Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jun;87(12):4439–4443. doi: 10.1073/pnas.87.12.4439

Processing of thyrotropin-releasing hormone prohormone (pro-TRH) generates a biologically active peptide, prepro-TRH-(160-169), which regulates TRH-induced thyrotropin secretion.

M Bulant 1, J P Roussel 1, H Astier 1, P Nicolas 1, H Vaudry 1
PMCID: PMC54130  PMID: 2162041

Abstract

Rat thyrotropin-releasing hormone (TRH) prohormone contains five copies of the TRH progenitor sequence Gln-His-Pro-Gly linked together by connecting sequences whose biological activity is unknown. Both the predicted connecting peptide prepro-TRH-(160-169) (Ps4) and TRH are predominant storage forms of TRH precursor-related peptides in the hypothalamus. To determine whether Ps4 is co-released with TRH, rat median eminence slices were perifused in vitro. Infusion of depolarizing concentrations of KCl induced stimulation of release of Ps4- and TRH-like immunoreactivity. The possible effect of Ps4 on thyrotropin release was investigated in vitro using quartered anterior pituitaries. Infusion of Ps4 alone had no effect on thyrotropin secretion but potentiated TRH-induced thyrotropin release in a dose-dependent manner. In addition, the occurrence of specific binding sites for 125I-labeled Tyr-Ps4 in the distal lobe of the pituitary was demonstrated by binding analysis and autoradiographic localization. These findings indicate that these two peptides that arise from a single multifunctional precursor, the TRH prohormone, act in a coordinate manner on the same target cells to promote hormonal secretion. These data suggest that differential processing of the TRH prohormone may have the potential to modulate the biological activity of TRH.

Full text

PDF
4439

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amiche M., Delfour A., Morgat J. L., Roy J., Houvet J., Nicolas P. Specific opioid binding sites for dermorphin in rat brain. A radioreceptor assay using the tritiated hormone as primary ligand. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1432–1439. doi: 10.1016/s0006-291x(87)80292-9. [DOI] [PubMed] [Google Scholar]
  2. Amiche M., Delfour A., Nicolas P. Structural requirements for dermorphin opioid receptor binding. Int J Pept Protein Res. 1988 Jul;32(1):28–34. doi: 10.1111/j.1399-3011.1988.tb00922.x. [DOI] [PubMed] [Google Scholar]
  3. Antoni F. A., Holmes M. C., Jones M. T. Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptides. 1983 Jul-Aug;4(4):411–415. doi: 10.1016/0196-9781(83)90041-4. [DOI] [PubMed] [Google Scholar]
  4. Boler J., Enzmann F., Folkers K., Bowers C. Y., Schally A. V. The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline amide. Biochem Biophys Res Commun. 1969 Nov 6;37(4):705–710. doi: 10.1016/0006-291x(69)90868-7. [DOI] [PubMed] [Google Scholar]
  5. Bulant M., Delfour A., Vaudry H., Nicolas P. Processing of thyrotropin-releasing hormone prohormone (pro-TRH) generates pro-TRH-connecting peptides. Identification and characterization of prepro-TRH-(160-169) and prepro-TRH-(178-199) in the rat nervous system. J Biol Chem. 1988 Nov 15;263(32):17189–17196. [PubMed] [Google Scholar]
  6. Burgus R., Dunn T. F., Desiderio D., Guillemin R. Structure moléculaire du facteur hypothalamique hypophysiotrope TRF d'origine ovine: mise en évidence par spectrométrie de masse de la séquence PCA-His-Pro-NH2. C R Acad Sci Hebd Seances Acad Sci D. 1969 Nov 12;269(19):1870–1873. [PubMed] [Google Scholar]
  7. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  8. Cockle S. M., Smyth D. G. Specific processing of the thyrotropin-releasing prohormone in rat brain and spinal cord. Eur J Biochem. 1987 Jun 15;165(3):693–698. doi: 10.1111/j.1432-1033.1987.tb11496.x. [DOI] [PubMed] [Google Scholar]
  9. Gibbs D. M., Vale W., Rivier J., Yen S. S. Oxytocin potentiates the ACTH-releasing activity of CRF(41) but not vasopressin. Life Sci. 1984 Jun 4;34(23):2245–2249. doi: 10.1016/0024-3205(84)90212-1. [DOI] [PubMed] [Google Scholar]
  10. Gonzalez B. J., Leroux P., Bodenant C., Laquerrière A., Coy D. H., Vaudry H. Ontogeny of somatostatin receptors in the rat brain: biochemical and autoradiographic study. Neuroscience. 1989;29(3):629–644. doi: 10.1016/0306-4522(89)90136-x. [DOI] [PubMed] [Google Scholar]
  11. Grouselle D., Tixier-Vidal A., Pradelles P. A new improvement of the sensitivity and specificity of radioimmunoassay for thyroliberin. Application to biological samples. Neuropeptides. 1982 Oct;3(1):29–44. doi: 10.1016/0143-4179(82)90063-4. [DOI] [PubMed] [Google Scholar]
  12. Gubler U., Seeburg P., Hoffman B. J., Gage L. P., Udenfriend S. Molecular cloning establishes proenkephalin as precursor of enkephalin-containing peptides. Nature. 1982 Jan 21;295(5846):206–208. doi: 10.1038/295206a0. [DOI] [PubMed] [Google Scholar]
  13. Itoh N., Obata K., Yanaihara N., Okamoto H. Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature. 1983 Aug 11;304(5926):547–549. doi: 10.1038/304547a0. [DOI] [PubMed] [Google Scholar]
  14. Jégou S., Delbende C., Tranchand-Bunel D., Leroux P., Vaudry H. alpha-Melanocyte-stimulating hormone (alpha-MSH) release from perifused rat hypothalamic slices. Brain Res. 1987 Jun 16;413(2):259–266. doi: 10.1016/0006-8993(87)91016-x. [DOI] [PubMed] [Google Scholar]
  15. Kakidani H., Furutani Y., Takahashi H., Noda M., Morimoto Y., Hirose T., Asai M., Inayama S., Nakanishi S., Numa S. Cloning and sequence analysis of cDNA for porcine beta-neo-endorphin/dynorphin precursor. Nature. 1982 Jul 15;298(5871):245–249. doi: 10.1038/298245a0. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Labrie F., Barden N., Poirier G., De Lean A. Binding of thyrotropin-releasing hormone to plasma membranes of bovine anterior pituitary gland (hormone receptor-adenylate cyclase-equilibrium constant-( 3 H)thyrotropin). Proc Natl Acad Sci U S A. 1972 Jan;69(1):283–287. doi: 10.1073/pnas.69.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lechan R. M., Wu P., Jackson I. M., Wolf H., Cooperman S., Mandel G., Goodman R. H. Thyrotropin-releasing hormone precursor: characterization in rat brain. Science. 1986 Jan 10;231(4734):159–161. doi: 10.1126/science.3079917. [DOI] [PubMed] [Google Scholar]
  19. Lee S. L., Stewart K., Goodman R. H. Structure of the gene encoding rat thyrotropin releasing hormone. J Biol Chem. 1988 Nov 15;263(32):16604–16609. [PubMed] [Google Scholar]
  20. Liao N., Bulant M., Nicholas P., Vaudry H., Pelletier G. Electron microscope immunocytochemical localization of thyrotropin-releasing hormone (TRH) prohormone in the rat hypothalamus. Neuropeptides. 1988 Apr;11(3):107–110. doi: 10.1016/0143-4179(88)90078-9. [DOI] [PubMed] [Google Scholar]
  21. Loh Y. P., Brownstein M. J., Gainer H. Proteolysis in neuropeptide processing and other neural functions. Annu Rev Neurosci. 1984;7:189–222. doi: 10.1146/annurev.ne.07.030184.001201. [DOI] [PubMed] [Google Scholar]
  22. Lund P. K., Goodman R. H., Montminy M. R., Dee P. C., Habener J. F. Anglerfish islet pre-proglucagon II. Nucleotide and corresponding amino acid sequence of the cDNA. J Biol Chem. 1983 Mar 10;258(5):3280–3284. [PubMed] [Google Scholar]
  23. Nakanishi S., Inoue A., Kita T., Nakamura M., Chang A. C., Cohen S. N., Numa S. Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature. 1979 Mar 29;278(5703):423–427. doi: 10.1038/278423a0. [DOI] [PubMed] [Google Scholar]
  24. Nawa H., Hirose T., Takashima H., Inayama S., Nakanishi S. Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor. Nature. 1983 Nov 3;306(5938):32–36. doi: 10.1038/306032a0. [DOI] [PubMed] [Google Scholar]
  25. Nikolics K., Mason A. J., Szönyi E., Ramachandran J., Seeburg P. H. A prolactin-inhibiting factor within the precursor for human gonadotropin-releasing hormone. Nature. 1985 Aug 8;316(6028):511–517. doi: 10.1038/316511a0. [DOI] [PubMed] [Google Scholar]
  26. Noda M., Furutani Y., Takahashi H., Toyosato M., Hirose T., Inayama S., Nakanishi S., Numa S. Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature. 1982 Jan 21;295(5846):202–206. doi: 10.1038/295202a0. [DOI] [PubMed] [Google Scholar]
  27. Pedersen R. C., Brownie A. C., Ling N. Pro-adrenocorticotropin/endorphin-derived peptides: coordinate action on adrenal steroidogenesis. Science. 1980 May 30;208(4447):1044–1046. doi: 10.1126/science.6246578. [DOI] [PubMed] [Google Scholar]
  28. Richter K., Kawashima E., Egger R., Kreil G. Biosynthesis of thyrotropin releasing hormone in the skin of Xenopus laevis: partial sequence of the precursor deduced from cloned cDNA. EMBO J. 1984 Mar;3(3):617–621. doi: 10.1002/j.1460-2075.1984.tb01857.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rivier C., Vale W. Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin secretion in vivo. Endocrinology. 1983 Sep;113(3):939–942. doi: 10.1210/endo-113-3-939. [DOI] [PubMed] [Google Scholar]
  30. Roussel J. P., Astier H., Tapia-Arancibia L. Benzodiazepines inhibit thyrotropin (TSH)-releasing hormone-induced TSH and growth hormone release from perifused rat pituitaries. Endocrinology. 1986 Dec;119(6):2519–2526. doi: 10.1210/endo-119-6-2519. [DOI] [PubMed] [Google Scholar]
  31. Takeda Y., Krause J. E. Neuropeptide K potently stimulates salivary gland secretion and potentiates substance P-induced salivation. Proc Natl Acad Sci U S A. 1989 Jan;86(1):392–396. doi: 10.1073/pnas.86.1.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wu P., Jackson I. M. Post-translational processing of thyrotropin-releasing hormone precursor in rat brain: identification of 3 novel peptides derived from proTRH. Brain Res. 1988 Jul 19;456(1):22–28. doi: 10.1016/0006-8993(88)90342-3. [DOI] [PubMed] [Google Scholar]
  33. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES