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Distinct Actions of Voltage-Activated Ca2� Channel Block on
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At chemical synapses, voltage-activated calcium channels (VACCs) mediate Ca 2� influx to trigger action potential-evoked neurotrans-
mitter release. However, the mechanisms by which Ca 2� regulates spontaneous transmission have not been fully determined. We have
shown that VACCs are a major trigger of spontaneous release at neocortical inhibitory synapses but not at excitatory synapses, suggesting
fundamental differences in spontaneous neurotransmission at GABAergic and glutamatergic synapses. Recently, VACC blockers were
reported to reduce spontaneous release of glutamate and it was proposed that there was conservation of underlying mechanisms of
neurotransmission at excitatory and inhibitory synapses. Furthermore, it was hypothesized that the different effects on excitatory and
inhibitory synapses may have resulted from off-target actions of Cd 2�, a nonselective VACC blocker, or other variations in experimental
conditions. Here we report that in mouse neocortical neurons, selective and nonselective VACC blockers inhibit spontaneous release at
inhibitory but not at excitatory terminals, and that this pattern is observed in culture and slice preparations as well as in synapses from
acute slices of the auditory brainstem. The voltage dependence of Cd 2� block of VACCs accounts for the apparent lower potency of Cd 2�

on spontaneous release of GABA than on VACC current amplitudes. Our findings indicate fundamental differences in the regulation of
spontaneous release at inhibitory and excitatory synapses by stochastic VACC activity that extend beyond the cortex to the brainstem.
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Introduction
Spontaneous release of neurotransmitter supports synapse mat-
uration and maintenance, homeostasis, and plasticity (Jensen et
al., 1999; McKinney et al., 1999; Kombian et al., 2000; Verhage et

al., 2000; Sutton and Schuman, 2006). In addition to these func-
tions, spontaneous release regulates neuronal excitability and ac-
tion potential firing, indicating further physiological importance
of this form of transmission (Cohen and Miles, 2000; Carter and
Regehr, 2002). The recent proposal that different vesicle pools
underlie spontaneous and evoked release, and that these mediate
distinct functions, has emphasized the importance of preciselyReceived Nov. 10, 2016; revised March 8, 2017; accepted March 13, 2017.
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Significance Statement

Presynaptic Ca 2� entry via voltage-activated calcium channels (VACCs) is the major trigger of action potential-evoked synaptic
release. However, the role of VACCs in the regulation of spontaneous neurotransmitter release (in the absence of a synchronizing
action potential) remains controversial. We show that spontaneous release is affected differently by VACCs at excitatory and
inhibitory synapses. At inhibitory synapses, stochastic openings of VACCs trigger the majority of spontaneous release, whereas
they do not affect spontaneous release at excitatory synapses. We find this pattern to be wide ranging, holding for large and small
synapses in the neocortex and brainstem. These findings indicate fundamental differences of the Ca 2� dependence of spontane-
ous release at excitatory and inhibitory synapses and heterogeneity of the mechanisms of release across the CNS.
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understanding both forms of transmission (Autry et al., 2011;
Kavalali et al., 2011).

Voltage-activated calcium channels (VACCs) are well estab-
lished as key triggers of evoked synaptic transmission, but this is
less clear for spontaneous release where the probability of presyn-
aptic VACC activation is low because of the hyperpolarized rest-
ing membrane potential (Matthews and Wickelgren, 1977; Llinás
et al., 1989; Wheeler et al., 1994). We determined, in cultured
cortical neurons, that spontaneous release of glutamate was in-
dependent of VACCs, while spontaneous release of GABA was
strongly regulated by VACCs (Vyleta and Smith, 2011; Williams
et al., 2012). These surprising results indicate there are substantial
differences between key mechanisms governing release at excit-
atory and inhibitory synapses and point to further differences
between spontaneous and evoked release. In contrast, it was pro-
posed that a substantial fraction of spontaneous release of gluta-
mate is VACC dependent at small and large central synapses,
consistent with the more conservative proposal that inhibitory
and excitatory release mechanisms are similarly regulated (Er-
molyuk et al., 2013; Dai et al., 2015).

In this study we have set out to readdress this fundamental
question of whether VACCs regulate spontaneous release of
GABA and glutamate differently at mammalian central synapses.
We have extended our experiments to acute neocortical slices in
addition to cell cultures, tested whether the actions of Cd 2� on
spontaneous release can be entirely attributed to its actions as an
inorganic nonselective VACC blocker, determined whether the
actions on spontaneous release of organic VACC blockers are
equivalent to Cd 2�, and examined whether VACC block affects
spontaneous release at synapses in the auditory brainstem (For-
sythe, 1994; von Gersdorff and Borst, 2002). Our results indicate
that the regulation of miniature EPSCs (mEPSCs) by VACCs is
fundamentally different from that of miniature IPSCs (mIPSCs)
at both small bouton-type and large calyx-type central synapses.

Materials and Methods
Slice preparation. All animal procedures were approved by the VA Port-
land Health Care System (VAPORHCS) and Oregon Health and Science
University Institutional Animal Care and Use Committees. Mouse pups
of either sex were used to prepare acute slices from the neocortex or the
medial nucleus of the trapezoid body (MNTB) at postnatal day 12 (P12)–
P16 and P10 –P12, respectively, as described previously (Forsythe, 1994;
Borst and Sakmann, 1996; Taschenberger and von Gersdorff, 2000). An-
imals were anesthetized using isoflurane and decapitated. Brains were
rapidly removed and placed in oxygenated ice-cold artificial CSF (ACSF).
ACSF for cortical pyramidal cells had the following composition (in
mM): 129 NaCl, 3.2 KCl, 1.5 CaCl2, 1 MgCl2, 25 NaHCO3, 0.34
Na2HPO4, 0.44 KH2PO4, and 5 glucose. For neurons of the MNTB we
used (in mM) 125 NaCl, 2.5 KCl, 1.5 CaCl2, 1 MgCl2, 25 NaHCO3, 1.25
Na2HPO4, 2 Na-pyruvate, 3 myo-insoitol, 0.44 ascorbic acid, and 10
glucose. Slices (300 �m) were cut using Vibratome (VT 1200S; Leica) and
kept in oxygenated (95% O2 and 5% CO2, pH 7.3) in modified ACSF. For
cortical slices NaCl was substituted by choline chloride in equimolar
concentration at room temperature at least 1 h before use. Individual
slices were then transferred to the recording chamber where they were
fully submerged and superfused with oxygenated ACSF at room temper-
ature at a rate of 5–9 ml/min.

Neocortical culture preparation. Neocortical neurons were isolated
from postnatal day 1–2 mouse pups as described previously (Phillips et
al., 2008). All animal procedures were approved by the VAPORHCS
Institutional Animal Care and Use Committee in accordance with the
U.S. Public Health Service Policy on Humane Care and Use of Laboratory
Animals and the National Institutes of Health Guide for the Care and Use
of Laboratory Animals. Animals were decapitated following general anes-
thetic with isoflurane, and then the cerebral cortices were removed. Cor-

tices were incubated in trypsin and DNase and then dissociated with a
heat polished pipette. Dissociated cells were cultured in MEM plus 5%
FBS on glass coverslips. Cytosine arabinoside (4 �M) was added 48 h after
plating to limit glial division. Cells were used after a minimum of 8 d in
culture for VACC current recordings or 14 d in culture for spontaneous
release recordings.

Electrophysiological recordings. In sagittal neocortical slices, pyramidal
cell recordings were made under visual control (layer 2/3 or 4 with
Scientifica Pro 1000) using the patch-clamp technique in the whole cell-
configuration with an Axopatch 200B (Molecular Devices). For sponta-
neous event recordings from slices, 1 �M TTX was added to ACSF before
the start of the experiment. Synaptic currents and agonist-evoked re-
sponses were acquired with a personal computer using an ITC-16
analog-to-digital converter. To measure postsynaptic currents, we re-
corded with patch electrodes with a resistance of 5–10 M� and used two
different intracellular solutions with compositions that allowed us to
record spontaneous release at �70 mV. Excitatory events were recorded
using a pipette solution with the following composition (in mM): 135
K-gluconate, 4 MgCl2, 10 HEPES, 4 Na-ATP, 0.3 Na-GTP, 10 creatine
phosphate at pH 7.2, and 308 mOsm. Inhibitory events were recorded
using a similar solution in which potassium gluconate was replaced with
potassium chloride. Data were analyzed using Synaptosoft and IgorPro
software. As a rule, we started recording no earlier than 10 min after
forming whole-cell configuration to provide steady-state value for fre-
quency of postsynaptic currents. Each point on diary plots was obtained
by averaging the frequency of events every 27 s for slice preparations and
10 s for culture preparations.

For recordings in transverse brainstem slices, principle neurons were
identified under visual control (BX51 WI, Olympus), and recordings
were made using the patch-clamp technique in the whole cell-configuration
with an EPC 9/2 amplifier (HEKA Elektronik). Currents were filtered at
2.9 kHz using a Bessel filter and sampled at 50 kHz. Series resistance (Rs)
was monitored, and only recordings were Rs remained constant (�30%
change during a recording) were used. Rs was compensated to 50 –70%.
Microelectrodes had a resistance of 2.5– 4 M� and were filled with a
solution composed of the following (in mM): 140 K-gluconate, 2 KCl, 5
EGTA, 10 HEPES, 4 Mg-ATP, 0.5 Na-GTP, 5 creatine phosphate, pH 7.2.
Na � and Cl � ions had inwardly directed driving forces at �70 mV,
making it possible to distinguish them by their polarity (upward for
mIPSC and downward for mEPSC). Recordings were obtained at room
temperature (24°C), which reduces mEPSC frequencies (Kushmerick et
al., 2006). Data were analyzed using IgorPro (RRID:SCR_000325) and
Axograph (RRID:SCR_014284).

For recordings in culture, cells were visualized with an Olympus IX70
inverted microscope. Recordings were made in whole-cell voltage-clamp
mode in neurons voltage clamped at �70 mV. Voltages were corrected
for liquid junction potentials (Hughes et al., 1987). The extracellular
solution contained the following (in mM): 150 NaCl, 4 KCl, 10 HEPES, 10
glucose, 1.1 CaCl2, 1.1 MgCl2, pH 7.35, with NaOH unless indicated
otherwise. Recordings of mIPSCs were made in the presence of tetrodo-
toxin (TTX; 1 �M) and CNQX (10 �M) to block Na � channels and
AMPA receptors, respectively. Spontaneous release from excitatory syn-
apses was resolved by blocking GABA with gabazine (10 �M). The alter-
native solution used in Figure 6 contained the following (in mM): 125
NaCl, 2.5 KCl, 25 HEPES, 30 glucose, and 2 MgCl2 and CaCl2 at pH 7.35,
as used by Ermolyuk et al. (2013). Recordings of mIPSCs were made
using a potassium chloride-rich intracellular solution containing the fol-
lowing (in mM): 118 KCl, 1 EGTA, 10 HEPES, 4 MgCl2, 1 CaCl2, 4
NaATP, 0.3 NaGTP, and 14 creatinine phosphate, pH 7.2, with KOH.
Electrodes had resistances of 3–7 M�. For VACC current recordings, 150
mM TEACl, 1 �M TTX, and 10 �M GABAzine, and CNQX were added to
standard extracellular solution, and the patch pipette was filled with a
CsMeSO3-rich solution containing the following (in mM): 108 CsMeSO3,
9 EGTA, 10 HEPES, 4 MgCl2, 1 CaCl2, 4 NaATP, 0.3 NaGTP, pH brought
to 7.2 using TEAOH. Currents were recorded with a HEKA EPC9/2
amplifier and filtered at 1 kHz using a Bessel filter and sampled at 10 kHz.
Rs was monitored, and recordings were discarded if Rs changed signifi-
cantly during a recording. Rs was compensated to �70% in recordings of
VACC currents.
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Solution application. In slice recordings, test solutions were applied via
slice perfusion apparatus, whereas in recordings from cultured neurons
they were gravity fed through a glass capillary (1.2 mm outer diameter)
placed �1 mm from the patch pipette tip. Toxin (Alomone Labs) stock
solutions were all made at 1000-fold concentration with distilled water
and stored at �20°C. Cytochrome C (0.5 mg/ml) was also added to
�-Conotoxin (MVIIC)-containing solutions to minimize nonselective
toxin binding to the apparatus.

Statistical analysis. Data are presented as mean � SEM with p values,
degrees of freedom (df), and sample size (n). Data were normalized to
control for biological variability as described for each experiment, but
typically using the average from the first 100 –200 s of each recording. For
each experiment, statistical significance was determined with two-tailed
paired t tests (Microsoft Excel). Concentration–effect relationship curves
were fit with Hill equations using IgorPro (RRID:SCR_000325).

Results
Differences in spontaneous release at excitatory and
inhibitory synapses
VACCs mediate Ca 2� influx to trigger action potential-evoked
neurotransmitter release. However, at resting membrane poten-
tial, the probability of VACC opening is much lower and there-
fore other mechanisms may regulate spontaneous release. One
possibility is that reported differences in sensitivity to VACC
blockers at cortical excitatory synapses may arise from differences

attributable to cell culture. To remove this
possible confounder, we examined spon-
taneous release of glutamate and GABA in
acute neocortical slices. Using whole-cell
recordings from neurons in layer 2/3 or 4,
voltage clamped at �70 mV, in the pres-
ence of 1 �M tetrodotoxin (inhibitory
transmission blocked with gabazine), we
found that mEPSCs were unaffected by
the inorganic, nonselective VACC blocker
Cd 2� (Fig. 1). The mEPSCs occurred as
rapid, transient, down deflections in the
current trace that were unaffected in rise
time, decay, or amplitude (Fig. 1A,B) by
application of Cd 2� (100 �M). Similarly,
Cd 2� did not affect mIPSC rise time, de-
cay, or amplitude (Fig. 1C,D; excitatory
transmission blocked with CNQX). The
frequency of mEPSCs over time was unaf-
fected by the addition of Cd 2� in the illus-
trated recording (Fig. 1E, open circles).
This was confirmed in the average diary
plot of mEPSC frequency versus time (Fig.
1E, solid circles), which was unchanged
(103 � 7%, 5 df, n � 6, p � 0.62), indicat-
ing that VACCs were not triggering spon-
taneous release of glutamate. In contrast,
mIPSC frequency clearly and reversibly
decreased following Cd 2� application in
the exemplar and average diary plots (Fig.
1F). On average, Cd 2� reduced mIPSC
frequency to 54 � 15% of basal frequency,
which was significantly different from its
actions on the spontaneous release of glu-
tamate (n � 6, 5 df, p � 0.03). These data
indicate stochastic VACC activity did not
contribute to spontaneous release at excit-
atory synapses but regulated a substantial
fraction of spontaneous release at inhibi-
tory synapses in neocortical slices.

Differences in potency of Cd 2� on spontaneous release and
VACC currents
Actions of Cd 2� at sites other than VACCs may make it an unre-
liable tool to investigate VACC coupling and spontaneous release
(Ermolyuk et al., 2013). We postulated that if Cd 2� modulated
mIPSC frequency via its action on VACC alone, then the potency
of Cd 2� on VACC currents and spontaneous release of GABA
should be equivalent. To test this hypothesis, we compared the
concentration– effect relationships for Cd 2� on VACC currents
and mIPSC frequency. Using cultured neocortical neurons, to
improve the voltage clamp, we examined the effects of Cd 2� on
the VACC current elicited by depolarization from �70 to �10
mV every 10 s (Fig. 2A). The VACC current amplitude was re-
versibly decreased by increasing concentrations of Cd 2� (Fig.
2A–C). The plot of normalized inward current at the end of the
depolarizing step versus time was used to estimate the block of
VACC currents by external Cd 2� (Fig. 2B). The normalized
steady-state inward current was used to measure the concentra-
tion– effect relationship for Cd 2� and whole-cell VACC currents
(Fig. 2C; IC50 � 1.08 � 0.03 �M, n � 12). In other recordings,
spontaneous release of GABA was isolated using TTX and CNQX
to block action potentials and glutamatergic transmission, re-
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Figure 1. Cd 2� reduces spontaneous release of GABA but not glutamate in acute neocortical slices. A, Exemplary current traces
showing mEPSCs (red) before (top trace) and during (middle trace) application of 100 �M Cd 2�. Calibration: 20 pA, 100 ms. The
bottom trace shows superimposed average mEPSCs after normalization for amplitude. Calibration: 5 ms. B, Histogram of average
mEPSC amplitude in control conditions and in the last 2 min of Cd 2� application. Open circles linked with lines represent average
mEPSC amplitudes from individual experiments (n � 6). C, Exemplary current traces showing mIPSCs (blue) before (top trace) and
during (middle trace) application of 100 �M Cd 2�. Calibration: 60 pA, 100 ms. The bottom trace shows superimposed average
mIPSCs after normalization for amplitude. Calibration: 5 ms. D, Histogram of average mIPSC amplitude in control conditions and in
the last 120 s of Cd 2� application (n � 6). E, F, Exemplary (open circles) and normalized average (closed circles) diary plots
showing the effect of 100 �M Cd 2� (bar and dotted lines) on mEPSC (red) and mIPSC (blue) frequency (mean � SEM) versus time.
Average effects measured over the last 5 min of drug application relative to basal frequency (averaged over the 5 min before
application) are shown in this figure and diary plots in Figures 4 and 5.
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spectively. At �70 mV, mIPSC frequency decreased following the
application of 30 �M Cd 2� (Fig. 2D). The frequency of mIPSCs
was measured in contiguous 10 s bins and plotted versus time.
Increasing external Cd 2� up to 300 �M reversibly reduced
mIPSC frequency (Fig. 2E), and the plot of normalized steady-
state mIPSC frequency versus [Cd 2�] revealed a much lower
potency (Fig. 2; 27 � 2.4 �M; n � 9) than that observed on VACC
currents. This discrepancy was not simply explained by nonlinear
coupling between Ca 2� entry and the release machinery or dif-
ferences between terminal and somatic currents because, like
VACC currents, action potential-evoked IPSCs were also highly
sensitive to Cd 2� (IC50 � 4.1 � 0.03 �M, n � 10; data not
shown). If the only significant action of Cd 2� is to block VACCs,
what is the reason for the apparently lower potency of Cd 2� on
mIPSCs? Can this difference be attribute to actions on VACCs or
did it result from effects at other targets?

Cd 2� has been shown to have voltage-dependent actions,
blocking VACCs less effectively at hyperpolarizing potentials
(Chow, 1991). To determine the voltage dependence of Cd 2�

block of VACC currents under physiological [Ca2�]o and [Mg2�]o,
we elicited VACC currents using a family of voltage steps (from
�70 to between �65 and 40 mV for a 10 ms duration) in control
conditions (ICtrl) and in the presence of Cd 2� (1, 100, and 300
�M). [Cd 2�], at 100 �M, resulted in saturating VACC current
block (data not shown). Currents recorded in 100 �M Cd 2� were
subtracted from those measured in control conditions and 1 �M

Cd 2� (ICd; Fig. 3A,B) to isolate the Cd 2�-sensitive VACC cur-
rents. Application of 1 �M Cd 2� reduced current amplitudes, and
this block was enhanced at �10 mV compared with �40 mV
(Fig. 3A). Plotting the currents versus voltage showed that block
by 1 �M Cd 2� was �90% at 0 mV (Fig. 3B). In some recordings,
ICd at 0 – 40 mV increased slightly despite approaching the

reversal potential (Fig. 3B,D). We hypothesized that this effect
arose from reduced block by Cd 2� at positive potentials or con-
tamination by outward currents through potassium channels de-
spite use of 150 mM Tetraethylammonium (TEA) in bath and
cesium in pipette solutions (Adelman and French, 1978;
Thévenod and Jones, 1992; Crouzy et al., 2001). Plotting the am-
plitude of the tail current versus the voltage reduced the impact of
any putative contaminating current by reducing the driving volt-
age for currents through unblocked potassium channels. Tail
currents (ITail) recorded following steps above 0 mV were stable
in the presence of 1 �M Cd 2�(Fig. 3C). The average voltage de-
pendence of block by 1 �M Cd 2� was illustrated by replotting
ICdI/ICtrl versus voltage for both steady-state (Fig. 3D; red) and
tail currents (blue; n � 4). Under these conditions, block by 1 �M

Cd 2� was 89 � 5% and 73 � 6% at �0 mV for steady-state and
tail currents, respectively (Fig. 3C; n � 4). The lack of decrease of
the average tail current with depolarization 	0 mV suggests vari-
ation of ICd at these voltages was attributable to contaminating
currents. We also tested for depolarization-dependent loss of
VACC block by low Cd 2� by using strong depolarizations that
have been shown to rapidly reverse block of VACCs by Cd 2�

(Thévenod and Jones, 1992). We compared VACC currents acti-
vated by a step to �10 mV before (S1) and after (S2) a depolar-
ization to 130 mV (1–15 ms duration). S1 and S2 were reduced
equally by the application of Cd 2� (Fig. 3E,F), indicating the
strong depolarizations did not reverse Cd 2� block of VACC cur-
rents. These results are consistent with there being no rapidly
occurring reduction in Cd 2� potency at depolarized potentials in
these neurons. In addition, the middle pulse activated an outward
current that was Cd 2� sensitive and thus may account for the
apparent variability of I8 –10 at positive voltages (Fig. 3D). At po-
tentials negative to �50 mV, 1 �M Cd 2� had no discernible effect
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on VACC tail currents. Since mIPSCs were recorded when the
presynaptic membrane potential was hyperpolarized (�70 to
�80 mV), these results explain why higher concentrations of
Cd 2� were required to inhibit mIPSCs (Fig. 2F) than the VACC
currents activated by steps to �10 mV or stimulus-evoked IPSCs,
and obviates the need to propose off-target effects of Cd 2� to
explain its action on mIPSCs (Ermolyuk et al., 2013).

Specific blockers of VACCs on spontaneous release
To further test the action of VACC activity on spontaneous re-
lease, we used a structurally different type of VACC blocker,

MVIIC, which is a peptide toxin specific for block of N- and
P/Q-type VACCs. N-, P/Q-, and R-type VACCs are expressed in
neocortical nerve terminals and have been shown to contribute
to spontaneous and evoked release at these synapses (Cao and
Tsien, 2005; Bucurenciu et al., 2010). Application of a saturating
concentration of MVIIC (5 �M) had no effect on mEPSC or
mIPSC rise time, decay phase, or amplitude (Fig. 4A–D). How-
ever, MVIIC reduced mIPSC frequency to 47 � 9% of basal level
(p � 0.002, 5 df, n � 6) while having no effect on mEPSC
frequency (100 � 6% of baseline, n � 5), as illustrated by the
exemplar and average diary plots (Fig. 4E,F). Similar to the ex-
periments using Cd 2� to block VACC currents (Fig. 1), these
findings confirmed that VACCs strongly regulate spontaneous
synaptic transmission at inhibitory synapses but not at excitatory
synapses. Moreover, the degree of reduction of mIPSC frequency
by MVIIC seen here is similar to that described previously using
saturating doses of selective VACC blockers in cultured neurons
(Williams et al., 2012).

Spontaneous glutamate release is not triggered by VACCs at
the calyx of Held synapse
How wide-ranging is the difference in regulation of spontaneous
release from excitatory and inhibitory synapses? We asked
whether excitatory and inhibitory synapses in other areas of the
CNS were regulated similarly. To answer this question, we re-
corded from principal cells of the MNTB in acute mouse auditory
brainstem slices (Fig. 5). One advantage of this preparation is that
principal cells usually receive one large glutamatergic calyx-type
synapse on their soma and multiple small bouton-type inhibitory
synapses that release glycine or GABA (von Gersdorff and Borst,
2002). Thus, in voltage-clamp mode, we acquired and resolved
mEPSCs and mIPSCs simultaneously from the same postsynaptic
cell by using bath and pipette solutions that widely separated the
reversal potentials for excitatory and inhibitory transmissions
(see Materials and Methods; Fig. 5A,B). At this developmental
stage (postnatal day 10 to 12), mIPSCs reflect spontaneous re-
lease of glycine or GABA (Awatramani et al., 2005). Using a
bicarbonate-based external solution with 1.5 mM Ca 2�, the ap-
plication of Cd 2� (50 �M) blocked EPSCs evoked by afferent
fiber stimulation (data not shown; but see Taschenberger and
von Gersdorff, 2000; Mintz et al., 1995), but had no effect on the
size or time course of the mEPSCs or mIPSCs (Fig. 5A,B). How-
ever, Cd 2� reduced mIPSC frequency by 73 � 12% (p � 0.0001
4 df, n � 5), whereas it did not affect mEPSC frequency signifi-
cantly (Fig. 5C,D; 123 � 45% of basal, p � 0.247, 4 df, n � 5).
Note also that the effect of Cd 2� on the mIPSC frequency was
fully reversible (see also Fig. 1F), again suggesting that it did not
have major off-target effects. These data are consistent with our
observations in acute neocortical slices and cultured neocortical
neurons. They confirm and extend our findings that presynaptic
VACCs regulate spontaneous release at inhibitory but not at ex-
citatory CNS synapses.

Spontaneous release at excitatory terminals and
neuronal excitability
Previous reports suggesting that VACCs regulate spontaneous
release at excitatory synapses have used an external solution with
higher glucose, HEPES, Mg 2�, and Ca 2� concentrations and
lower K� concentration (Ermolyuk et al., 2013). We thus tested
whether this alternative solution increased the sensitivity of
spontaneous release of glutamate to VACC blockers (Fig. 6;
Vyleta and Smith, 2011; Ermolyuk et al., 2013). We found that
100 �M Cd 2� did not elicit a decrease in mEPSC frequency in
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control Tyrode (Fig. 6B; 1.68 � 0.3 Hz) or alternative Tyrode
solution (Fig. 6B; 1.54 � 0.2 Hz in Cd 2�). Cd 2� slightly increased
the mEPSC frequency, as reported previously (Vyleta and Smith,
2011). This facilitation of spontaneous glutamate release may be
due to activation of the Ca 2� sensing receptor (CaSR) by Cd 2�,
which has been suggested to be an agonist along with other diva-
lent cations including Mg 2� and Gd 2� (Vyleta and Smith, 2011;
Smith et al., 2012). Note, however, that we did not see a signifi-
cant increase of mEPSC frequency at the calyx of Held synapses
(Fig. 5C), so this Cd 2� effect may be synapse dependent. We did
not examine whether spontaneous release of glutamate became
VACC dependent after more prolonged exposure to the alterna-
tive solution.

Discussion
We previously determined that VACCs trigger spontaneous re-
lease at inhibitory but not excitatory central synapses in cultured
neocortical neurons (Vyleta and Smith, 2011; Williams et al.,
2012). More recently it was proposed that VACCs trigger spon-

taneous release at excitatory synapses in cultured hippocampal
neurons and acute slices from the MNTB, and that the use of
Cd 2� as a VACC blocker may have confounded our experiments
(Ermolyuk et al., 2013; Dai et al., 2015). Here we describe exper-
iments that confirm and extend our original findings that VACCs
do not trigger spontaneous release at excitatory synapses, but play
a major role in spontaneous release at inhibitory synapses. First,
we establish that the distinct actions of VACC blockade on excit-
atory and inhibitory spontaneous release are apparent when
VACCs are blocked using Cd 2� and by the specific N- and P/Q-
type VACC blocker, MVIIC, obviating concern for off-target ac-
tions of Cd 2�. Second, these distinct actions of VACC inhibition
occur in both acute brain slices from the neocortex and brainstem
and cultured neocortical neurons, consistent with this effect ex-
tending to other areas of the CNS. Third, we find that Cd 2� block
is voltage dependent, and this likely contributes to discrepancies
in VACC regulation of spontaneous and evoked release. Thus,
through extensive study, we confirm that VACCs play a substan-
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tial role in regulating spontaneous release at inhibitory nerve
terminals but not excitatory nerve terminals, where other mech-
anisms likely contribute to the Ca 2� dependence of release.

Differences between release at excitatory and
inhibitory terminals
Our findings that block of presynaptic VACCs reduces spontane-
ous release at inhibitory but not excitatory synapses indicate that
there may be important differences in regulation of spontaneous
release of GABA and glutamate by VACCs. Other substantial
differences in regulatory mechanisms between excitatory and in-
hibitory terminals have been identified. For example, agonists for
endocannabinoid receptors suppress inhibitory activity-evoked
release onto Purkinje cells in cerebellum, but reduce spontaneous
release only at inhibitory and not excitatory synapses (Yamasaki
et al., 2006). Furthermore, inhibitory terminals in hippocampus
were found to be more Ca2� sensitive than excitatory terminals
synapsing on the same cell because of a deficiency in the SNARE
protein SNAP-25 (Verderio et al., 2004). Additionally, differences in
membrane ultrastructure that reflect the composition and organiza-
tion of synaptic proteins have been observed between excitatory and
inhibitory contacts (Landis and Reese, 1974).

More studies are necessary to determine the mechanisms un-
derlying this heterogeneity, which include the following potential

differences between excitatory and inhibitory synapses in resting
membrane potential, type or number of VACCs, size of the Ca 2�

domain for release, tightness of coupling between VACCs and
vesicles, concentrations and potency of intracellular Ca 2� buf-
fers, or the proteins that comprise the release machinery. Models
indicate that a 10 mV hyperpolarization in membrane potential
would substantially reduce the stochastic activity of VACCs at the
nerve terminal and almost eliminate VACC-dependent sponta-
neous release (Ermolyuk et al., 2013), but technical difficulties
have prevented direct testing of this hypothesis to date. Intersyn-
aptic variation of synaptic protein isoforms is well recognized
(Geppert et al., 1994; Sun et al., 2007) and is one potential mech-
anism to explain why VACCs trigger spontaneous release at in-
hibitory but not excitatory synapses. Since VACCs trigger evoked
release at both types of synapses, this explanation would also
necessitate that different synaptic proteins mediate evoked and
spontaneous release (Crawford and Kavalali, 2015) or that the
same synaptic protein mediate evoked and spontaneous release
via different molecular states (Dai et al., 2015). In addition, there
would have to be wide variation in calcium sensitivities for dif-
ferent isoforms of synaptic protein to account for the difference
between excitatory and inhibitory synapses. Further complexity
is suggested by findings at ribbons synapses, which operate via
graded membrane potential changes, where the rate of flicker

Figure 5. Cd 2� reduces spontaneous release of GABA and glycine but not glutamate in acute auditory brainstem slices. A, Exemplary current traces showing mEPSCs (red) before (top trace) and
during (middle trace) application of 50 �M Cd 2�. Asterisks denote individual release events. The bottom trace shows superimposed average mEPSCs after normalization for amplitude. B, Exemplary
current traces showing mIPSCs (blue) before (top trace) and during (middle trace) application of 50 �M Cd 2�. Note simultaneously recorded mEPSCs denoted in red. The bottom trace shows
superimposed average mIPSCs after normalization for amplitude. C, D, Exemplary (open circles) and normalized average (closed circles) diary plots showing the effect of 50 �M Cd 2� (bar and dotted
lines) on mEPSC (red) and mIPSC (blue) frequency (mean � SEM) versus time. Calibrations: A, B, Top, middle traces, 20 pA, 100 ms; bottom traces, 5 ms.
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from the closed to the open state of single VACCs may regulate
the frequency of mEPSCs (Graydon et al., 2011; Kim et al., 2013).
In fact, recent studies demonstrate both Ca 2�-dependent and
Ca 2�-independent mEPSC frequency at retinal ribbon synapses
(Cork et al., 2016).

Variation in VACC regulation of neurotransmitter release
A majority of investigators have reported that block of VACCs
does not reduce spontaneous release of glutamate at central ex-
citatory synapses. In cultured hippocampal neurons, Cd 2� did
not affect mEPSC frequency (Abenavoli et al., 2002; Yamasaki et
al., 2006). In cultured neurons from neocortex, VACC block with
Cd 2� or MVIIC did not reduce mEPSC frequency (Vyleta and
Smith, 2011). In hippocampal slices, spontaneous release of glu-
tamate was also independent of VACC activity (Eggermann et al.,
2011). This contrasts with observations made at inhibitory syn-
apses, where there have been numerous reports that VACCs
regulate spontaneous release of GABA. This finding has been
confirmed in cultured neocortical neurons (Yamasaki et al.,
2006; Williams et al., 2012) and acute hippocampal slices (Gos-
wami et al., 2012). The resistance of spontaneous release of glu-
tamate to VACC blockers we report here is also consistent with
previous observations that buffering intracellular [Ca2�] ([Ca2�]i)
with BAPTA did not affect mEPSC frequency at these synapses
(Abenavoli et al., 2002; Vyleta and Smith, 2011). This contrasts
with observations where spontaneous release at excitatory syn-
apses was sensitive to VACC blockers and also sensitive to
BAPTA (Ermolyuk et al., 2013).

How do we explain the reported sensitivity of spontaneous
release of glutamate to VACC blockers at hippocampal, neocor-
tical, and brainstem synapses (Xu et al., 2009; Ermolyuk et al.,
2013; Dai et al., 2015)? One explanation is that Cd 2� may be
acting to impair synaptic transmission via off-target mechanisms
(Ermolyuk et al., 2013). This idea arose because Cd 2� is known to
permeate VACCs and directly increase Fluo-4 fluorescence

(Hinkle et al., 1992; Spence and Johnson, 2010; Lopin et al.,
2012). We hypothesized that in the absence of off-target actions,
Cd 2� would inhibit VACC currents and spontaneous release
similarly. As we observed no effect of Cd 2� on spontaneous re-
lease of glutamate, we investigated its action at inhibitory syn-
apses. We found Cd 2� was more potent on VACC currents than
on spontaneous release (Fig. 2), potentially refuting our hypoth-
esis. However, Cd 2� exhibits a voltage-dependent block, with
Cd 2� being less effective at negative potentials in squid axons
(Chow, 1991). Since we studied the effects of Cd 2� on VACC
currents and spontaneous release at very different voltages (�10
and ��75 mV respectively), we tested whether Cd 2� caused
voltage-dependent block at the relevant concentration range (1–
300 �M) with 1.1 mM Ca 2� and Mg 2� in the external solution.
While �100 �M Cd 2� fully blocked VACC currents, 1 �M Cd 2�

blocked a large fraction of the VACC current at �10 mV but had
a smaller effect on VACC currents at the voltage range relevant to
spontaneous release. Only by increasing the [Cd 2�], and thus
overcoming the voltage-dependent block, did we observe an ef-
fect on spontaneous release (Fig. 2). Likewise, 3 �M Cd 2� blocks
60% of the evoked EPSCs at cerebellar granule cell to Purkinje cell
synapses, indicating Cd 2� is more effective when the nerve ter-
minal is depolarized by stimulation (Mintz et al., 1995). Thus
voltage-dependent block explains the discrepancy in potency of
Cd 2� on VACC currents and mIPSC frequency. Independent
support for this hypothesis comes from our observations that the
selective N- and P/Q-type VACC blocker MVIIC reduced mIPSC
frequency but did not affect spontaneous release of glutamate in
neocortical neurons in slice (Fig. 4). Differences in external solu-
tion could alter resting membrane potential and thereby alter the
response of excitatory terminals to VACC blockers. It has been
demonstrated that depolarizing the resting membrane potential
increases spontaneous release, and hyperpolarizing has the oppo-
site effect (Angleson and Betz, 2001; Li et al., 2009; Graydon et al.,
2011; Williams et al., 2012). In addition, a high concentration of
extracellular HEPES causes intracellular alkalinization, which
can affect vesicular endocytosis (Zhang et al., 2010), as well as
synaptic cleft and vesicle acidification (Cho and von Gersdorff,
2014). Additionally, elevated glucose has been demonstrated to
lead to oxidative damage and apoptosis in neurons (Vincent et
al., 2005). As an alternative external solution had no effect on the
response of excitatory terminals to Cd 2�, the cause of the differ-
ence remains uncertain. It is possible that a relatively depolarized
resting membrane potential and/or small differences in animal
age could account for the sensitivity of spontaneous excitatory
transmission to VACC blockers (Ermolyuk et al., 2013; Dai et al.,
2015). However, the mechanism to account for this difference
has not been identified, and the consistency between our new
acute slice and culture data supports our previous conclusions.

Alternatives to VACCs for Ca 2� regulation
Increases in [Ca 2�]i independent of VACCs has been shown to
increase spontaneous release at excitatory and inhibitory syn-
apses (Llano et al., 2000; Yamasaki et al., 2006; Vyleta and Smith,
2008). In addition, the lack of effect of strong buffering of [Ca 2�]i

on steady-state mEPSC frequency has pointed to a potential role
for other pathways independent of [Ca 2�]i (Vyleta and Smith,
2011). Consistent with this hypothesis, mEPSC frequency was
proportional to external [Mg 2�] ([Mg 2�]o), which might have
been expected to reduce spontaneous release at excitatory and
inhibitory synapses via VACC block (Vyleta and Smith, 2011).
The Ca 2� sensing receptor, which is localized to the presynaptic
membrane (Ruat et al., 1995; Chen et al., 2010), may trigger
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spontaneous vesicle fusion via a mechanism that is independent
of [Ca 2�]i but sensitive to [Ca 2�]o and [Mg 2�]o. CaSR agonists
stimulate spontaneous glutamate and GABA release (Vyleta and
Smith, 2011; Smith et al., 2012). Spontaneous release of glutamate
may also be triggered by long lasting increases in basal [Ca 2�]i,
since Ca 2� chelators act by attenuating transient changes (Pethig et
al., 1989).

Conclusions
It is well established that activity-dependent neurotransmitter
release is highly dependent on [Ca 2�]o. While spontaneous re-
lease of GABA has much weaker [Ca 2�]o dependence, here we
show that VACCs are still the main Ca 2� source for release. This
finding contrasts with the VACC independence of spontaneous
release at excitatory synapses and has been confirmed by a ma-
jority of studies from central synapses in culture and in slices.
Understanding the mechanisms by which Ca 2� influences the
different modes of neurotransmitter release will improve our
knowledge of synaptic function in general and of disrupted trans-
mission in disease states.
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