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Abstract

We introduce a general framework for estimation of inverse covariance, or precision, matrices 

from heterogeneous populations. The proposed framework uses a Laplacian shrinkage penalty to 

encourage similarity among estimates from disparate, but related, subpopulations, while allowing 

for differences among matrices. We propose an efficient alternating direction method of 

multipliers (ADMM) algorithm for parameter estimation, as well as its extension for faster 

computation in high dimensions by thresholding the empirical covariance matrix to identify the 

joint block diagonal structure in the estimated precision matrices. We establish both variable 

selection and norm consistency of the proposed estimator for distributions with exponential or 

polynomial tails. Further, to extend the applicability of the method to the settings with unknown 

populations structure, we propose a Laplacian penalty based on hierarchical clustering, and 

discuss conditions under which this data-driven choice results in consistent estimation of precision 

matrices in heterogenous populations. Extensive numerical studies and applications to gene 

expression data from subtypes of cancer with distinct clinical outcomes indicate the potential 

advantages of the proposed method over existing approaches.
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1. Introduction

Estimation of large inverse covariance, or precision, matrices has received considerable 

attention in recent years. This interest is in part driven by the advent of high-dimensional 

data in many scientific areas, including high throughput omics measurements, functional 

magnetic resonance images (fMRI), and applications in finance and industry. Applications 

of various statistical methods in such settings require an estimate of the (inverse) covariance 

matrix. Examples include dimension reduction using principal component analysis (PCA), 

classification using linear or quadratic discriminant analysis (LDA/QDA), and discovering 

conditional independence relations in Gaussian graphical models (GGM).

In high-dimensional settings, where the data dimension p is often comparable or larger than 

the sample size n, regularized estimation procedures often result in more reliable estimates. 
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Of particular interest is the use of sparsity inducing penalties, specifically the ℓ1 or lasso 

penalty [30], which encourages sparsity in off-diagonal elements of the precision matrix [7, 

8, 33, 34]. Theoretical properties of ℓ1-penalized precision matrix estimation have been 

studied under both multivariate normality, as well as some relaxations of this assumption [4, 

19, 25, 26].

Sparse estimation is particularly relevant in the setting of GGMs, where conditional 

independencies among variables correspond to zero off-diagonal elements of the precision 

matrix [14]. The majority of existing approaches for estimation of high-dimensional 

precision matrices, including those cited in the previous paragraph, assume that the 

observations are identically distributed, and correspond to a single population. However, 

data sets in many application areas include observations from several distinct 

subpopulations. For instance, gene expression measurements are often collected for both 

healthy subjects, as well as patients diagnosed with different subtypes of cancer. Despite 

increasing evidence for differences among genetic networks of cancer and healthy subjects 

[11, 27], the networks are also expected to share many common edges. Separate estimation 

of graphical models for each of the subpopulations would ignore the common structure of 

the precision matrices, and may thus be inefficient; this inefficiency can be particularly 

significant in high-dimensional low sample settings, where p ≫ n.

To address the need for estimation of graphical models in related subpopulations, few 

methods have been recently proposed for joint estimation of K precision matrices 

, k = 1, …, K [6, 9]. These methods extend the penalized maximum 

likelihood approach by combining the Gaussian likelihoods for the K subpopulations

(1)

Here, nk and  are the number of observations and the sample covariance matrix for the 

kth subpopulation, respectively,  is the total sample size and tr(·) and det(·) 

denote matrix trace and determinant.

To encourage similarity among estimated precision matrices, Guo et al. [9] modeled the (i, 

j)-element of Ω(k) as product of a common factor θij and group-specific parameters , i.e. 

. Identifiability of the estimates is ensured by assuming δij ≥ 0. A zero common 

factor δij = 0 induces sparsity across all subpopulations, whereas  results in condition-

specific sparsity for . This reparametrization results in a non-convex optimization 

problem based on the Gaussian likelihood with ℓ1-penalties ∑i≠j δij and . 

Danaher et al. [6] proposed two alternative estimators by adding an additional convex 

penalty to the graphical lasso objective function: either a fused lasso penalty 
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 (FGL), or a group lasso penalty  (GGL). The 

fused lasso penalty has also been used by Kolar et al. [13], for joint estimation of multiple 

graphical models in multiple time points. The fused lasso penalty strongly encourages the 

values of  to be similar across all subpopulations, both in values as well as sparsity 

patterns. On the other hand, the group lasso penalty results in similar estimates by shrinking 

all  across subpopulations to zero if  is small.

Despite their differences, methods of Guo et al. [9] and Danaher et al. [6] inherently assume 

that precision matrices in K subpopulations are equally similar to each other, in that they 

encourage  and  and  and  to be equally similar. However, when K > 2, 

some subpopulations are expected to be more similar to each other than others. For instance, 

it is expected that genetic networks of two subtypes of cancer be more similar to each other 

than to the network of normal cells. Similarly, differences among genetic networks of 

various strains of a virus or bacterium are expected to correspond to the evolutionary 

lineages of their phylogenetic trees. Unfortunately, existing methods for joint estimation of 

multiple graphical models ignore this heterogeneity in multiple subpopulations. 

Furthermore, existing methods assume subpopulation memberships are known, which limits 

their applicability in settings with complex but unknown population structures; an important 

example is estimation of genetic networks of cancer cells with unknown subtypes.

In this paper, we propose a general framework for joint estimation of multiple precision 

matrices by capturing the heterogeneity among subpopulations. In this framework, 

similarities among disparate subpopulations are presented using a subpopulation 
networkG(V, E, W), a weighted graph whose node set V is the set of subpopulations. The 

edges in E and the weights Wkk′ for (k, k′) ∈ E represent the degree of similarity between 

any two subpopulations k, k′. In the special case where Wkk′ = 1 for all k, k′, the 

subpopulation similarities are only captured by the structure of the graph G. An example of 

such a subpopulation network is the line graph corresponding to observations over multiple 

time points, which is used in estimation of time-varying graphical models [13]. As we will 

show in Section 2.3, other existing methods for joint estimation of multiple graphical 

models, e.g. proposals of Danaher et al. [6], can also be seen as special cases of this general 

framework.

Our proposed estimator is the solution to a convex optimization problem based on the 

Gaussian likelihood with both ℓ1 and graph Laplacian [15] penalties. The graph Laplacian 

has been used in other applications for incorporating a priori knowledge in classification 

[24], for principal component analysis on network data [28], and for penalized linear 

regression with correlated covariates [10, 15, 17, 18, 32, 37]. The Laplacian penalty 

encourages similarity among estimated precision matrices according to the subpopulation 

network G. The ℓ1-penalty, on the other hand, encourages sparsity in the estimated precision 

matrices. Together, these two penalties capture both unique patterns specific to each 

subpopulation, as well as common patterns shared among different subpopulations.
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We first discuss the setting where G(V, E, W) is known from external information, e.g. 

known phylogenetic trees (Section 2), and later discuss the estimation of the subpopulation 

memberships and similarities using hierarchical clustering (Section 4). We propose an 

alternating methods of multipliers (ADMM) algorithm [3] for parameter estimation, as well 

as its extension for efficient computation in high dimensions by decomposing the problem 

into block-diagonal matrices. Although we use the Gaussian likelihood, our theoretical 

results also hold for non-Gaussian distributions. We establish model selection and norm 

consistency of the proposed estimator under different model assumptions (Section 3), with 

improved rates of convergence over existing methods based on penalized likelihood. We also 

establish the consistency of the proposed algorithm for the estimation of multiple precision 

matrices, in settings where the subpopulation network G or subpopulation memberships are 

unknown. To achieve this, we establish the consistency of hierarchical clustering in high 

dimensions, by generalizing recent results of Borysov et al. [1] to the setting of arbitrary 

covariance matrices, which is of independent interest.

The rest of the paper is organized as follows. In Section 2 we describe the formal setup of 

the problem and present our estimator. Theoretical properties of the proposed estimator are 

studied in Section 3, and Section 4 discusses the extension of the method to the setting 

where the subpopulation network is unknown. The ADMM algorithm for parameter 

estimation and its extension for efficient computation in high dimensions are presented in 

Section 5. Results of the numerical studies, using both simulated and real data examples, are 

presented in Section 6. Section 7 concludes the paper with a discussion. Technical proofs are 

collected in the Appendix.

2. Model and Estimator

2.1. Problem Setup

Consider K subpopulations with distributions ℘(k), k = 1, …, K. Let X(k) = (X(k),1, …, 

X(k),p)T ∈ ℝp be a random vector from the kth subpopulation with mean μk and the 

covariance matrix . Suppose that an observation comes from the kth 

subpopulation with probability πk > 0.

Our goal is to estimate the precision matrices , k = 1, …, K. 

To this end, we use the Gaussian log-likelihood based on the correlation matrix (see 

Rothman et al. [26]) as a working model for estimation of true , k = 1, …, K. Let , i 
= 1, …, nk, be independent and identically distributed (i.i.d.) copies from ℘(k), k = 1, …, K. 

We denote the correlation matrices and their inverse by , and 

, k = 1, …, K, respectively. The Gaussian log-likelihood based on the 

correlation matrix can then be written as
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(2)

where , k = 1, …, K is the sample correlation matrix for subpopulation k.

Examining the derivative of (2), which consists of , k = 1, …, K, justifies its use 

as a working model for non-Gaussian data: the stationary points of (2) is , which gives a 

consistent estimate of . Thus we do not, in general, need to assume multivariate 

normality. However, in certain applications, for instance LDA/QDA and GGM, the resulting 

estimate is useful only if the data follows a multivariate normal distribution.

2.2. The Laplacian Shrinkage Estimator

Let Θ = (Θ(1), …, Θ(K)) and write , i, j = 1, …, p for a vector of 

(i, j)-elements across subpopulations. Our proposed estimator, Laplacian Shrinkage for 

Inverse Covariance matrices from Heterogeneous populations (LASICH), first estimates the 

inverse of the correlation matrices for each of the K subpopulations, and then transforms 

them into the estimator of inverse covariance matrices, as in Rothman et al. [26]. In 

particular, we first obtain the estimate Θ̂ of the true inverse correlation matrix by solving the 

following optimization problem

(3)

where Θ = ΘT enforces the symmetry of individual inverse correlation matrices, i.e. Θ(k) = 

(Θ(k))T, and Θ ≻ 0 requires that Θ(k) is positive definite for k = 1, …, K. The ℓ1-penalty 

 in (3) encourages sparsity in estimated inverse correlation matrices. 

The graph Laplacian penalty, on the other hand, exploits the information in the 

subpopulation network G to encourage similarity among values of  and . The tuning 

parameters ρn and ρnρ2 control the size of each penalty term.

Figure 1 illustrates the motivation for the graph Laplacian penalty ‖Θij‖L in (3). The gray-

scale images in the figure show the hypothetical sparsity patterns of precision matrices Θ(1), 

Θ(2), Θ(3) for three related subpopulations. Here, Θ(1) consists of two blocks with one “hub” 

node in each block; in Θ(2) and Θ(3) one of the blocks is changed into a “banded” structure. 

It can be seen that one of the two blocks in both Θ(2) and Θ(3) have a similar sparsity pattern 

as Θ(1). However, Θ(2) and Θ(3) are not similar. The subpopulation network G in this figure 

captures the relationship among precision matrices of the three subpopulations. Such 
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complex relationships cannot be captured using the existing approaches, e.g. Danaher et al. 

[6], Guo et al. [9], which encourage all precision matrices to be equally similar to each other. 

More generally, G can be a weighted graph, G(V, E, W), whose nodes represent the 

subpopulations 1, …, K. The edge weights W : E → ℝ+ represent the similarity among 

pairs of subpopulations, with larger values of Wkk′ ≡ W (k, k′) > 0 corresponding to more 

similarity between precision matrices of subpopulations k and k′.

In this section, we assume that the weighted graph G is externally available, and defer the 

discussion of data-driven choices of G, based on hierarchical clustering, to Section 4. Given 

G, the (unnormalized) graph Laplacian penalty ‖Θij‖L is defined as

(4)

where Wkk′ = 0 if k and k′ are not connected. The Laplacian shrinkage penalty can be 

alternatively written as , where  is the Laplacian 

matrix [5] of the subpopulation network G defined as

where dk = ∑k′≠kWkk′ is the degree of node k in G with Wkk′ = 0 if k and k′ are not 

connected. The Laplacian shrinkage penalty can also be defined in terms of the normalized 
graph Laplacian, I − D−1/2W D−1/2, where D = diag(d1, …, dK) is the diagonal degree 

matrix. The normalized Laplacian penalty,

which we also denote as ‖Θij‖L, imposes smaller shrinkage on coefficients associated with 

highly connected subpopulations. We henceforth primarily focus on the normalized penalty.

Given estimates of the inverse correlation matrices Θ̂(1), …, Θ̂(K) from (3), we obtain 

estimates of precision matrices Ω(k) by noting that Ω(k) = Ξ(k)Θ(k)Ξ(k), where Ξ(k) is the 

diagonal matrix of reciprocals of the standard deviations 

. Our estimator  of precision 

matrices Ω is thus defined as
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where  with sample variance  for the ith 

element in the kth subpopulation.

A number of alternative strategies can be used instead of the graph Laplacian penalty in (3). 

First, similarity among coefficients of precision matrices can also be imposed using a ridge-

type penalty, . The main difference is that our penalty ‖Θij‖L discourages the inclusion 

of edges  if they are very different across the K subpopulations. Another option 

is to use the graph trend filtering [31], which impose a fused lasso penalty over the 

subpopulation graph G. Finally, ignoring the weights Wkk′ in (4), the Laplacian shrinkage 

penalty resembles the Markov random field (MRF) prior used in Bayesian variable selection 

with structured covariates [16]. While our paper was under review, we became aware of the 

recent work by Peterson et al. [23], who utilize an MRF prior to develop a Bayesian 

framework for estimation of multiple Gaussian graphical models. This method assumes that 

edges between pairs of random variable are formed independently, and is hence more suited 

for Erdős-Rényi networks. Our penalized estimation framework can be seen as an alternative 

to using an MRF prior to estimate the precision matrices in a mixture of Gaussian 

distributions.

2.3. Connections to Other Estimators

To connect our proposed estimator to existing methods for joint estimation of multiple 

graphical models, we first give an alternative interpretation of the graph Laplacian penalty 

 as a norm for a transformed version of . More specifically, 

consider the mapping gG : ℝK → ℝK defined based on the Laplacian matrix for graph G

if G has at least one edge. For a graph with no edges, define gG(Θij) = IK⊗Θij = diag(Θij), 

where IK is the K-identity matrix, and ⊗ denotes the Kronecker product. It can then be seen 

that the graph Laplacian penalty can be rewritten as

where ‖·‖F is the Frobenius norm.

Using the above interpretation, other methods for joint estimation of multiple graphical 

models can be seen as penalties on transformations gG(Θij) corresponding to different graphs 

G. We illustrate this connection using the hypothetical subpopulation network shown in 

Figure 2a.

Consider first the FGL penalty of Danaher et al. [6], applied to elements of the inverse 

correlation matrix . Let GC be a complete unweighted graph (Wkk′ = 1 ∀k ≠ k′), 
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in which all  node-pairs are connected to each other (Figure 2b). It is then easy to see 

that

where the factor of  can be absorbed into the tuning parameter for the FGL 

penalty. A similar argument can also be applied to the GGL penalty of Danaher et al. [6], 

‖Θij‖, by considering instead an empty graph Ge with no edges between nodes (Figure 2c). In 

this case, the mapping gG would give a diagonal matrix with elements , and hence ‖Θij‖ 
= ‖gGe(Θij)‖F.

Unlike proposals of Danaher et al. [6], the estimator of Guo et al. [9] is based on a non-

convex penalty, and does not naturally fit into the above framework. However, Lemma 2 in 

Guo et al. [9] establishes a connection between the optimal solutions of the original 

optimization problem, with those obtained by considering a single penalty of the form 

. Similar to GGL, the connection with the method of Guo et al. 

[9] can be build based on the above alternative formulation, by considering again the empty 

graph Ge (Figure 2c), but instead the ‖·‖1,2 penalty, which is a member of the CAP family of 

penalties [36]. More specifically,

Using the above framework, it is also easy to see the connection between our proposed 

estimator and the proposal of Kolar et al. [13]: the total variation penalty in Kolar et al. [13] 

is closely related to FGL, with summation over differences in consecutive time points. It is 

therefore clear that the penalty of Kolar et al. [13] (up to constant multipliers) can be 

obtained by applying the graph Laplacian penalty defined for a line graph connecting the 

time points (Figure 2d).

The above discussion highlights the generality of the proposed estimator, and its connection 

to existing methods. In particular, while FGL and GGL/Guo et al. [9] consider extreme cases 

with isolated, or fully connected nodes, one can obtain more flexibility in estimation of 

multiple precision matrices by defining the penalty based on the known subpopulation 

network, e.g. based on phylogenetic trees or spatio-temporal similarities between fMRI 

samples. The clustering-based approach of Section 4 further extends the applicability of the 

proposed estimator to the settings where the subpopulation network in not known a priori. 
The simulation results in Section 6 show that the additional flexibility of the proposed 

estimator can result in significant improvements in estimation of multiple precision matrices, 
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when K > 2. The above discussion also suggests that other variants of the proposed estimator 

can be defined, by considering other norms. We leave such extensions to future work.

3. Theoretical Properties

In this section, we establish norm and model selection consistency of the LASICH estimator. 

We consider a high-dimensional setting p ≫ nk, k = 1, …, K, where both n and p go to 

infinity. As mentioned in the Introduction, the normality assumption is not required for 

establishing these results. We instead require conditions on tails of random vectors X(k) for 

each k = 1, …, K. We consider two cases, exponential tails and polynomial tails, which both 

allow for distributions other than multivariate normal.

Condition 1 (Exponential Tails)

There exists a constant c1 ∈ (0, ∞) such that

Condition 2 (Polynomial Tails)

There exist constants c2, c3 > 0 and c4such that

Since we adopt the correlation-based Gaussian log-likelihood, we require the boundedness 

of the true variances to control the error between true and sample correlation matrices.

Condition 3 (Bounded variance)

There exist constants c5 > 0 andc6 < ∞ such that and .

Condition 4 (Sample size)

Let . Let

i. (Exponential tails). It holds that

and log p/n → 0.
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ii.
(Polynomial tails). Let where ρnis given in 
Lemma 1 in theAppendixand c7 > 0 be some constant. It holds that

Condition 4 determines the sufficient sample size n = Σk for consistent estimation of 

precision matrices Θ(1), …, Θ(K) in relation to, among other quantities, the number of 

variables p, the sparsity pattern s and the spectral norm of the Laplacian matrix ‖L‖2 of the 

subpopulation network G. While a general characterization of ‖L‖2 is difficult, investigating 

its value in special cases provides insight into the effect of the underlying population 

structure on the required sample size. Consider, for instance, two extreme cases: for a fully 

connected graph G associated with K subpopulations, ‖L‖2 = 1/(K − 1); for a minimally 

connected “line” graph, corresponding to e.g. multiple time points, ‖L‖2 = 2: with K = 5, 

30% more samples are needed for the line graph, compared to a fully connected network. 

The above calculations match our intuition that fewer samples are needed to consistently 

estimate precision matrices of K subpopulations that share greater similarities. This, of 

course, makes sense, as information can be better shared when estimating parameters of 

similar subpopulations. Note that, here L represents the Laplacian matrix of the true 
subpopulation network capturing the underlying population structure. The above conditions 

thus do not provide any insight into the effect of misspecifying the relationship between 

subpopulations, i.e., when an incorrect L is used. This is indeed an important issue that 

garners additional investigation; see Zhao and Shojaie [37] for some insight in the context of 

inference for high dimensional regression. In Section 4, we will discuss a data-driven choice 

of L that results in consistent estimation of precision matrices.

Before presenting the asymptotic results, we introduce some additional notations. For a 

matrix , we denote the spectral norm ‖A‖2 = maxx∈ℝp,‖x‖=1‖Ax‖, and 

the element-wise ℓ∞-norm ‖A‖∞ = maxi,j |ai,j| where ‖x‖ is the Euclidean norm for a vector 

x. We also write the induced ℓ∞-norm ‖A‖∞/∞ = sup‖x‖∞=1‖Ax‖∞ where ‖x‖∞ = maxi |xi| for 

x = (x1, …, xp). For the ease of presentation, the results in this section are presented in 

asymptotic form; non-asymptotic results and proofs are deferred to the Appendix.

3.1. Consistency in Spectral Norm

Let , and 

. The following theorem establishes the rate 

of convergence of the LASICH estimator, in spectral norm, under either exponential or 

polynomial tail conditions (Condition 1 or 2). Convergence rates for LASICH in ℓ∞-and 

Frobenius norm are discussed in Section 3.3.

Theorem 1—Suppose Conditions 3 and 4 hold. Under Condition 1 or 2,
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as n, p → ∞ where ρnis given in Lemma 1 in theAppendixwith γ = mink πk/2.

Theorem 1 is proved in the Appendix. The proof builds on tools from Negahban et al. [20]. 

However, our estimation procedure does not match their general framework: First, we do not 

penalize the diagonal elements of the inverse correlation matrices; our penalty is thus not a 

norm. Second, the Laplacian matrix is nonpositive definite. Thus, the Laplacian shrinkage 

penalty is not strictly convex. The results from Negahban et al. [20] are thus not directly 

applicable to our problem. To establish the estimation consistency, we first show, in Lemma 

3, that the function r(·) = ‖·‖1 + ρ2‖·‖L is a seminorm, and is, moreover, convex and 

decomposable. We also characterize the subdifferential of this seminorm in Lemma 6, based 

on the spectral decomposition of the graph Laplacian L. The rest of the proof uses tools from 

Negahban et al. [20], Rothman et al. [26] and Ravikumar et al. [25], as well as new 

inequalities and concentration bounds. In particular, in Lemma 4 we establish a new ℓ∞ 
bound for the empirical covariance matrix for random variables with polynomial tails, which 

is used to established the consistency in the spectral norm under Condition 2.

The convergence rate in Theorem 1 compares favorably to several other methods based on 

penalized likelihood. Few results are currently available for estimation of multiple precision 

matrices. An exception is Guo et al. [9], who obtained a slower rate of convergence Op({(s + 

p) log p/n}1/2) under the normality assumption and based on a bound on the Frobenius norm. 

Our rates of convergence are comparable to the results of Rothman et al. [26] for spectral 

norm convergence of a single precision matrix, obtained under the normality assumption. 

Ravikumar et al. [25], on the other hand, assumed the irrepresentability condition to obtain 

the rate Op({min{s + p, d2} log p/n}1/2) and Op({min{s + p, d2}pτ/(c2+c3+1)/n}1/2), under 

exponential and polynomial tail conditions, respectively, where τ > 2 is some scalar. The rate 

in Theorem 1 is obtained without assuming the irrepresentability condition. In fact, our rates 

of convergence are faster than those of Ravikumar et al. [25] given the irrepresentability 

condition 5 (see Corollary 1). Cai et al. [4] obtained improved rates of convergence under 

both tail conditions for an estimator that is not found by minimizing the penalized likelihood 

objective function, and may be nonpositive definite. Finally, note that the results in [4, 25, 

26] are for separate estimation of precision matrices and hold for the minimum sample size 

across subpopulations, minknk, whereas our results hold for the total samples size Σknk.

3.2. Model Selection Consistency

Let  be the support of , and denote by d the 

maximum number of nonzero elements in any rows of , k = 1, …, K. Define the event

(5)
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where sign(a) is 1 if a > 0, 0 if a = 0 and −1 if a < 0. We say that an estimator Ω̂ρn of Ω0 is 

model-selection consistent if .

We begin by discussing an irrepresentability condition for estimation of multiple graphical 

models. This restrictive condition is commonly assumed to establish model selection 

consistency of lasso-type estimators, and is known to be almost necessary [19, 35]. For the 

graphical lasso, Ravikumar et al. [25] showed that the irrepresentability condition amounts 

to a constraint on the correlation between entries of the Hessian matrix Γ = Ω−1 ⊗ Ω−1 in the 

set S corresponding to nonzero elements of Ω, and those outside this set. Our 

irrepresentability condition is motivated by that in Ravikumar et al. [25], however, we adjust 

the index set S to also account for covariances of “non-edge variables” that are correlated 

with each other. More specifically, the description of irrepresentability condition in 

Ravikumar et al. [25] involves ΓSS consisting only of elements σijσkl with (i, j) ∈ S and (k, l) 
∈ S. However, σij ≠ 0 for (i, j) ∉ S is not taken into account by this definition. We thus adjust 

the index set S so that ΓSS also includes elements σijσkl if (i, k) ∈ S and (j, l) ∈ S. This 

definition is based on the crucial observations that Γ = Σ ⊗ Σ involves the covariance matrix 

Σ instead of the precision matrix Ω, and that some variables are correlated (i.e., σij ≠ 0) even 

though they may be conditionally independent (i.e., ωij = 0). Defining S(k) for k = 1, …, K 
as above, we assume the following condition.

Condition 5 (Irrepresentability condition)—The inverse of the correlation matrix 

satisfies the irrepresentability condition for S(k)with parameter α: (a) 

and are invertible, and (b) there exists some α ∈ (0, 

1] such that

(6)

for k = 1, …, K where .

In addition to the irrepresentability condition, we require bounds on the magnitude of 

 and their normalized difference.

Condition 6 (Lower bounds for the inverse correlation matrices)—There exists a 
constant c8 ∈ ℝ such that

Moreover, for Ω0,ij ≠ 0, LΩ0,ij ≠ 0 and there exists a constant c9 > 0 such that
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The first lower bound in Condition 6 is the usual “min-beta” condition for model selection 

consistency of lasso-type estimators. The second lower bound, which is represented here for 

the normalized Laplacian penalty, is a mild condition which ensures estimates based on 

inverse correlation matrices can be mapped to precision matrices. For any pair of 

subpopulations k and k′ connected in G it requires that if the difference in (normalized) 

entries of the entires of the precision matrices are nonzero, the difference in (normalized) 

entries of inverse correlation matrices are bounded away from zero. In other words, the 

bound guarantees that Θ0,ij is not in the null space of L, whenever Ω0,ij is outside of the null 

space. This bound can be relaxed if we use a positive definite matrix Lε = L + εI for ε > 0 

small.

Our last condition for establishing the model selection consistency concerns the minimum 

sample size and the tuning parameter for the graph Laplacian penalty. This condition is 

necessary to control the ℓ∞-bound of the error Θ̂ρn − Θ0, as in Ravikumar et al. [25]. Our 

minimum sample size requirement is related to the irrepresentability condition. Let κΓ be the 

maximum of the absolute column sums of the matrices {(Γ(k))−1}S(k)S(k), k = 1, …, K, and 

κΨ be the maximum of the absolute column sums of the matrices , k = 1, …, K. The 

minimum sample size in Ravikumar et al. [25] is also a function of the irrepresentability 

constant, in particular, their κΓ involves . There is, therefore, a subtle 

difference between our definition and theirs: in our definition, the matrix is first inverted and 

then partitioned, while in Ravikumar et al. [25], the matrix is first partitioned and then 

inverted. Corollary 2 establishes the model selection consistency under a weaker sample size 

requirement, by exploiting instead the control of the spectral norm in Theorem 1.

Condition 7 (Sample size and regularization parameters)—Let

i. (Exponential tails). It holds

ii. (Polynomial tails). It holds .

iii. It holds that .

With these condition, we obtain
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Theorem 2—Suppose that Conditions 3, 5, 6 and 7 hold. Under Condition 1 or 2, P(ℳ(Ω̂ρn, 

Ω0)) → 1 as n, p → ∞ where ρnis given in Lemma 1 in theAppendixwith γ = mink πk/2.

3.3. Additional Results

In this section, we establish norm and variable selection consistency of LASICH under 

alternative assumptions. Our first result gives better rates of convergence for consistency in 

the ℓ∞-, spectral and Frobenius norms, under the condition for model selection consistency. 

Our rates in Corollary 1 improve the previous results by Ravikumar et al. [25], and are 

comparable to that of Cai et al. [4] in the ℓ∞- and spectral norms under both tail conditions.

Corollary 1—Suppose the conditions in Theorem 2 hold. Then, under Condition 1 or 2,

Our next result in Corollary 2 establishes the model selection consistency under a weaker 

version of the irrepresentability condition (Condition 6). Aside from the difference in the 

index sets S(k), the form of the Condition 6 and the assumption of invertibility of 

 are similar to those in Ravikumar et al. [25]. On the other hand, 

Ravikumar et al. [25] do not require invertibility of . However, their 

proof is based on an application of Brouwer’s fixed point theorem, which does not hold for 

the corresponding function (Eq. (70) in page 973) since it involves a matrix inverse, and is 

hence not continuous on its range. The additional inevitability assumption in Condition 6 is 

used to address this issue in Lemma 11. The condition can be relaxed if we assume an 

alternative scaling of the sample size stated in Condition 8 below instead of Condition 7.

Condition 8—Let . Suppose and

i. (Exponential tails)

or
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ii. (Polynomial tails)

Corollary 2—Suppose that Conditions 3, 6 and 8 hold. Suppose also that Condition 5 holds 

without requiring the invertibility of . Then, under Condition 1 or 2, 
P(ℳ(Ω̂ρn, Ω0)) → 1 as n, p → ∞ where ρnis given in Lemma 1 in theAppendix with γ = 

mink πk/2.

4. Laplacian Shrinkage based on Hierarchical Clustering

Our proposed LASICH approach utilizes the information in the subpopulation network G. In 

practice, however, similarity between subpopulations may be difficult to ascertain or 

quantify. In this section, we present a modified LASICH framework, called HC-LASICH, 

which utilizes hierarchical clustering to learn the relationships among subpopulations. The 

information from hierarchical clustering is then used to define the weighted subpopulation 

network. Importantly, HC-LASICH can even be used in settings where the subpopulation 

membership is unavailable, for instance, to learn the genetic network of cancer patients, 

where cancer subtypes may be unknown.

We use hierarchical clustering with a complete, single or average linkage to estimate both 

the subpopulation memberships and the weighted subpopulation network G. Specifically, the 

length of a path between two subpopulations in the dendrogram is used as a measure of 

dissimilarity between two subpopulations; the weights for the subpopulation networks are 

simply defined by taking the inverse of these lengths. Throughout this section, we assume 

that the number of subpopulations K is known. While a number of methods have been 

proposed for estimating the number of subpopulations in hierarchical clustering (see e.g. 

Borysov et al. [1] and the references therein), the problem is beyond the scope of this paper.

Let I = (I(1), …, I(K)) be the subpopulation membership indicator such that I follows the 

multinomial distribution MultK (1, (π1, …, πK)) with parameter 1 and subpopulation 

membership probabilities (π1, …, πK) ∈ (0, 1)K. Note that I is missing and is to be 

estimated. Let Ii, i = 1, …, n be i.i.d. copies of I and  be an estimated 

subpopulation indicator for the ith observation via hierarchical clustering. Based on the 

estimated subpopulation membership and subpopulation network Ĝ, we apply our method to 

obtain the estimator, HC-LASICH, . Interestingly, HC-

LASICH enjoys the same theoretical properties as LASICH, under the normality 

assumption. To show this, we first establish the consistency of hierarchical clustering in high 

dimensions, which is of independent interest. Our result is motivated by the recent work of 

[1], who study the consistency of hierarchical clustering for independent normal variables 

X(k) ~ N(μ(k), σ(k)I); we establish similar results for multivariate normal distributions with 

arbitrary covariance structures. We make the following assumption.
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Condition 9

For k, k′ = 1, …, K, let

where λ(k),jis the eigenvalues of Σ(k)with λ(k),1 ≤ λ(k),2 ≤ … ≤ λ(k),p, and the spectral 

decomposition of Σ(k) + Σ(k′)is . It holds that

for constants m and M.

Under the normality assumption, the following results shows that the probability of 

successful clustering converges to 1, as p, n → ∞.

Theorem 3

Suppose that that X(k), k = 1, …, K, is normally distributed. Under Condition 9,

(7)

as n, p → ∞.

To proof of Theorem 3 generalizes recent results of Borysov et al. [1] to the case of arbitrary 

covariance structures. A key component of the proof is a new bound on the ℓ2 norm of a 

multivariate normal random variable with arbitrary mean and covariance matrix established 

in Lemma 14. The proof of the lemma uses new concentration inequalities for high-

dimensional problems in [2], and may be of independent interest.

Note that the consistent estimation of subpopulation memberships (7) implies that the 

estimated hierarchy among clusters also matches the true hierarchy. Thus, with successful 

clustering established in Theorem 3, theoretical properties of Ω̂
HC, ρn naturally follow.
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Theorem 4

Suppose that X(k), k = 1, …, K, is normally distributed and that Condition 9 holds. (i) Under 
the conditions of Theorem 1,

Suppose, moreover, that the conditions of Theorem 2 holds. Then

(ii) Under the conditions of Theorem 2,

5. Algorithms

We develop an alternating directions method of multipliers (ADMM) to efficiently solve the 

convex optimization problem (3).

Let 

, k = 1, … K. Define A = (A(1), …, A(K)), B = (B(1), …, B(K)), C = (C(1), …, C(K)), D = 

(D(1), …, D(K)), and 

where .

To facilitate the computation, we consider instead a perturbed graph Laplacian Lε = L + εI, 
where I is the identity matrix and ε > 0 is a small perturbation. The difference between 

solutions to the original and modified optimization problem is largely negligible for small ε; 

however, the positive definiteness of Lε results in more efficient computation. A similar idea 
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was used in Guo et al. [9] and Rothman et al. [26] to avoid dividision by zero. The 

optimization problem (3) with L replaced by Lε can then be written as

(8)

Using Lagrange multipliers E = (EA, EB, EC)T, with  with 

, k = 1, …, K,  with , k = 1, …, K, and 

 with , k = 1, …, K, the augmented Lagrangian in scaled 

form is given by

Here ϱ > 0 is a regularization parameter and  is the square root of Lε with 

.

The proposed ADMM algorithm is as follows.

• Step 0. Initialize A(k) = A(k),0, B(k) = B(k),0, C(k) = C(k),0, D(k) = D(k),0, 

 and choose ϱ > 0. Select a scalar ϱ > 0.

• Step m. Given the (m − 1)th estimates,

– (Update A(k)) Find Am minimizing 

 (see pages 46–

47 of Boyd et al. [3] for details).

–
(Update B(k)) Compute , where 

Sy(x) is x − y if x > y, is 0 if |x| ≤ y, and is x + y if x < −y.
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– (Update C(k)) For (x)+ = max{x, 0}, compute

– (Update D(k)) Compute

– (Update EA) Compute .

– (Update EB) Compute ,

–
(Update EC) Compute .

• Repeat the iteration until the maximum of the errors 

, s(k),m = 

ϱ(D(k),m − D(k),m−1) in the Frobenius norm is less than a specified tolerance 

level.

The proposed ADMM algorithm facilitates the estimation of parameters of moderately large 

problems. However, parameter estimation in high dimensions can be computationally 

challenging. We next present a result that determines whether the solution to the 

optimization problem (3), for given values of tuning parameters ρn, ρ2, is block diagonal. 

(Note that this result is an exact statement about the solution to (3), and does not assume 

block sparsity of the true precision matrices; see Theorems 1 and 2 of Danaher et al. [6] for 

similar results.) More specifically, the condition in Proposition 1 provides a very fast check, 

based on the entries of the empirical correlation matrices , k = 1, …, K, to identify the 

block sparsity pattern in , k = 1, …, K after some permutation of the features.

Let UL = [u1 … uK] ∈ ℝK×K where u1, …, uK’s are eigenvectors of L corresponding to 0, 

λL,2, …, λL,K. Define  as the diagonal matrix with diagonal elements 0, 

.

Proposition 1

The solution , k = 1, …, Kto the optimization problem(3)consists of the block diagonal 
matrices with the same block structure diag(Ω1, …, ΩB) among all groups if and only if for 

(9)
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and for all i, j such that the (i, j) element is outside the blocks.

The proof of the Proposition is similar to Theorems 1 of Danaher et al. [6] and is hence 

omitted. Condition 9 can be easily verified by applying quadratic programming to the left 

hand side of the inequality. The solution to (3) can then be equivalently found by solving the 

optimization problem separately for each of the blocks; this can result in significant 

computational advantages for moderate to large values of ρnρ2.

6. Numerical Results

6.1. Simulation Experiments

We compare our method with four existing methods, graphical lasso, the method of Guo et 

al. [9], FGL and GGL of Danaher et al. [6]. For graphical lasso, estimation was carried out 

separately for each group with the same regularization parameter.

Our simulation setting is motivated by estimation of gene networks for healthy subjects and 

patients with two similar diseases caused by inactivation of certain biological pathways. We 

consider K = 3 groups with sample sizes n = (50, 100, 50) and dimension p = 100. Data are 

generated from multivariate normal distributions , k = 1, 2, 3; all precision 

matrices  are block diagonal with 4 blocks of equal size.

To create the precision matrices, we first generated a graph with 4 components of equal size, 

each as either an Erdős-Rényi or scale free graphs with 95 total edges. We randomly 

assigned Unif((−7, −5) ∪ (.5, .7)) values to nonzero entries of the corresponding adjacency 

matrix A and obtained a matrix Ã. We then added 0.1 to the diagonal of Ã to obtain a 

positive definite matrix . For each of subpopulations 2 and 3, we removed one of the 

components of the graph by setting the off diagonal entries of Ã to zero, and added a 

perturbation from Unif(−2, .2) to nonzero entries in Ã. Positive definite matrices  and 

 were obtained by adding 0.1 to the diagonal elements. All partial correlations ranges 

from .28 to .54 in the absolute values. A similar setting was considered in in Danaher et al. 

[6], where the graph included more components, but no perturbation was added. We 

consider two simulation settings, with known and unknown subpopulation network G.

6.1.1. Known subpopulation network G—In this case, we set μ(k) = 0, k = 1, 2, 3 and 

use the graph in Figure 1 as the subpopulation network.

Figures 3a,c show the average number of true positive edges versus the average number of 

detected edges over 50 simulated data sets. Results for multiple choices of the second tuning 

parameter are presented for FGL, GGL and LASICH. It can be seen that in both cases, 

LASICH outperforms other methods, when using relatively large values of ρ2. Smaller 

values of ρ2, on the other hand, give similar results as other methods of joint estimation of 

multiple graphical models. These results indicate that, when the available subpopulation 

network is informative, the Laplacian shrinkage constraint can result in significant 

improvement in estimation of the underlying network.
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Figures 3b,d show the estimation error, in Frobenius norm, versus the number of detected 

edges. LASICH has larger errors when the estimated graphs have very few edges, but, its 

error decreases as the number of detected edges increase, eventually yielding smaller errors 

than other methods. The non-convex penalty of Guo et al. [9] performs well in terms of 

estimation error, although determining the appropriate range of tuning parameter for this 

method may be difficult.

6.1.2. Unknown subpopulation network G—In this case, the subpopulation 

memberships and the subpopulation network G are estimated based on hierarchical 

clustering. We randomly generated μ(1) from a multivariate normal distribution with a 

covariance matrix σ2I. For subpopulations 2 and 3, the elements of μ(1) corresponding to the 

empty components of the graph were set to zero to obtain μ(2) and μ(3). Hierarchical 

clustering with complete linkage was applied to data to obtain the dendrogram; we took 

inverse of distances in the dendrogram to obtain similarity weights used in the graph 

Laplacian.

Figures 4 compares the performance of HC-LASICH, in terms of support recovery, to 

competing methods, in the setting where the subpopulation memberships and network are 

estimated from data (Section 4). Here the differences in subpopulation means μ(k,k′) are set 

up to evaluate the effect of clustering accuracy. The four settings considered correspond to 

average Rand indices of .6 .7, .8 and .9 across 50 data sets, respectively. Here the second 

tuning parameter for HC-LASICH, GGL and FGL is chosen according to the best 

performing model in Figure 3. As expected, changing the mean structure, and 

correspondingly the Rand index, does not affect the performance of other methods. The 

results indicate that, as long as features can be clustered in a meaningful way, HC-LASICH 

can result in improved support recovery. Data-adaptive choices of the tuning parameter 

corresponding to the Laplacian shrinkage penalty may result in further improvements in the 

performance of the HC-LASICH. However, we do not pursue such choices here.

6.2. Genetic Networks of Cancer Subtypes

Breast cancer is heterogenous with multiple clinically verified subtypes [22]. Jönsson et al. 

[12] used copy number variation and gene expression measurements to identify new 

subtypes of breast cancer and showed that the identified subtypes have distinct clinical 

outcomes. The genetic networks of these different subtypes are expected to share 

similarities, but to also have unique features. Moreover, the similarities among the networks 

are expected to corroborate with the clustering of the subtypes based on their molecular 

profiles. We applied network estimation methods of Section 6.1 to a subset of the microarray 

gene expression data from Jönsson et al. [12], containing data for 218 patients classified into 

three previously known subtypes of breast cancer: 46 Luminal-simple, 105 Luminal-

complex and 67 Basal-complex samples. For ease of presentation, we focused on 50 genes 

with largest variances. The hierarchical clustering results of Jönsson et al. [12], reproduced 

in Figure 5 for the above three subtypes, were used to identify the subpopulation 

membership; reciprocals of distances in the dendrogram were used to define similarities 

among subtypes used in the graph Laplacian penalty.
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To facilitate the comparison, tuning parameters were selected such that the estimated 

networks of the three subtypes using each method contained a total of 150 edges. For 

methods with two tuning parameters, pairs of tuning parameters were determined using the 

Bayesian information criterion (BIC), as described in Guo et al. [9]. Estimated genetic 

networks of the three cancer subtypes are shown in Figure 5. For each method, edges 

common in all three subtypes, those common in Luminal subtypes and subtype specific 

edges are distinguished.

In this example, separate graphical lasso estimates and FGL/GGL estimates are two 

extremes. Estimated network topologies from graphical lasso vary from subtype to subtype, 

and common structures are obscured; this variability may be because similarities among 

subtypes are not incorporated in the estimation. In contrast, FGL and GGL give identical 

networks for all subtypes, perhaps because both methods encourage the estimated networks 

of all subtypes to be equally similar. Intermediate results are obtained using LASICH and 

the method of Guo et al. [9]. The main difference between these two methods is that Guo et 

al. [9] finds more edges common to all three subtypes, whereas LASICH finds more edges 

common to the Luminal subtypes. This difference is likely because LASICH prioritizes the 

similarity between the Luminal subtypes via graph Laplacian while the method of Guo et al. 

[9] does not distinguish between the three subtypes. The above example highlights the 

potential advantages of LASICH in providing network estimates that better corroborate with 

the known hierarchy of subpopulations.

7. Discussion

We introduced a flexible method for joint estimation of multiple precision matrices, called 

LASICH, which is particularly suited for settings where observations belong to three or 

more subpopulations. In the proposed method, the relationships among heterogenous 

subpopulations is captured by a weighted network, whose nodes correspond to 

subpopulations, and whose edges capture their similarities. As a result, LASICH can model 

complex relationships among subpopulations, defined, for example, based on hierarchical 

clustering of samples.

We established asymptotic properties of the proposed estimator in the setting where the 

relationship among subpopulations is externally defined. We also extended the method to the 

setting of unknown relationships among subpopulations, by showing that clusters estimated 

from the data can accurately capture the true relationships. The proposed method generalizes 

existing convex penalties for joint estimation of graphical models, and can be particularly 

advantageous in settings with multiple subpopulations.

A particularly appealing feature of the proposed extension of LASICH is that it can also be 

applied in settings where the subpopulation memberships are unknown. The latter setting is 

closely related to estimation of precision matrices for mixture of Gaussian distributions. 

Both approaches have limitations and drawbacks: on the one hand, the extension of LASICH 

to unknown subpopulation memberships requires certain assumptions on differences of 

population means (Section 4). On the other hand, estimation of precision matrices for 

mixture of Gaussians is computationally challenging, and known rates of convergence of 
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parameter estimation in mixture distributions (e.g. in Städler et al. [29]) are considerably 

slower.

Throughout this paper we assumed that the number of subpopulations is known. Extensions 

of this method to estimation of graphical models in populations with an unknown number of 

subpopulations would be particularly interesting for analysis of genetic networks associated 

with heterogeneity in cancer samples, and are left for future research.
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Appendix

8. Appendix: Proofs and Technical Detials

We denote true inverse correlation matrices as  and true correlation 

matrices as , where , and 

. The estimates of the population parameters are dented as 

, and . For a vector x = (x1, …, xp)T and 

J ⊂ {1, …, p}, we denote xJ = (xj, j ∈ J)T. For a matrix A, λk(A) is the kth smallest 

eigenvalue and A⃗ is the vectorization of A. For J ⊂ {(i, j) : i, j = 1, …, p} and A ∈ ℝp×p, A⃗
J 

is a vector in ℝ|J| obtained by removing elements corresponding to (i, j) ∉ J from A⃗. A zero-

filled matrix AJ ∈ ℝp×p is obtained from A by replacing aij by 0 for (i, j) ∉ J.

8.1. Consistency in Matrix Norms

Theorem 1 is a direct consequence of the following result.

Lemma 1

i. Suppose that Condition 1 holds. Let γ ∈ (0, mink πk) be arbitrary. For

and , we have with probability 
(1 − 2K/p)(1 − 2K exp(−2n(mink πk − γ)2)) that

ii. Suppose that Condition 2 holds with p ≤ c7nc2, c2, c3, c7 > 0. For ρn = 

C1Kδnsatisfying
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and we have with 
probability (1 − 2K exp(−2n(mink πk − γ)2))ν nthat

where

and

Our proofs adopt several tools from Negahban et al. [20]. Note however that our penalty 

does not penalize the diagonal elements, and is hence a seminorm; thus, their results do not 

apply to our case. We first introduce several notations. To treat multiple precision matrices in 

a unified way, our parameter space is defined to be the set ℝ̃(pK)×(pK) of (pK) × (pK) 

symmetric block diagonal matrices, where the kth diagonal block is a p × p matrix 

corresponding to the precision matrix of subpopulation k. We write A ∈ ℝ̃(pK)×(pK) for a K-

tuple  of diagonal blocks A(k) ∈ ℝp×p. Note that for A, B ∈ ℝ̃(pK)×(pK), 

Saegusa and Shojaie Page 24

Electron J Stat. Author manuscript; available in PMC 2017 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 where 〈·, ·〉p is the trace inner product on ℝp×p. In this 

parameter space, we evaluate the following map from ℝ̃(pK)×(pK) to ℝ given by

where r : ℝ̃(pK)×(pK) ↦ ℝ is given by r(Θ) = ‖Θ‖1+ ρ2‖Θ‖L. This map provides information 

on the behavior of our criterion function in the neighborhood of Θ0. A similar map with a 

different penalty was studied in Rothman et al. [26]. A key observation is that f(0) = 0 and 

f(Δ̂
n) ≤ 0 where Δ̂n = Θ̂ρn − Θ0.

The following lemma provides a non-asymptotic bound on the Frobenius norm of Δ (see 

Lemma 4 in Negahban et al. [21] for a similar lemma in a different context). Let 

 be the union of the supports of . Define a model subspace 

 and its orthocomplement 

 under the trace inner product in 

ℝ̃(pK)×(pK). For , we write A = Aℳ + Aℳ⊥ where Aℳ and Aℳ⊥ 

are the projection of A into ℳ and ℳ⊥, in the Frobenius norm, respectively. In other words, 

the (i, j)-element of Aℳ is aij if (i, j) ∈ S and zero otherwise, and the (i, j)-element of Aℳ⊥ is 

aij if (i, j) ∉ S and zero otherwise. Note that Θ0 ∈ ℳ. Define the set  = {Δ ∈ ℝ̃(pK)×(pK) : 

r(Δℳ⊥) ≤ 3r(Δℳ)}.

Lemma 2—Let ε > 0 be arbitrary. Suppose . Iff (Δ) > 0 

for all elements Δ ∈  ⋂ {Δ ∈ ℝ̃(pK)×(pK) : ‖Δ‖F = ε} then ‖Δ̂
n‖F ≤ ε.

Proof: We first show that Δ̂
n ∈ . We have by the convexity of −ℓ̃n(Θ) that

It follows from Lemma 3(iv) with our choice ρn that the right hand side of the inequality is 

further bounded below by −2−1 ρn (r(Δ ̂
n,ℳ) + r(Δ ̂

n,ℳ⊥)). Applying Lemma 3(iii), we obtain

or r(Δ̂
n,ℳ⊥) ≤ 3r(Δ̂

n,ℳ). This verifies Δn̂ ∈ . Note that f, as a function of Δ is sum of two 

convex functions ℓn and r, and is hence convex. Thus, the rest of the proof follows exactly as 

Lemma 4 in Negahban et al. [21].

Lemma 3—Let Δ ∈ ℝ̃(pK)×(pK).

i. The gradient of ℓ̃n(Θ0) is a block diagonal matrix given by
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(10)

ii. Let c > 0 be a constant. For ‖Δ‖F ≤ c and nk/n ≥ γ > 0 for all k and n,

(11)

iii. The map r is a seminorm, convex, and decomposable with respect to (ℳ, ℳ⊥) in 
the sense that r(Θ1 + Θ2) = r(Θ1) + r(Θ2) for every Θ1 ∈ ℳ and Θ2 ∈ ℳ⊥. 

Moreover,

iv. For Δ ∈ ℝ̃(pK)×(pK),

(12)

v. For Θ ∈ ℝ̃(pK)×(pK),

Proof

i. The result follows by taking derivatives blockwise.

ii. Rothman et al. [26] (page 500–502) showed that

Since ‖A‖2 ≤ ‖A‖F, nk/n ≥ γ and ‖Δ‖F ≤ c, this is further bounded below by
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iii. Because the graph Laplacian L is a positive semidefinite matrix, the triangle 

inequality r(Θ1 + Θ2) ≤ r(Θ1) + r(Θ2) holds. To see this let L = L̃L̃T be any 

Cholesky decomposition of L. Then

It is clear that r(cΘ) = cr(Θ) for any constant c. Thus, given that r does not 

penalize the diagonal elements, it is a seminorm. The decomposability follows 

from the definition of r. The convexity follows from the same argument for the 

triangle inequality. Since Θ0 + Δ = Θ0 + Δℳ + Δℳ⊥, the triangle inequality and 

the decomposability of r yield

iv. We show that, for A, B ∈ ℝ̃(pK)×(pK) with diag(B) = 0, 〈A, B〉 ≤ r(A)‖B‖∞. If A 
is a diagonal matrix (or if A = 0), the inequality trivially holds since 〈A, B〉 = 0. 

If not, r(A) ≠ 0 so that

Since the diagonal elements of ∇ℓ̃n(Θ0) are all zero, the result follows.

v. For s ≠ 0, we have

In the last inequality we used that , 

which follows by the concavity of the square root function. For s = 0, we trivially 

have . Combining these two cases yields 

the desired result.

Next, we obtain an upper bound for , which holds with high-

probability assuming the tail conditions of the random vectors.

Lemma 4—Suppose that nk/n ≥ γ > 0 for all k and n.

i. Suppose that Condition 1 holds. Then for n ≥ 6γ−1 log p we have
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(13)

ii. Suppose that Condition 2 holds with c2, c3 > 0 and p ≤ c7nc2. Then we have for 

(14)

where

with

iii. Suppose that Condition 3 holds and that P(‖Σn̂ − Σ0‖∞ ≥ bn) = o(1) and bn = o(1) 

as n → ∞. Then P(‖Ψ̂
n − Ψ0‖∞ ≥ C1bn) = o(1).

Proof

i. This was proved by Ravikumar et al. [25].

ii. Note that

We first evaluate the probability in (14) for . Let
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We have

(15)

where the first inequality follows from the triangle inequality. Note that

It follows from Bernstein’s inequality that

(16)

Now, for , νn,2 → 0 

as p → ∞. Note that for this to hold it suffices to have
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so that the power in the exponent is negative. This inequality reduces to

We can solve this by changing a quadratic equation for τ, since τ of our interest 

is positive. Combining (15) and (16) yields

(17)

Let

Proceeding as for ’s, we have

and

Thus, we have
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(18)

and

(19)

Combining (17)–(19) yields

Note that , νn,1, νn,2, νn,3 → 0 as n, p → ∞ if log p/n → 0. Note 

also that  and  are  on the set where nk/n ≥ γ.

For example, we have by Jensen’s inequality that

iii.
Given that 
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wherein

Since bn → 0, bn ≤ c5/2 for n sufficiently large by Condition 3. On the event ‖Σ̂n 

− Σ0‖∞ ≤ bn with n large, 

. Thus,

It follows that

Thus, we have
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So far we have assumed nk/n ≥ γ in lemmas. We evaluate the probability of this event noting 

that nk ~ Binom(n, πk).

Lemma 5—Let ε > 0 such that γ ≡ mink πk − ε > 0. Then

(20)

Proof: We have by Hoeffding’s inequality that

Proof of Lemma 1: We apply Lemma 2 to obtain the non-asymptotic error bounds.

We first compute a lower bound for f(Δ). Suppose ε ≤ c. For Δ ∈  ∩ {Δ ∈ ℝ̃(pK)×(pK) : ‖Δ‖F 

= ε}, we have by Lemma 3(ii) and (iii) that

The assumption on ρn and Lemma 3(iii) and (iv) then yield

From this inequality and Lemma 3(v) we have

Viewing the right hand side of the above inequality as a quadratic equation in ‖Δ‖F, we have 

f(Δ) > 0 if
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Thus, if we show that there exists a c0 > 0 such that εc0 ≤ c0, Lemma 2 yields that ‖Θ̂ρn − 

Θ0‖F ≤ εc0.

Consider the inequality (x + y)2z1/2 ≤ y where x, y, z ≥ 0. This inequality holds for (x, y, z) 

such that x = y and xz1/2 = 1/4. We apply the inequality above with x = λΘ, y = c, 

 and solve xz ≤ 1/4 for n. (i) For 

, xz ≤ 1/4 yields

and (x + y)4z becomes

(ii) For ρn = C1Kδn, there is no closed form solution for n. Note that δn → 0 if log p/n → 0 

so that xz ≤ 1/4 holds for n sufficiently large, given that .

Computing appropriate probabilities using Lemmas 4 and 5 completes the proof.

Proof of Theorem 1: The estimation error  in the spectral norm can be 

bounded and evaluated in the same way as in the proof of Theorem 2 of Rothman et al. [26] 

together with Lemma 1.

8.2. Model Selection Consistency

Our proof is based on the primal-dual witness approach of Ravikumar et al. [25], with some 

modifications to overcome a difficulty in their proof when applying the fixed point theorem 

to a discontinuous function. First, we define the oracle estimator  by

(21)
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where  indicates that  for (i, j) ∉ S(k).

Lemma 6

i. Let A ∈ ℝp×pbe a positive semidefinite matrix with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ ⋯ 
≤ λpand corresponding eigenvectors ui satisfying ui ⊥ uj, i ≠ j and ‖ui‖ = 1. The 

subdifferential of is

where U ∈ ℝp×phas ui as the ith columns and Λ1/2is the diagonal matrix with 

, i = 1, …, p, as diagonal elements. Furthermore, the subgradients are 
bounded above, i.e.

ii. Let A ∈ ℝp×pbe a positive semidefinite matrix and S = {Si} ⊂ {1, …, p}. 
Suppose ASS has eigenvalues 0 ≤ λ1,S ≤ λ2,S ≤ ⋯ ≤ λ|S|,Sand corresponding 
eigenvectors ui,S satisfying ui,S ⊥ uj,S, i ≠ j and ‖ui,S‖ = 1. Let gS : ℝ|S| → ℝpbe 
a map defined by gS(x) = y where yi = xSj for i = Sj for and yi = 0 for i ∉ S. The 

subdifferential equals to the subdifferential of 

given by

where US ∈ ℝ|S|×|S|has ui,S as the ith columns and is the diagonal matrix 

with , i = 1, …, |S|, as diagonal elements. For x with ASSx ≠ 0, there is a 

relationship between and at y = gS(x) given by

Subgradients are bounded above:
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Proof

i. For x with Ax ≠ 0, f(x) is differentiable and the subgradient of f at x is simply the 

matrix derivative. By definition, for x with Ax = 0, the subgradient υ of f at x 
satisfies the following inequality

(22)

for all y. Choosing y = 2x and y = 0 yield 0 ≥ 〈x, υ〉 and 0 ≥ − 〈x, υ〉, implying 

〈x, υ〉 = 0. The inequality (22) reduces to , for any y. If Ay = 0, a 

similar argument implies that 〈y, υ〉 = 0. Hence υ ⊥ y for every y with Ay = 0.

Let j0 be the smallest index such that λj0 > 0. Because uj ’s form an orthonormal 

basis, any arbitrary vector y can be written as . Moreover, the null 

space of A is the span of u1, …, uj0−1. Thus, the subgradient υ can be written as 

. Thus, using the spectral decomposition of A as 

, we can write . On the other hand, 

. Thus, the inequality (22) further reduces to

It follows from the Cauchy-Schwartz inequality that the left hand side of the 

inequality is bounded from above;

Thus,

It is easy to see that this set is the image of the map UΛ1/2 on the closed ball of 

radius 1.
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Given that ‖x‖∞ ≤ ‖x‖, to establish the bound in the ℓ∞-norm, we compute the 

bound in the Euclidean norm. We use the same notation as in (i). For x with Ax ≠ 

0,

But , 

because ‖UT x‖ = ‖x‖. For x with Ax = 0,  for every y. 

Because of the form of the subdifferential and the fact that ‖U x‖ = ‖x‖, the result 

follows.

ii. Let BS be a product of elementary matrices for row and column exchange such 

that BSgS(x) = (x, 0). Notice that  and that  since BS only 

rearranges elements of vectors and exchanges rows by multiplication from the 

left. Note also that ‖BS‖2 ≤ ‖BS‖∞/∞ = 1, since ‖C‖2 ≤ ‖C‖∞/∞ for C = CT and 

each row of BS has only one element with value 1. Because

the subdifferential of hA,S(x) follows from (ii). For x with ASSx ≠ x and y = 

gS(x),  because of invertibility of 

BS. The relationship holds since

An ℓ∞-bound follows from (i) and the fact that .

Lemma 7—For sample correlation matrices and any ρn > 0, the 

convex problem(3)has a unique solution  with , k = 1, …, K, 

characterized by

(23)

with and for every i ≠ j and k = 1, 

…, K. Moreover,
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(24)

with for every i = 1, …, p, andk = 1, …, K.

For each (i, j) ∈ S, let . The convex problem(21)has a unique solution 

with characterized by

(25)

with  and for every i ≠ j and k = 1, 

…, K. Moreover,

(26)

with for every i = 1, …, p, and k = 1, …, K.

Proof: A proof for the uniqueness of the solution is similar to the proof of Lemma 3 of 

Ravikumar et al. [25]. The rest is the KKT condition using Lemma 6.

We choose a pair Ũ = (Ũ1, Ũ2) of the subgradients of the first and second regularization 

terms evaluated at Θ̌ρn. For each (i, j) with Ω0,ij = 0 or with LΘ̌ρn,ij = 0, set

For (i, j) with , for all k = 1, …, K, set

For (i, j) with LΘ̌ρn,ij ≠ 0, Ω0,ij ≠ 0 but  for some k′, set

and
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if . Otherwise, let

Here, lk is the kth row of L.

The main idea of the proof is to show that (Θ̌ρn, Ũ) satisfies the optimality conditions of the 

original problem with probability tending to 1. In particular, we show the following 

equation, which holds by construction of Ũ1 and Ũ2, is in fact the KKT condition of the 

original problem (3):

(27)

To this end, we show that Ũ1 and Ũ2 are both subgradients of the original problem. We can 

then conclude that the oracle estimator in the restricted problem (21) is the solution to the 

original problem (3). Then it follows from the uniqueness of the solution that Θρ̌n = Θ̂ρn.

Let , and 

.

Lemma 8—Suppose that max{‖Ξ(k)‖∞, R(k)(Δ ̌(k))‖∞} ≤ αρn/8, and 

. Suppose moreover thatLΘ̌ρn,ij ≠ 0 for (i, j) ∈ S. Then 

for (i, j) ∈ (S(k))c.

Proof: We rewrite (27) to obtain

We further rewrite the above equation via vectorization;

We separate this equation into two equations depending on S(k);
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(28)

where (Ũ⃗
l)J ≡ Ũ⃗

k,J, l = 1, 2. Here we used . Since  is invertible, we solve 

the first equation to obtain

Substituting this expression into (28) yields

Taking the ℓ∞-norm yields

Here we used that ‖Ax‖∞ ≤ ‖A‖∞/∞ ≤ ‖A‖∞ and , 

and applied Lemma 6 to bound ‖Ũ⃗
2, (S(k))c‖∞ and ‖Ũ2⃗, (S(k))‖∞ by . We also used 
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 by construction of Ũ1 and the assumption that . It 

follows by the assumption of the lemma that

Lemma 9 (Lemma 5 of Ravikumar et al. [25])—Suppose that ‖Δ‖∞ ≤ 1/(3κΨd) with

Then ‖H(k)‖∞/∞ ≤ 3/2 where , k = 1, …, K, andR(k)(Δ(k)) 

has representation with 

.

Lemma 10—Suppose with . Then 

‖H(k)‖∞/∞ ≤ 2 where , k = 1, …, K, andR(k)(Δ(k)) has 

representation with .

Proof: Note that the Neumann series for a matrix (I − A)−1 converges if the operator norm 

of A is strictly less than 1, and that the ℓ∞-norm is bounded by the operator norm. A proof is 

similar to that of Lemma 5 of Ravikumar et al. [25] with the induced infinity norm ‖·‖∞/∞ 
replaced by the operator norm in appropriate inequalities.

The following lemma is similar to the statement of Lemma 6 of Ravikumar et al. [25].

Lemma 11—Suppose that

for k = 1, …, K. Suppose moreover that are invertible for k = 1, …, K. 

Then with probability ,

Proof: We apply Shauder’s fixed point theorem on the event mink πk/2 ≤ nk/n, which holds 

with probability  by Lemma 5 with ε = mink πk/2. We first 
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define the function fk and its domain k to which the fixed point theorem applies. Let S̅(k) = 

S(k) ∪ {(i, i) : 1 ≤ i ≤ p}, and define

where p×p is the space of symmetric p × p matrices. Then k is a convex, compact subset of 

the set of p×p.

Let , l = 1, 2, be zero-filled matrices whose (i, j)-element is  in Lemma 7 if 

(i, j) ∈ S(k) and zero otherwise. Define the map gk on the set of invertible matrices in ℝp×p 

by . Note that  is the 

KKT condition for the restricted problem (21). Let δ > 0 be a constant such that δ < 

min{1/2, 1/{10(4dr + 1)}}r and . Define a continuous 

function fk : k ↦ k as

where

Let . Then fk(A) = (f̃k(A))S(k) + A for A ∈ k.

We now verify the conditions of Shauder’s fixed point theorem below. Once these conditions 

are established, the theorem yields that fk(A) = A. Since (fk(A))(S̅(k))c = A for any A ∈ k, 

and hk(A) > 0, the solution A to fk(A) = A is determined by 

. Vectorizing this equation to obtain 

, it follows from the invertibility of 

 that . By the uniqueness of the KKT 

condition, the solution is . Since A ∈ k, and δ < r/2, we conclude 

.

In the following, we write A⃗ = vec(A) for a matrix A for notational convenience. For J ⊂ {(i, 
j) : i, j = 1, …, p}, vec(A)J should be understood as A⃗

J.
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The function fk is continuous on k. To see this, note first that  is positive 

definite for every A ∈ k so that the inversion is continuous. Note also that all elements in 

the matrices involved with eigenvalues in hk(A) are uniformly bounded in k, and hence the 

eigenvalues are also uniformly bounded.

To show that fk(A) ∈ k, first we show that  is positive semidefinite. This 

follows because for any x ∈ ℝp

To see this, note that if  is positive, then the 

inequality easily follows. On the other hand, if λA < −1, we have

Lastly, if −1 ≤ λA < 0, we have

Next, we show that ‖fk(A)S̅(k)‖∞ ≤ r. Because diag(fk(A)) = diag(A), it suffices to show 

‖fk(A)S(k)‖∞ ≤ r. Since ,

It then follows from Lemma 9 that

Thus, adding and subtracting  yields

Vectorization and restriction on S(k) gives
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(29)

where . Here we used hk(A) ≤ (1/4 + 1/2)/1 = 3/4. 

For the first term of the upper bound in (29), it follows by the inequality ‖Ax‖∞ ≤ 

‖A‖∞/∞‖x‖∞ for A ∈ ℝp×p and x ∈ ℝp, Lemma 9 and the choice of δ satisfying 

 that

For the second term, it follows by the assumption, the inequality that ‖Ax‖∞ ≤ ‖A‖∞/∞‖x‖∞ 
for A ∈ ℝp×p and x ∈ ℝp, and Lemma 6 that

Thus, we can further bound ‖vec((f̃k(A) + A)S(k))‖∞ by

(30)

Since

and δ ≤ r/2, a similar reasoning shows that
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Thus, the inequality ‖B‖2 ≤ ‖B‖∞/∞ for B = BT implies that

Hence hk(A) ≥ 1/(8dr + 2) for every A ∈ k.

Now (30) is further bounded by r:

Here we used the fact that δ ≤ r/{10(4dr + 1)} and 1/(8dr + 2) ≤ hk(A) < 1. Thus, ‖
(fk(A))S(k)‖∞ ≤ r.

Since (fk(A))(S(k))c = 0 by definition, all the conditions for the fixed point theorem are 

established. This completes the proof.

We are now ready to prove Theorem 2. Note that Condition 7 implies that

Proof of Theorem 2: We prove that the oracle estimator Θ̌ρn satisfies (I) the model selection 

consistency and (II) the KKT conditions of the original problem (3) with (Θ̌ρn, Ũ1, Ũ2). The 

model selection consistency of Θ̂ρn = Θ̌ρn then follows by the uniqueness of the solution to 

the original problem. The following discussion is on the event that mink πk/2 ≤ nk/n, k = 1, 

…, K, and maxk‖Ξ(k)‖∞ ≤ α/8. Note that this event has probability approaching 1 by 

Lemmas 4 and 5.

First we obtain an ℓ∞-bound of the error of the oracle estimator. Note that by Condition 7 

and the fact that α ∈ [0, 1)
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Thus, it follows from Condition 7 that

Because  is invertible by Condition 5, we can apply Lemma 11 to obtain 

 with probability 

approaching 1.

As a consequence of the ℓ∞-bound, Θρ̌n,ij ≠ 0 for (i, j) ∈ S, because 

 by Conditions 6 and 7. This establishes 

the model selection consistency of the oracle estimator.

Next, we show that the Oracle estimator satisfies the KKT condition of the original problem 

(3). As the first step, we prove  for every i, j, k with probability approaching 1. 

Since Θ̌ρn,ij ≠ 0 for (i, j) ∈ S with probability approaching 1,  for (i, j) ∈ S(k) by 

construction. For (i, j) ∈ (S(k))c, we need to prove  for every i, j, k. To this end, it 

suffices to verify that  and apply Lemma 8. Applying Lemma 9 

with  and Condition 7 gives

Next, we prove that  for every (i, j). For (i, j) with  for all 

k = 1, …, K, . For (i, j) with Ω0,ij = 0, 

 by Lemma 6. For (i, j) with Ω0,ij ≠ 0 and  for some k′,

if LΘ̌ρn,ij ≠ 0. To see LΘ̌ρn,ij ≠ 0 holds with probability approaching 1, let (k, k′) ∈ S with k 

≠ k′ such that . This pair (k, k′) exists by Condition 6 and the 
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assumption LΘ0,ij ≠ 0. We assume without loss of generality . 

Since , it follows from Condition 7 that

Hence,  or LΘ̌ρn,ij ≠ 0.

Finally, we show that Equation (27) for the KKT condition holds. For the (i, j)-element of 

the equation with Ω0, ij = 0, this equation hold by construction for every k = 1, …, K. For the 

(i, j)-element with  for every k = 1, …, K, the equation holds for every k = 1, …, K, 

because it is the equation for the KKT condition of the corresponding element in a restricted 

problem (21). For (i, j)-element with Ω0, ij ≠ 0 and  for some k′, note that Θ̌ρn,ij ≠ 0 

with probability approaching 1 and that the rearrangement in Θij and corresponding 

exchange of rows and columns of L for each i, j does not change the original and restricted 

optimization problems (3) and (21). Thus, with the appropriate rearrangement of elements 

and exchange of rows and columns,  with  is in fact . Thus for such k the 

equation holds because of the corresponding KKT condition in the restricted problem (21). 

For other k, the equation holds by construction. We thus conclude the oracle estimator 

satisfies the KKT condition of the original problem (3). This completes the proof.

Proof of Corollary 1: In the proof of Theorem 2, the ℓ∞-bound of the error yields

Note that if one of two matrices A and B is diagonal, ‖AB‖∞ ≤ ‖A‖∞‖B‖∞. Thus, we can 

proceed in the same way as in the proof of Theorem 2 of Rothman et al. [26] to conclude 

that

The result follows from a similar argument to the proof of Corollary 3 in Ravikumar et al. 

[25].

Proof of Corollary 2: It follows from Condition 8 and Lemma 1 applied to Θ̌ρn that 

. Then we can apply Lemma 10 instead of Lemma 9. The rest is 

similar to the proof of Theorem 2.
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Hierarchical Clustering

For simplicity, we prove Theorem 3 for the case of K = 2; the proof can be easily 

generalized to K > 2. Let X and Y be the random variable from the first and subpopulation, 

respectively. Suppose that X = (X1, …, Xp)T ~ N(μX, ΣX) with μX = (μ1,X, …, μp,X) and the 

spectral decomposition  of ΣX where λ1,X, …, λp,X are the eigenvalues of ΣX 

and that Y ~ N(μY, ΣY) with μY = (μ1,Y, …, μp,Y) and the spectral decomposition 

 of ΣY where λ1,Y, …, λp,Y are the eigenvalues of ΣY. Define Z = (X − Y) = 

(Z1, …, Zp)T ~ N(μZ, ΣZ) with μZ = (μ1,Z, …, μp,Z) and the spectral decomposition 

 of ΣZ where λ1,Z, …, λp, Z are the eigenvalues of ΣZ. Let 

 and 

. Then X̃ ~ N(μ̃X, ΛX), Ỹ ~ N(μ̃Y, ΛY) and Z̃ ~ N(μ̃Z, 

ΛZ), where

Let also

Lemma 12 (Lemma 1 of Borysov et al. [1])—Let W1, …, Wp be independent non-

negative random variables with finite second moments. Let and 

. Then for any t > 0 P(S ≤ −t) ≤ exp(−t2/(2υ)).

The following lemma is an extension of Lemma 2 in Borysov et al. [1].

Lemma 13—Let . Then
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Proof: Note that elements of X̃ are independent and that X̃
j ~ N(μ̃j,X, λj,X). Thus, we have

Applying Lemma 12 with , since P (‖X‖2 < ap) = P (‖X̃‖2 < ap), we get

The following is an extension of Lemma 3 in Borysov et al. [1].

Lemma 14—Let . Then

Proof: By Markov’s inequality, for , we get
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Since for all u ∈ (0, 1), −log(1 − u) − u ≤ u2/{2(1 − u)} (see page 28 of Boucheron et al. [2]), 

the above display is bounded above by

Using the following result from Boucheron et al. [2]

wherein , u > 0, we further obtain the upper bound

Taking γ ↓ 0, the upper bound becomes

Choosing t = ap, we have

Note that f(u) = (1 + 2u)1/2 ≤ u for u ≥ 0 because f′(0) = 1 and f′ is decreasing for u > 0. 

Thus,  as p → ∞.

Proof of Theorem 3: For simplicity, we present the proof for the case of K = 2; the proof 

can be easily generalized to K > 2. Let n1 and n2 be the sample sizes for the first and second 

subpopulations, respectively. Define
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for a fixed a > 0 satisfying the assumption. The intersection E1 ∩ E2 is contained in the event 

that the clustering performs in the way that two subpopulations are joined in the last step. 

The intersection E3 ∩ E4 ∩ E5 is also contained in E1 ∩ E2, or in other words, 

. Thus, it suffices to show that 

 as n, p → ∞.

For  and  we have by Lemma 14 that

and that

for a satisfying a > 2 max{λ̄
X, λ̄

Y}.

Note that log nk/p → 0, k = 1, 2 as n1, n2, p → ∞. Moreover  for x > 0. 

Thus,  and  as n1, n2, p → ∞. For , we have by Lemma 13 that

for . Given the assumption c10 ≤ λj,X ≤ c11, c10 ≤ λj,Y ≤ c11, max{|μj,X|, |μj,Y|} ≤ 

c11, j = 1, 2, …. Thus, we get  as n1, n2, p → 1.

Since 2λ̄
X − λp,X − λp,Y ≥ 2λ̄

X − λ̄
Z, and 2λ̄

Y − λp,X − λp,Y ≥ 2λ̄
Y − λ̄

Z, the assumption 

that  implies that there exists a such that a < μ̄Z̃ + λ̄
Z and 

a > 2 max{λ̄
X, λ̄

Y}. This completes the proof.
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Fig 1. 
Illustration of similarities in the sparsity patterns of precision matrices Ω(1), Ω(2) and Ω(3). 

Nonzero and zero off-diagonal entries are colored in black and white, respectively, while 

diagonal entires are colored in gray. The associated subpopulation network G reflects the 

similarities between precision matrices of subpopulations 1 and 2 and 1 and 3. The 

simulation experiments in Section 6.1 use a similar subpopulation network in a high-

dimensional setting.
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Fig 2. 
Comparison of subpopulation networks used in the penalty for different methods for joint 

estimation of multiple precision matrices: a) the true network, modeled by LASICH; b) 

FGL; c) GGL & Guo et al; and d) estimation of time-varying networks (Kolar & Xing, 

2009); see Section 2.3 for details.
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Fig 3. 
Simulation results for joint estimation of multiple precision matrices with known 

subpopulation memberships. Results show the average number of true positive edges (a & c) 

and estimation error, in Frobenius norm (b & d) over 50 data sets with n = 200 multivariate 

normal observations generated from a graphical model with p = 100 features; results in top 

row (a & b) are for an Erdős-Rényi graph and those in bottom row (c & d) are for a scale 

free (power-law) graph.
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Fig 4. 
Simulation results for joint estimation of multiple precision matrices with unknown 

subpopulation memberships. Results show the average number of true positive edges over 50 

data sets with n = 200 multivariate normal observations generated from a graphical model 

with over an Erdős-Rényi graph with p = 100 features. Results for HC-LASICH and 

FGL/GGL correspond to the best choice of the second tuning parameter among those in 

Figure 3a. The Rand indices for HC-LASICH are averages over 50 generated data sets.
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Fig 5. 
Dendrogram of hierarchical clustering of three subtypes of breast cancer from Jönsson et al. 

(2010) along with estimated gene networks using graphical lasso (Glasso), method of Guo et 

al., FGL and GGL of Daneher et al. (2014) and LASICH. Blue edges are common to 

Luminal subtypes and black edges are shared by all three subtypes; condition specific edges 

are drawn in gray.
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