers (e.g. Stevens et al. 2015),

but variance often still remains to be explained. Here we have shown that data from social

Figure 7 Difference map of persons per pixel (PPP) generated from subtracting the population
map generated utilizing no geotweet data from the population map generated utilizing geotweet
data: (a) Jakarta and surrounding areas; and (b) All of Indonesia
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media, representative of physical locations of people in space, represents a potential addition to

these covariate options that can provide improvements in population mapping accuracies.

The results shown in Table 2 and Figure 4 demonstrate that the use of geotweet densities

result in quantitative improvements in population mapping accuracies. Moreover, Figure 4

emphasizes that the geotweet density covariate was particularly important (third out of 30

covariates retained in the model) in contributing to the variance explained in the Random

Forest models. With the number of Twitter users continuing to rise across the world, and the

percentage of tweets that are geo-located also rising as smartphones continue to proliferate, the

results underline the potential of this data source in contributing to the improvement of popula-

tion mapping and its dynamic update (Leetaru et al. 2013). Furthermore, other sources of

social media data, some country specific like Baidu (China), Instagram, Shutterfly, and others

also offer potential when the data is not only geospatially referenced but made available for

research such as this.

While the results presented make a strong case for the integration of geotweet densities in

improving population-mapping accuracies, there are a number of caveats and drawbacks that

should be addressed. First, Indonesia has one of the highest Twitter user rates in the world,

making it an ideal setting for this test analysis (Leetaru et al. 2013). However, it remains

unclear if similar results would be found elsewhere, particularly in areas such as sub-Saharan

Africa, where Twitter usage and smartphone penetration levels are much lower. Within Indo-

nesia, there may also be geographical differences in mapping accuracies. Mapping improve-

ments were only assessed by our analysis at the national level and sub-national assessments

may show areas of poorer mapping accuracies where Twitter usage levels are low. Further-

more, we see that population densities in final population maps are highly clustered around

transportation networks, and potentially biased in this regard due to people using social media

while in transport more frequently than when at home. Moreover, even though Twitter users

share their exact location at the time of their tweets, the default spatial granularity of their

tweets is set at “Neighborhood” level which is a geographic boundary defined by Twitter

(https://dev.twitter.com/overview/terms/geo-developer-guidelines). As such, a high level of con-

centration of geotagged tweets with exact latitude and longitude was observed at aggregated

points around city neighborhoods (Wu et al. 2015a, b). How this aggregation process by neigh-

borhood affects fine scale population mapping still needs further assessment. Additionally, the

impacts of demographic biases in Twitter account holders (e.g. they may represent younger seg-

ments of the population) remain unclear and warrant further exploration. However, the results

overall showed that the geotweets made a positive contribution to mapping accuracies despite

these caveats. Another factor that requires further exploration is the timing of the tweets. Here,

tweets from all times of day were aggregated, representing a kind of “ambient” population dis-

tribution picture, which may not have been as representative of the residential population data

from the census against which the outputs were used as a predictor. Further work should exam-

ine whether evening or nighttime-only data provides a better representation of residential pop-

ulation, as has been shown previously for nighttime vs. daytime mobile phone call densities

compared to census counts (Deville et al. 2014). Additionally, including sources of biasing due

to age, income, time of day, smartphone availability, cost, and usage habits would make the

results more informative and allow for exploration on how twitter data can be used in more

diverse scenarios (Ramaswamy et al. 2009). Additionally, novel, open-source social media

applications are providing information that can be interpolated with population maps to gener-

ate better insights on the basic needs of individuals that exist within the gridded population

counts (http://www.voicelots.com).
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Future work will continue to examine the potential of geotweets in combination with other

spatial datasets for improving population mapping. In particular, the integration of such data

with mobile phone call and cell tower records offers potential for improving dynamic popula-

tion mapping, and this will be explored for the 151 low/middle income country call data

record datasets being analyzed by the Flowminder Foundation (http://www.flowminder.org).

Further, different methods of measuring and analyzing the geotweets will be undertaken, from

varying time periods of capture, to differing spatial windows of aggregation. Integration with

upcoming high resolution human settlement datasets will also be explored, including the

Global Human Settlement Layer (http://ghslsys.jrc.ec.europa.eu/) and the Global Urban Foot-

print (http://dlr.de/eoc/en/desktopdefault.aspx/tabid-9628/16557_read-40454).

With the rise of smartphones and social media, the world population is transmitting more

data on its presence and activities than ever before. Such data are often highly biased and

incomplete, but nevertheless, this study has shown its potential in improving our understanding

of human population distributions.
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