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Accurate characterization of carotid artery geometry is vital to
our understanding of the pathogenesis of atherosclerosis. Three-
dimensional computer reconstructions based on medical imaging
are now ubiquitous; however, mean carotid artery geometry has
not yet been comprehensively characterized. The goal of this work
was to build and study such geometry based on data from 16 male
patients with severe carotid artery disease. Results of computer-
ized tomography angiography were used to analyze the cross-
sectional images implementing a semiautomated segmentation
algorithm. Extracted data were used to reconstruct the mean
three-dimensional geometry and to determine average values and
variability of bifurcation and planarity angles, diameters and
cross-sectional areas. Contrary to simplified carotid geometry
typically depicted and used, our mean artery was tortuous exhibit-
ing nonplanarity and complex curvature and torsion variations.
The bifurcation angle was 36 deg = 11 deg if measured using ar-
terial centerlines and 15 deg * 14 deg if measured between the
walls of the carotid bifurcation branches. The average planarity
angle was 11 deg = 10 deg. Both bifurcation and planarity angles
were substantially smaller than values reported in most studies.
Cross sections were elliptical, with an average ratio of semimajor
to semiminor axes of 1.2. The cross-sectional area increased two-
fold in the bulb compared to the proximal common, but then
decreased 1.5-fold for the combined area of distal internal and
external carotid artery. Inter-patient variability was substantial,
especially in the bulb region; however, some common geometrical
features were observed in most patients. Obtained quantitative
data on the mean carotid artery geometry and its variability
among patients with severe carotid artery disease can be used by
biomedical engineers and biomechanics vascular modelers in
their studies of carotid pathophysiology, and by endovascular
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device and materials manufacturers interested in the mean
geometrical features of the artery to target the broad patient pop-
ulation. [DOI: 10.1115/1.4006810]
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Introduction

Carotid artery geometry is a risk factor for the development of
atherosclerosis [1,2]. Geometric characterization, especially in the
regions prone to vascular disease and subject to vascular or endo-
vascular interventions, is required for mathematical modeling of
arterial hemodynamics and biomechanics. This modeling may
lead to improved understanding of carotid bifurcation pathophysi-
ology through analysis of such atherosclerosis-related mechanical
factors as fluid wall shear stress, or mechanical stresses and strains
in the arterial wall [3-5]. In addition, detailed knowledge of ca-
rotid morphology and deployment site geometry is a major
requirement in patient selection, preoperative planning, and the
design of new prostheses for arterial reconstruction.

Most existing data on carotid artery geometry [6-10,32] are
derived from planar analysis of conventional angiograms, maxi-
mum intensity projections from magnetic resonance (MR) angiog-
raphy and views of vascular casts. All of these methods inevitably
incur projection errors or discrepancies introduced by post-
mortem preparation [11]. Increasing numbers of studies employ
volumetric MR and computerized tomography (CT) angiography
[5,12-15] as these methods capture the actual three-dimensional
geometry of the artery with substantial accuracy [11,16,17]. How-
ever, studies using these newer techniques are mostly performed
on young healthy arteries and due to large effort involved in such
reconstructions are usually confined to the individual geometries
of one or two patients. Three-dimensional studies of larger patient
groups are rare [13,14,32]. Those few that recently appeared pres-
ent comprehensive analysis of individual carotid geometries, how-
ever they do not allow easy envisioning of the three-dimensional
mean artery. The latter however is particularly important for use
in mathematical models (in combination with flow data on the
same patient group published separately [18]) studying arterial
pathophysiology and for developing more adequate endovascular
devices targeted for the broad patient population.

The goal of this study was to use state-of-the-art three-
dimensional vascular imaging (CT) and accompanying analysis
methods to study the carotid arteries of a series of cerebrovascular
diseased patients and to derive average three-dimensional character-
istics and construct a mean three-dimensional human carotid artery.

Methods

Research Protocol and Data Acquisition. The research proto-
col was approved by the institutional review board of the Veterans
Affairs Nebraska-Western Iowa Medical Center and informed
consent was obtained from all patients. Sixteen male patients
(mean age 68 = 8) with severe (>80% diameter reduction) symp-
tomatic and asymptomatic carotid bifurcation disease were
selected for this study. Each patient contributed only one carotid
artery. For all patients CTA scans were obtained using 64-channel
scanner Brilliance 64 (Philips Medical Systems, Cleveland, OH).
The patients were imaged in the supine position during inspiration
breath-hold. CTA images were taken with an axial step of 1 mm.
Resolution of each image was 512 x 512 pixels (pixel size 0.488
mm). All images were rescaled to 1200 x 1200 pixel matrix size
(pixel size 0.208) using sub-pixel interpolation with standard
imaging software which has been shown to improve the accuracy
of segmentation [19].

Segmentation. A segment of the carotid artery 5 cm proximal
to the flow divider into the common carotid artery (CCA) and 5
cm distal into the internal carotid artery (ICA) and 3 cm distal
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Fig. 1 Work flow diagram showing three major steps for geometry characterization: seg-
mentation of arterial contours, generation of 3D mean geometry, and analysis of geometri-
cal features (tangent, normal, and binormal vectors of the arterial centerlines used for
calculations of curvature and torsion; and change of lumen equivalent diameter along the

length of the artery calculated as = 2 - \/cross — sectional area/r for cross sections (in

blue) orthogonal to the centerlines)

into the external carotid artery (ECA) was examined. Segment
length (100 mm) was chosen to comply with three-dimensional
carotid geometries reconstructed by other authors [5,14,20-22].
Distal branches of the ECA were excluded from analysis because
of their small size.

Outer (periadventitial) and inner (luminal) borders of the CCA,
ICA, and ECA were semiautomatically segmented (in-house Mat-
lab code) [19] on each of the two-dimensional cross-sectional
images and best fit ellipses were inscribed in each of the obtained
contours. Segmentation was performed under the supervision of a
vascular surgeon who assisted the algorithm by correcting the seg-
ments of the automatically detected boundary that were partially
obscured by periadventitial fat, atherosclerotic plaque or were ill-
defined due to poor contrast (see Fig. 1).

The mean contours were calculated by averaging between the
individual patient geometrical data sets. The latter formed a stack
of mean arterial cross sections that were connected together to
form the three-dimensional solid body of the mean carotid artery
in Computer Aided Design Software Solid Works using the loft
function (see Fig. 1). Segmentation in the flow divider area
required special attention because branching perturbed the cent-
roids of the vessels causing perturbations of the centroid path. To
resolve this issue we built the CCA-ICA and CCA-ECA arteries
separately and then merged them together in Solid Works.

Angles of Carotid Bifurcation. The angle of carotid bifurca-
tion is commonly described as the one formed between straight
line representations of the local directions of the two vessels at the
bifurcation. However, there is no uniform agreement as to how to
choose these directions. Previous studies have used tangents to the
arterial centerlines, tangents to the vessel walls, and linear least
square fits of centerline points in proximity of the bifurcation
[6-9,12,13,31,32]. Three-dimensional studies have primarily used
angles between the directional vectors of the branching arterial
axes [23]. In addition to the bifurcation angle, planarity angle of
the carotid bifurcation has been reported. Planarity angle is calcu-
lated in two-dimensional space and is defined as the angle formed
between the out-of-plane components of the CCA and ICA vec-
tors [13] (Fig. 2).

We determined the three-dimensional bifurcation angles and
two-dimensional planarity angle of each individual carotid artery
bifurcation and calculated the mean angles with standard devia-
tions. Bifurcation angles were calculated using two methods: as
the angle formed by the directional vectors of the branching arte-
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rial axes [13,32] and as the one formed by the medial wall of the
ICA and lateral wall of the ECA [7] (Fig. 2). The branching point
of the ICA and ECA centerlines was determined using the tech-
nique similar to the one described in Smith et al. [32].

Arterial Tortuosity. Previous investigators have quantita-
tively assessed in vivo carotid artery tortuosity from planar images
[6,32]. However, actual vessel tortuosity will inevitably be mis-
represented by two-dimensional analysis due to projection errors,

ICA

distance
factor

“ | bifurcation angle
| (wall)
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bifurcation angle
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Fig. 2 Schematic of the mean carotid bifurcation.
CCA =common carotid artery, ICA=internal carotid artery,
ECA = external carotid artery, L = lateral, M = medial, A = anterior,
P =posterior. Arrows show planarity and bifurcation angles
measured using two different approaches (as angle formed by
branching centerlines and as angle formed between medial wall
of the ICA and lateral wall of the ECA). Distance factor was calcu-
lated as the ratio of the ICA centerline length (solid bold line) to
the shortest distance between two locations: the end of the bulb
and point where two centerlines branch (dashed bold line).
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because in vivo arterial curvature is rarely planar and at right
angles to the imaging projection [11]. Three-dimensional studies
have proposed several methods to characterize the arterial
tortuosity.

Distance Factor. Perhaps the most simple type of tortuosity
analysis employs the one-dimensional metric called “distance
factor” which is defined as the ratio between the vessel path length
and the distance between two endpoints (Fig. 2). Tortuosity there-
fore may be thought of as the fractional increase in length of the
tortuous vessel relative to a perfectly straight path [13]. It can
therefore be calculated as (L/d) — 1, where L is the length of the
vessel centerline between the two points, and d is the shortest dis-
tance between them.

Curvature and Torsion. In three-dimensional analysis tortu-
osity of the artery is best described by the well-known Frenet for-
mulas which define the tortuosity of the spatial curve (arterial
centerline) through its curvature and torsion [11,23-25]. The Fre-
net frame is formed by three vectors: tangent, normal, and binor-
mal that form the orthonormal basis.

The curvature metric measures the rate of change in the tangent
vector at each point of the arterial centerline curve, whereas the
torsion metric measures the rate of change in the orientation
(binormal vector of the curve) of the osculating plane. Curvature
can also be thought of as the reciprocal of the radius of the oscu-
lating circle, the center of which lies on the normal vector of the
Frenet frame and the osculating plane is defined by the normal
and tangent vector to the curve at the point. For a parametrically
defined space curve c(t) = (x(¢), y(¢), z(r)), its curvature k at a
particular point of the curve can be found from [26]

\/(Z”y/ _ yllzl)z + (x”z’ _ z”x’)z + (y//x/ _ x//y/)2
(2 +y2 +Z/2)3/2

k(x,y,z) =
(D

Here primes denote derivatives with respect to 7.

The nonplanar nature of three-dimensional vessel tortuosity can
be gauged by a measure of torsion of its centerline. Torsion
describes how the trajectory twists out of the plane perpendicular
to the binormal vector. Torsion is positive for a right-handed
curve and negative for a left-handed curve. If torsion equals zero,
then a curve is planar. For a parametrically defined space curve,
its torsion T at a point can be found from [26]

S (x’y” o y/x//) 47 (xmy/ - x/y///) 47 (x//ym o x///y//)
(X/Z +y12 + Z/Z)(XHZ +y//2 + Z//Z)

7(x,y,2) =
(2)

It follows from Egs. (1) and (2) that the spatial arterial centerline
curve must be at least three times differentiable to provide the
closed form solutions of derivatives along the arterial path. To
achieve this, discrete data extracted during centerline construction
were smoothed by fitting them with Fourier series [27]. We fol-
lowed Choi et al. [27] in introducing the cost function using a
degree of the Fourier smoothing mode as an argument variable.
The results obtained with the use of that function were then visu-
ally inspected and the coefficient of multiple determinations was
calculated. This allowed us to eliminate spurious irregularities of
the centerlines while maintaining good description of the geome-
try and maintaining consistency of calculations. All curve fitting
was performed in Matlab to obtain parameterized centerline
curves for each considered arterial segment. After parameteriza-
tion, derivatives of the smooth-fitted centerline curves for obtain-
ing curvature and torsion values were calculated.

In addition to calculating curvature and torsion, combined cur-
vature CC was calculated as [11]
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CC=Vk*+12

Combined curvature metric accounts for both curvature and tor-
sion simultaneously.

Curvature, torsion, and combined curvature were calculated at
a number of evenly spaced points along the entire length of the
centerlines. A sampling frequency of 1 point/mm was employed
throughout the study ensuring smooth distribution of the calcu-
lated geometrical quantities.

Accuracy of Curvature and Torsion Determination. Accu-
racy of curvature and torsion calculation was assessed by consid-
ering an analytic spatial curve representing a helix for which
curvature and torsion are known. In Cartesian coordinates a helix
has the following parameterization:

x(t) = a cos (1)

y(t) = a sin (¢)
z(t) = bt

Here a is the radius of a helix and 27b is its pitch. Curvature and
torsion for this helix can then be calculated from the following an-
alytical formulas:

_lal
T a2+ b2

b
1:_az—ﬁ—bz

3

An array of points representing the helix was used to validate the
accuracy of numerical curvature and torsion calculations. For
each point of the helix curve both curvature and torsion were cal-
culated using formulas (1) and (2). Since both these geometrical
parameters are constant for a helix, their average values across all
points of the curve were estimated. The error for curvature and
torsion was calculated as absolute difference between the analyti-
cal values calculated using formulas (3) and numerical values cal-
culated using formulas (1) and (2) and was assessed as a
percentage of the analytical value. Analysis showed that error of
numerical calculation was 0.01% for curvature and 0.2% for tor-
sion. This assessment demonstrated the validity of the developed
code used for further calculation of curvature and torsion.

Cross-Sectional Analysis. Analysis of the arterial cross sec-
tions was performed to answer two questions. First, how different
the shape of the arterial lumen is from that of a circle and second,
how does the cross-sectional area of the artery change along its
length. To answer the first question, the ratio of ellipse semimajor
to semiminor axes (B/A) was calculated for each cross section
along the length of the artery. We note that prior to performing
this analysis, cross sections were rotated normal to the arterial
centerlines (see schematics in Fig. 1). This allowed us to properly
characterize oblique arterial segments. The second question was
addressed by calculating the cross-sectional area of the ellipse as
wAB. To avoid overestimation of the cross-sectional area in the
region of the bulb, we have extended the CCA centerline (marked
with a green line on Fig. 1) and oriented all bulb cross sections
normal to this line (instead of using ICA and ECA centerlines in
this region). In addition to calculating separate cross-sectional
areas for the ECA and ICA after division of the CCA, the cumula-
tive area of both the ICA and ECA was calculated as well.

Results

Three-Dimensional Geometry of the Mean Carotid Artery.
The mean three-dimensional carotid artery geometry constructed
by averaging the 16 datasets of elliptic cross sections is presented
in Fig. 3. Four different views of the artery (anterior, posterior,
lateral, and medial) are presented and demonstrate the complexity
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Fig. 3 Anterior, lateral, posterior, and medial views of the
mean carotid artery reconstructed from the results of CTA
studies of 16 patients with carotid artery disease. See conven-
tions of the anterior, lateral, posterior, and medial directions in

and nonplanarity of the built mean geometry. It is tortuous, with a
bend in the anterior-posterior plane centered around the carotid
bulb. The axis of the distal ICA is shifted medially relative to the
axis of the proximal CCA. The distal ECA has a bend in the
anterior-posterior plane.

Angles of Carotid Bifurcation. The bifurcation angles were
calculated as those formed by the arterial centerlines and those
formed between the medial wall of the ICA and lateral wall of the
ECA. The average bifurcation angle measured using mean center-
lines was 36 deg = 11 deg. The bifurcation angle formed by the
medial wall of the ICA and lateral wall of the ECA in the mean
model was 15 deg * 14 deg. Though the bifurcation angle measure-
ments obtained using the two techniques are more than twofold dif-
ferent, the standard deviation is comparable. Of interest, the two
datasets of angles have demonstrated moderate positive correlation
with Pearson’s coefficient of 0.39. Planarity angle was measured in
the anterior-posterior plane [14]. Mean planarity angle was 11
deg = 10 deg. No correlation was found between the planarity
angle and the angle of bifurcation (Pearson coefficient =0.18).

Arterial Tortuosity. The distance factor for the mean carotid
artery was 0.024 £ 0.02. Distributions of curvature, torsion, and
combined curvature and their inter-patient variations for the mean
arterial geometry are plotted in Figs. 4(b)—4(d). Centerlines that

Fig. 2. were used to calculate these distributions and their Frenet frame
vectors (tangent, normal, and binormal) are plotted in Fig. 4(a).
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Fig. 4 (a) Centerlines of the mean carotid artery plotted in the posterior and medial planes. Frenet frame at each point of the

centerline is defined by tangent, normal, and binormal vectors;

and combined curvature (d) along the length of the mean artery.
cal lines represent standard errors.
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Fig. 5 (a) B/A radio of semimajor to semiminor axes of the elliptical cross sections plotted along the length of the artery; (b)
change of cross-sectional area (mm?) along the length of the artery. Green dotted line represents cumulative ICA + ECA area.
Thin vertical lines represent standard deviations of presented mean data, thick vertical lines represent standard errors.

Axial distributions of three-dimensional curvature, torsion, and
combined curvature provide a comprehensive representation of
the varying severity, nonplanarity, and overall tortuosity of the ca-
rotid artery. These distributions show the complex three-
dimensional nature of the arterial centerline paths that relate peaks
in curvature or torsion to positions along the length of the artery.

In particular, high values of curvature are observed in the bulb
region as well as in the distal ECA. These regions correspond to
the tortuous centerline behavior seen in Fig. 4(a). Smaller varia-
tions of curvature are also observed in the proximal CCA and dis-
tal ICA. High values of curvature at the boundaries (most
proximal CCA and most distal ICA) may be due to boundary
effects produced by parameterization.

Torsion distribution generally fluctuates around zero which
means that the centerline generally belongs to the same osculating
plane. However, peaks in torsion are observed in the proximal
CCA and distal ICA and ECA which indicates that in these areas
the centerline possesses significant nonplanar behavior.

We note that combined curvature and torsion distributions are
very similar. That is due to substantially higher torsion values
than those of the curvature. Since combined curvature is always
positive, negative peaks in torsion are reflected on the positive
half of the combined curvature vertical axis.

Patient variability was analyzed by calculating standard devia-
tions and standard errors in curvature, torsion, and combined cur-
vature in multipatient datasets. Substantial variability for
curvature is observed in the bulb and distal ICA and ECA. High
variability in the proximal CCA and the most distal ICA may be
due to parameterization. Of interest, standard deviations in both
curvature and torsion are higher for the ECA than for the ICA
branch. Also, an interesting observation is that variability drops at
the level of 16 and 36 mm distal into the ICA from the flow di-
vider and at the level 14 mm distal from the flow divider into the
ECA.

Standard deviation in torsion and combined curvature graphs
has sudden peaks in its value. These peaks are located diffusely
along the entire length of the artery. We speculate that presence of
these peaks may be due to high susceptibility of torsion calcula-
tion to error associated with higher-order derivatives. Similar
peaks were reported elsewhere [11,25] in studies of geometry of
the coronary arteries, abdominal aorta, visceral branch arteries,
and common iliac arteries.

Cross-Sectional Analysis. The ratio of semimajor to semimi-
nor axes (B/A) for the lumen elliptic cross section plotted along
the length of the artery is presented in Fig. 5(a). Values of B/A
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closer to 1 indicate more circular shape while larger values show
that the cross section of the artery is more oblate-shaped. It can be
seen from the figure that the cross section of the carotid artery is
most different from the circle in the bulb region. The largest B/A
ratio is observed for the flow divider level, while values closer to
1 are present at more proximal locations. Cross sections of the
proximal ECA more closely resemble a circle than cross sections
of the proximal ICA (the ECA curve is lower); however ICA
becomes more circular distally. Of interest, average B/A ratio for
the entire mean carotid geometry fluctuates around 1.2.

Substantial variations in the ratio are observed for all arterial
branches. The largest variation of the B/A ratio is seen for the
ICA and ECA branches and at the proximal CCA cross sections.
Another interesting observation is that standard deviation substan-
tially drops immediately after the flow divider level which indi-
cates that at this location in most considered geometries cross
sections had a pronounced elliptic shape with B/A ratio around
1.2-1.55. The second drop of standard deviation for the ICA is
observed 30 mm distal to the flow divider.

The change of cross-sectional area of the mean carotid artery
along its length is presented in Fig. 5(b). It can be seen that
the cross-sectional area changes substantially on its way from
the most proximal CCA to the most distal ICA location. The area
of the proximal CCA stays fairly constant up to 30 mm proximal
to the flow divider. It then starts to increase and reaches its
peak at the flow divider. After that the cross-sectional area signifi-
cantly drops in size due to separation of the artery into ECA and
ICA branches. After separation the cross-sectional area of both
ICA and ECA continues to decrease gradually, however cross-
sectional area of the ICA stays larger than that of the ECA.

Of interest was to calculate the cumulative area of the ICA and
ECA after the division of the CCA. As seen from Fig. 5(b), cumu-
lative ICA+ECA area also decreases eventually possessing
smaller cross-sectional area than that of the proximal CCA. Varia-
tions in the cross-sectional area between the patients are substan-
tial. The largest variations are observed for the bulb region while
the smallest variations can be seen in the cross-sectional areas of
the distal ICA and ECA. Variability in the cross-sectional area of
the most proximal CCA is substantial.

For easy clinical reference we have also calculated the change
of the arterial diameters along the length of the artery. These
diameters were calculated as those of the circles with areas equiv-
alent to the ones measured from the area contour, i.e.,

D=2 \/ cross — sectional area/n. Equivalent diameters of the

mean CCA, ICA, and ECA with respect to the axial location
are plotted in Fig. 1. They follow the same trends as the
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cross-sectional areas plotted in Fig. 5(b) and are in agreement
with data reported by Smith et al. [32] for severe stenoses.

Discussion

The observation that atherosclerotic plaque tends to occur pref-
erably in places with specific hemodynamics, determined primarily
by complex arterial geometry, has led to a widely accepted notion
that carotid geometry may be a risk factor for atherosclerotic dis-
ease [1,3,4,13,14,28]. Characterization and quantification of the
three-dimensional carotid geometry is essential for calculation of
atherosclerosis-related mechanical factors such as fluid wall shear
stress, or mechanical stresses and strains in the arterial wall [3-5]
and therefore is vital to enhance our knowledge of the pathologic
mechanisms. This knowledge is also invaluable to endovascular de-
vice manufacturers and users, because arterial tortuosity frequently
poses problems for endovascular sheath navigation, device deploy-
ment, and optimal device performance in the treatment of carotid
pathology [11]. This group of researchers is particularly interested
in the mean geometrical features of the artery since they manufac-
ture devices targeting broad patient population.

In this study we have characterized the complex three-
dimensional nature of the carotid artery geometry in patients with
severe carotid bifurcation disease, built the mean arterial geome-
try, and analyzed geometric inter-patient variations. Our results
show that contrary to the commonly accepted notion, the mean ca-
rotid geometry is tortuous, exhibiting nonplanarity and both in-
and out-of-plane curvature. It has a bend in the anterior-posterior
plane centered around the carotid bulb, shifted axis of the distal
ICA, and bended distal ECA in the anterior-posterior plane. These
results demonstrate that the assumption of a bifurcation for which
all three vessels lie in the same plane and for which the ICA and
ECA branch symmetrically from the CCA is a simplification of
the actual case. This is particularly important for mathematical
models of the carotid artery bifurcation, since nonplanarity and
tortuosity are important factors that have significant influence on
arterial hemodynamics and biomechanics [29].

Our built mean geometry had a small angle of bifurcation of
only 36 deg =11 deg if measured using centerlines and 15
deg * 14 deg if measured using the medial wall of the ICA and
lateral wall of the ECA. Bifurcation angle severely affects the
flow in the carotid artery [30], therefore its accurate calculation is
important for mathematical modeling. Bifurcation angle in our
model is smaller than most previously reported angles. In particu-
lar, using centerlines Thomas et al. [13] reported the angle of
bifurcation of 61.5 deg = 4.1 deg, Forster et al. [6] reported 56
deg = 13 deg, Bharadvaj et al. [31] reported 55 deg, and DeSyo
et al. [9] reported 40.5 deg == 17.1 deg. All these studies, with the
exception of DeSyo [9], were performed on disease-free arteries.
Closer to our findings were results reported by Smith et al. [32]
who reported an angle of 38.3 = 12.8 deg, Thomas et al. [12] who
reported angles of 34 deg, and Goubergrits et al. [8] who calcu-
lated the bifurcation angle as 33.8 deg = 12.2 deg. All three stud-
ies were performed on stenosed arteries. Fisher and Fieman [7]
have used a different method for measuring bifurcation angles.
They have measured the angle as the one formed by the medial
wall of the ICA and lateral wall of the ECA. Their results were
twofold larger than those obtained in our study, although they
were also performed on diseased arteries. Determined planarity
angle was 11 deg = 10 deg which is threefold smaller than data
presented by Forster et al. [6]. Our results are closer to those
reported by Thomas et al. [13] who reported mean planarity angle
of 8.5 deg = 8.1 deg for senior patients. We speculate that sub-
stantial differences in measured angles may be associated with
patient population [13], and existence of severe stenoses [32]. In
addition, differences may come from different methods of mea-
surement used by authors. In particular, studies that have used
two-dimensional vessel views to make their measurements may
be less accurate than those using the actual three-dimensional
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representation of the artery due to inevitable incurred projection
errors.

The well-known Frenet formulas were used to describe arterial
curvature and torsion. We note that even though curvature and tor-
sion are conventionally used for characterization of the arterial
tortuosity, both these characteristics are point-specific and are
very sensitive to the geometrical data. This is most likely the rea-
son why torsion is less frequently used in characterization of the
arterial geometry than curvature, because it is more susceptible to
error in calculations associated with higher-order derivatives.
Axial distributions of three-dimensional curvature, torsion, and
combined curvature showed a comprehensive representation of
the varying severity, nonplanarity, and overall tortuosity of the ca-
rotid artery while the one-dimensional distance factor lumped the
three-dimensional information in one-dimension and hence was
not able to clearly differentiate local curvature changes. Arterial
tortuosity severely influences the flow [29], therefore its precise
characterization is vital for accurate calculation of hemodynamics
parameters, such as wall shear stress.

Analysis of arterial cross-sectional areas was performed to
study how different the cross section of the carotid artery is from
the circle and how does the cross-sectional area of the artery
change along its length. Our data showed that arterial cross sec-
tions may be significantly different from the circle, especially in
the bulb region. The average semimajor to semiminor ratio for the
mean carotid artery was 1.2 demonstrating that the assumption
that three-dimensional carotid artery geometry can be captured by
inscribing circles or spheres may be an oversimplification of the
actual case. The shape of the arterial cross section is important for
calculation of flow rate which may be over- or underestimated if
the cross section is assumed circular. Analysis of cross-sectional
area change along the length of the artery showed that cross-
sectional area of the ICA and ECA branches combined was less
than area of the CCA before its bifurcation. We speculate that this
may be partially due to our disregard of small ECA branches that
accommodate part of the ECA flow and allow the ECA lumen to
be smaller.

The analysis presented here provides a better understanding of
the carotid artery morphology and geometric factors relevant to
hemodynamics. Three-dimensional geometry analyzed in this
work can be used in combination with flow data obtained on the
same patient group [18] in mathematical models. Mathematical
models built using the mean geometry described here will more
accurately represent the broad patient population than most fre-
quently used simplified geometries and may lead to improved
understanding of carotid bifurcation pathophysiology through
analysis of atherosclerosis-related mechanical factors and assist in
patient selection, preoperative planning, and design of new pros-
theses for arterial reconstruction. This mean geometry is available
to prospective users upon request.
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