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Alzheimer’s disease (AD) is characterized by two hallmark molecular pathologies: amyloid a�1– 42 and Tau neurofibrillary tangles. To
date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures
of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample
of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association
networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a
function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal
(IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with
connectivity in the DMN and salience. The interaction revealed that amyloid-positive (a��) individuals show increased connectivity in
the DMN and salience when neocortical Tau levels are low, whereas a�� individuals demonstrate decreased connectivity in these
networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase
in the course of preclinical AD.
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Introduction
By measuring the coordination of time-varying brain activity,
functional connectivity magnetic resonance imaging (fcMRI)

can be a sensitive indicator of early network disruption and may
prove useful in tracking the progression of neurodegenerative
diseases. fcMRI has been studied previously in Alzheimer’s dis-
ease (AD) across a range of asymptomatic and symptomatic clin-
ical states. It has been well established that, relative to clinically
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Significance Statement

This article offers a first look at the relationship between Tau-PET imaging with F 18-AV1451 and functional connectivity MRI
(fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and
amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both
hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports
of associations between amyloid and fcMRI in individuals with preclinical Alzheimer’s disease.
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normal (CN) control subjects, patients with a clinical diagnosis of
AD exhibit widespread differences in functional connectivity
across multiple cortical networks (Damoiseaux et al., 2012; Wang
et al., 2007; Petrella et al., 2011; Brier et al., 2012; Chhatwal et al.,
2013; Jack et al., 2013; Schultz et al., 2014; Jones et al., 2016). Even
at the stage of mild cognitive impairment (MCI), there are nota-
ble differences compared with CN control subjects, and these
differences are accentuated when the analysis is focused on MCI
who progress to dementia (Petrella et al., 2011).

The relationship between early AD pathology and fcMRI is
more tenuous in preclinical (asymptomatic) AD (Sperling et al.,
2011), where consensus in terms of location, size, and direction of
fcMRI effects has been more difficult to establish. While many
studies have reported decreased functional connectivity with in-
creased amyloid (a�) burden in the medial temporal lobe (MTL),
posterior midline, and parietal regions (Hedden et al., 2009; She-
line et al., 2010a; Chhatwal et al., 2013; Wang et al., 2013; Brier et
al., 2014), other studies have reported regions of both increased
and decreased connectivity with elevated amyloid (Mormino et
al., 2011; Lim et al., 2014). One account of these discrepant re-
ports is that there are both hyperconnectivity and hypoconnec-
tivity effects at different points in the preclinical AD spectrum.
Using longitudinal amyloid-PET imaging, Jack et al. (2013) cat-
egorized individuals according to changes in amyloid burden and
reported increased posterior DMN connectivity among low am-
yloid (a��) individuals who became a�� at follow-up, whereas
patients with AD dementia had reduced connectivity, suggesting
both hyperconnectivity and hypoconnectivity effects at different
stages of disease.

The focus of these fcMRI studies in preclinical AD have largely
been on amyloid status. The opportunity to examine both hall-
mark AD molecular pathologies, in particular variations in
regional Tau pathologic burden and/or interactions between re-
gional Tau and amyloid burden, may provide insight into the
nature of the effects of preclinical AD pathology on functional
connectivity. With the recent advent of Tau-PET ligands, we now
extend the study of fcMRI in the context of preclinical AD to PET
measures of amyloid and regional Tau burden obtained with
Pittsburgh Compound B (PiB) and AV1451, respectively.

Prior reports on the relationship between amyloid-PET imag-
ing and Tau-PET imaging (Villemagne et al., 2015; Cho et al.,
2016; Johnson et al., 2016; Schöll et al., 2016; Sepulcre et al., 2016)
have revealed highly significant associations between cortical
amyloid-PET and AV1451 signals in regions associated with
Braak stages (Braak et al., 2006, 2011). Notably, a pattern of MTL
[entorhinal (ET)/parahippocampal], fusiform, inferior temporal

(IT), parietal, and posterior midline regions define the standard
AD-type pattern of paired helical filament (PHF) Tau as mea-
sured by AV1451. In preclinical AD cohorts, this pattern is gen-
erally limited to MTL, fusiform, and inferior temporal regions
and is generally lower than MCI/AD cohorts, with few cases of
elevated signal outside these regions. Also of interest, low-
amyloid subjects also have elevated AV1451 signaling in medial
and lateral temporal regions, although it is of smaller magnitude
than in high-amyloid subjects. This suggests that some degree of
Tau pathology outside the MTL is present independent of amy-
loid. We hypothesized that entorhinal and inferior temporal re-
gions would be good indicators of nascent AD-related Tau
pathology, and the inferior parietal (IP) region was used as a
check against the possibility of relevant low-level AV1451 signal
associated with more advanced Braak stages.

Materials and Methods
Participants. Ninety-one participants from the Harvard Aging Brain
Study (Grant P01-AG036694) with AV1451-PET, PiB-PET, and resting-
state fMRI (rsfMRI) collected within 1 year were included in the present
study (MR vs PiB � 110 � 72 d; MR vs AV1451 � 129 � 82 d; PiB vs
AV1451 � 81 � 74 d). All participants were clinically normal at baseline
and at the assessment closest to the AV1451 scan. This classification was
determined by a Clinical Dementia Rating of 0 (Morris, 1993), a Geriatric
Depression Scale score of �11 (Yesavage et al., 1982), a Mini Mental State
Examination score of �25 (Folstein et al., 1975), and performance within
education-adjusted norms for Logical Memory Story A delayed recall
(Wechsler, 1987). All study procedures were approved by the Partners
Healthcare institutional review board, and all participants provided writ-
ten informed consent.

The sample consisted of 54 females and 37 males, with a mean age of
75.78 � 6.14 years having 15.69 � 2.95 years of education. Thirty-two
participants were APOE�4 carriers, and 30 participants were categorized
as amyloid positive using a quantitative threshold (20 of whom were �4
carriers).

Resting-state fMRI. All data were collected on two matched 3T Trio
Tim scanners (Siemens Medical Systems) using 12-channel phased-array
head coils at the Athinoula A. Martinos Center for biomedical imaging in
Charlestown, MA. Scanner noise was attenuated using foam earplugs.
fcMRI data were acquired using a gradient-echo echoplanar imaging
sequence sensitive to BOLD contrast. Whole-brain coverage, including
the cerebellum, was acquired aligned parallel to the anterior/posterior
commissure using the following parameters: repetition time (TR),
3000 ms; echo time (TE), 30 ms, flip angle, 85°; field of view, 216 � 216
mm; matrix, 72 � 72; and 3 � 3 � 3 mm voxels; 124 volumes were
acquired in each of two 6 and 12 min runs (including 4 dummy volumes;
12 s). Instructions were to lie still, remain awake, and keep eyes open.

All resting-state data were processed using SPM8 	http://www.fil.ion.
ucl.ac.uk/spm/
. The first four volumes of each run were excluded to
allow for T1 equilibration. Each run was slice time corrected, realigned to
the first volume of each run with INRIAlign 	http://www-sop.inria.fr/
epidaure/software/INRIAlign/; Freire and Mangin, 2001
, normalized to
the MNI 152 EPI template (Montreal Neurological Institute, Montreal,
Quebec, Canada), and smoothed with a 6 mm FWHM Gaussian kernel.
Following these standard preprocessing steps, additional processing
known to be beneficial for fcMRI analysis was conducted. These included
the following (sequentially, and in this order): (1) regression of realign-
ment parameters (plus first derivatives) to reduce movement artifacts on
connectivity; and (2) temporal bandpass filtering (second-order Butter-
worth filter) to remove frequencies outside of the 0.01– 0.08 Hz band.

Data were then processed with template-based rotation (TBR; Schultz
et al., 2014), using the same template maps as published in the study by
Schultz et al. �2014; TBR scripts and templates (nifti format) are available
at http://mrtools.mgh.harvard.edu�. Whole-network measures for the
default-mode network (DMN), salience (SAL) network (also called the
ventral attention network), dorsal attention network (DAN), left fronto-
parietal control network (FPCN), and right FPCN were extracted as
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described by Schultz et al. (2014). This included averaging all values
within a mask defined on the template maps at �40% of the maximum
value in the corresponding template map. Since DMN and salience were
represented in a single map as anticorrelated networks, the salience was
defined as �40% of the minimum value.

As an additional step [for seed-based region of interest (ROI) analyses
only], we regressed out the average signal from white matter, ventricles,
and global signal (plus first derivatives; Vincent et al., 2006; Van Dijk et
al., 2010). Note that the operations were conducted in the specified order
to prevent the reintroduction of nuisance variance in the stop-band
frequencies (Hallquist et al., 2013). While white matter, ventricle, and
global signal were regressed after bandpass filtering, the signals were
taken from the bandpass-filtered data and so did not inadvertently
reintroduce nuisance variance outside of the stop band. For seed-
based analyses, we used a set of cluster-based seed regions defined
on the template maps across the same networks as described
above. Additional details can be found in the study by Shaw et al.
(2015); and seed masks for each ROI can be found on-line at
http://mrtools.mgh.harvard.edu/index.php?title�Downloads.

Structural MRI. Structural T1-weighted images were acquired as
magnetization-prepared rapid acquisition gradient echo with the follow-
ing acquisition parameters: TR, 2300; TE, 2.95; TI, 900 ms; flip angle, 9°;
resolution, 1.1 � 1.1 � 1.2 mm; acceleration (GRAPPA), 2�. Notably,
this is the same acquisition used in ADNI2-GO.

The structural MRI data were processed with Freesurfer version 5.1
	http://surfer.nmr.mgh.harvard.edu; Dale et al., 1999
 and were auto-
matically parcellated using the Desikan-Killany atlas (Desikan et al.,
2006) for cortical ROIs, and the Freesurfer ASEG atlas (Fischl et al., 2002)
for subcortical ROIs. Freesurfer-automated segmentation results were
manually evaluated to ensure the accuracy of the results 	for additional
details, see https://www.nmr.mgh.harvard.edu/lab/harvardagingbrain/
tools
.

PET imaging. 1 1C Pittsburgh Compound B was prepared and PET
data were acquired as described previously (Sperling et al., 2009). 11C PiB
PET was acquired with an 8.5–15 mCi bolus injection followed immedi-
ately by a 60 min dynamic acquisition in 69 frames (12 � 15 s, 57 � 60 s).

18F AV1451 was prepared at Massachusetts General Hospital with a
mean radiochemical yield of 14 � 3% and specific activity of 216 � 60
GBq/�mol (5837 � 1621 mCi/�mol) at the end of synthesis (60 min)
and validated for human use (Shoup et al., 2013). Images were acquired
from 80 to 100 min in 4 � 5 min frames after a 10.0 � 1.0 mCi bolus
injection.

All PET data were acquired using a Siemens/CTI ECAT HR� Scanner
(3D mode; 63 image planes; 15.2 cm axial field of view; 5.6 mm transaxial
resolution; 2.4 mm slice interval). PET data were reconstructed, attenu-
ation corrected, and evaluated to verify adequate count statistics and the
absence of head motion.

PET images were coregistered to the corresponding T1 image for each
subject using a 6 dof rigid-body registration and structural ROIs, as
determined by Freesurfer, were mapped into native PET space. For both
PiB and AV1451, we used a cerebellar gray matter reference region from
the Freesurfer aseg atlas, as previously described (Becker et al., 2011;
Chien et al., 2013; Johnson et al., 2016), with AV1451 measures com-
puted as standardized uptake value ratios (SUVRs) from the 80 –100 min
time frame and PiB measures computed as distribution volume ratios
(DVRs) using the Logan graphical method (Logan et al., 1990), with
slopes extracted from the 40 – 60 min time frame.

Additionally, we performed partial volume correction (PVC) using
the geometric transform matrix method (Labbe et al., 1998; Rousset et
al., 1998), as implemented in Freesurfer 6.0 and described by Greve et al.
(2016), using a slightly modified Freesurfer atlas mapped to each partic-
ipants native structural space that included ROIs for CSF, white matter,
and extracerebral structures. The PVC processing was performed assum-
ing a uniform 6 mm point spread function.

Based on prior studies we used a single PiB measure of global cortical
amyloid burden from regions including the following: bilateral precu-
neus, rostral anterior cingulate, medial orbito-frontal, superior frontal,
rostral middle frontal, inferior parietal, inferior temporal, and middle
temporal (simple mean across ROI values), the so-called frontal, lateral,

retrosplenial ROI (Mormino et al., 2014b). PiB measures were used both
continuously and dichotomously. The threshold for dichotomization
into high- and low-amyloid groups was 1.2 and was derived via a Gauss-
ian mixture model as described by Mormino et al. (2014a).

For AV1451, we focused our analyses on three structurally defined
regions of interest: entorhinal (ET), inferior temporal (IT), and inferior
parietal (IP). Entorhinal cortex was chosen as it is among the first areas to
develop Tau pathology, even in the absence of amyloid. IT cortex was
used as the current best choice of a surrogate marker of early AD related
Tau spread into neocortex (IT AV1451 showed the largest effect size
between impaired and nonimpaired individuals as reported by Johnson
et al. (2016). The IP area was chosen as a marker of additional spread of
Tau pathology into other regions of cortex that are associated with more
advanced Braak stages.

Whole-network analysis. We investigated the relationship between
each fcMRI network measure and PiB-PET and AV1451-PET control-
ling for age, sex, average movement (mean movement as measured by
the Euclidean distance between volumes) during the rsfMRI scan, the
temporal signal-to-noise ratio measured from the rsfMRI scan, and
the scanner (two matched Siemens Trio Tim scanners were used for
data collection). For each network, we investigated the following hi-
erarchical set of models: (1) fcMRI 
 PiB � covariates; (2) fcMRI 

AV1451 � covariates; (3) fcMRI 
 PiB � AV1451 � covariates; (4)
fcMRI 
 PiB � AV1451 � covariates; and (5) fcMRI 
 PiB group �
AV1451 � covariates.

This set of models was designed to look at interactions between
measures of amyloid and Tau pathology, as well as the main effects of
each molecular marker in the context of collinearity between PiB and
AV1451 measures. PiB was also used dichotomously (PiB group) us-
ing our previously published threshold of 1.2 DVR units (Mormino et
al., 2014b). To help curb the effects of positive skew in both the PiB
and AV1451 distributions, both measures were log transformed be-
fore being entered into the models (effects were similar with and
without log transforms).

Node-based connectivity analysis. To investigate the possibility of ef-
fects localized to particular nodes within a network or effects involving
internodal connectivity between networks, we performed a separate ex-
ploratory analysis in which each network was broken into a set of con-
stituent nodes (29 nodes across the networks analyzed). Time-series data
for each node were extracted from the rsfMRI scans, and a node-to-node
connectivity measurement for each pair of nodes was made for each
subject. We then ran the models listed above for each node-to-node
connection to evaluate localized effects of amyloid and Tau. Data were
then visualized using a schema-ball plot (mrtools.mgh.harvard.edu),
where the corresponding statistic for each connection is visualized as a
color-graded line between the corresponding nodes. This resulted in a
visualization that represents the sensitivity of node-to-node connectivity
to the effect of interest. Additional details can be found in the study by
Shaw et al. (2015, supplemental data). We also separated the connections
into positive and negative connections based on the mean connectivity
between nodes in the sample, and then reverse scored anti-correlations
so that higher values in both sets represent connectivity strengths further
from 0.

Results
Relationships between and among PET measures
Similar to our previous report examining AV1451 Tau PET
across the spectrum of AD (Johnson et al., 2016), there was a
significant correlation between the cortical aggregate PiB-PET
measure and regional AV1451 measures. In the present sample,
we observed significant correlations with PiB-PET for all three
AV1451 regions explored in the current study, as follows: ET (r �
0.46; p � 0.001); IT (r � 0.40; p � 0.001), and IP (r � 0.31; p �
0.003). The AV1451 measures from the three ROIs were signifi-
cantly correlated with one another, as follows: ET by IT (r � 0.69;
p �� 0.001); ET by IP (r � 0.54; p �� 0.001); and IT by IP (0.71;
p �� 0.001). As with previous reports (Johnson et al., 2016; Sep-
ulcre et al., 2016), the PiB groups showed significant differences
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using two-sample t tests in entorhinal AV1451 (t(89) � 3.80,
p � 0.001), IT AV1451 (t(89) � 3.20, p � 0.002), and IP AV1451
(t(89) � 2.01, p � 0.047).

Whole-network analyses
Results from the five models (see Materials and Methods) are
reported in Table 1. We examined the relationship of AV1451
signal (in the ET, IT, and IP cortices) as well as the global amyloid
burden to measures of functional connectivity in the following
five cortical networks: the DMN, SAL, DAN, left FPCN, and right
FPCN. Of note, we found the strongest effects using DMN and
SAL with the interaction of PiB and AV1451 signal in IT cortex.
No other effects survived correction for multiple comparisons
(FWE for 15 tests, p � 0.003), although marginal effects were
present for the interaction between inferior parietal Tau and PiB.
We did not observe main effects outside the context of the inter-
action. For DMN connectivity, the PiB by inferior temporal
AV1451 interaction term was significant both when PiB was
tested continuously (t(82) � �3.616; p � 0.001) and dichoto-
mously (t(82) � �2.494; p � 0.010). The same pattern was true of
salience connectivity for continuous PiB (t(82) � �4.774; p �
0.001) and dichotomous PiB (t(82) � �3.642; p � 0.001). Statis-
tical results for all five models are shown in Table 1.

Figure 1 depicts the results of the continuous interaction term
(PiB � IT AV1451). Here the interaction term is well described as
a quadratic, suggesting hyperconnectivity associated with ele-
vated amyloid among participants with low IT AV1451 signal,
followed by hypoconnectivity with an increasing IT AV1451 sig-
nal in individuals with higher amyloid levels. Figure 1 also shows
that the vast majority of values on the low end of the interaction
term are PiB -participants. Additionally, the inverted U shape of
the fit explains the lack of main effects for PiB and AV1451.

To more thoroughly explore the significant interaction be-
tween PiB and IT AV1451, we examined the pattern within the
high-PiB group only (N � 30). This analysis shows a linear rela-
tionship between increasing AV1451 signal in the inferior tem-
poral cortex and decreasing functional connectivity in the DMN
(partial r � �0.42, p � 0.037) and salience (partial r � �0.67;
p � 0.001) networks. Examination within the low-PIB group
(N � 61) showed weak positive relationships between functional
connectivity and IT AV1451 in the DMN (partial r � 0.28, p �
0.040) and salience (partial r � 0.29, p � 0.030). Similarly, an
analysis of PiB within a median split of IT AV1451 (IT Tau ��
1.18) shows a large effect of PiB in the low-Tau group (N � 46)
for both DMN (partial r � 0.44, p � 0.004) and salience (partial
r � 0.45, p � 0.003), whereas the effect of PiB in the high IT-

Table 1. Summary of results from statistical models

Models 1 and 2 Model 3
Model 4
PiB � Tau

Model 5
PG � TauPiB Tau PiB Tau

Entorhinal AV1451
DMN t(84) � 1.086; p � 0.28 t(84) � 0.150; p � 0.88 t(83) � 1.127; p � 0.26 t(83) � �0.355; p � 0.72 t(82) � �0.226; p � 0.82 t(82) � 0.628; p � 0.53
Salience t(84) � 0.478; p � 0.63 t(84) � �0.770; p � 0.44 t(83) � 0.902; p � 0.37 t(83) � �1.084; p � 0.28 t(82) � �0.959; p � 0.34 t(82) � �0.110; p � 0.91
DAN t(84) � 0.601; p � 0.55 t(84) � 0.444; p � 0.66 t(83) � 0.451; p � 0.65 t(83) � 0.202; p � 0.84 t(82) � 0.515; p � 0.61 t(82) � 0.998; p � 0.32
Left FPCN t(84) � 1.596; p � 0.11 t(84) � 1.734; p � 0.09 t(83) � 0.939; p � 0.35 t(83) � 1.153; p � 0.25 t(82) � 0.803; p � 0.42 t(82) � 1.673; p � 0.10
Right FPCN t(84) � 0.501; p � 0.62 t(84) � 0.951; p � 0.34 t(83) � 0.099; p � 0.92 t(83) � 0.809; p � 0.42 t(82) � �1.080; p � 0.28 t(82) � �0.704; p � 0.48

Inferior temporal AV1451
DMN t(84) � 1.086; p � 0.28 t(84) � �0.141; p � 0.89 t(83) � 1.197; p � 0.23 t(83) � �0.531; p � 0.60 t(82) � �3.616; p � 0.00 t(82) � �2.494; p � 0.01
Salience t(84) � 0.478; p � 0.63 t(84) � �1.308; p � 0.19 t(83) � 0.972; p � 0.33 t(83) � �1.557; p � 0.12 t(82) � �4.774; p � 0.00 t(82) � �3.642; p � 0.00
DAN t(84) � 0.601; p � 0.55 t(84) � �0.880; p � 0.38 t(83) � 0.949; p � 0.35 t(83) � �1.145; p � 0.26 t(82) � �1.224; p � 0.22 t(82) � �1.073; p � 0.29
Left FPCN t(84) � 1.596; p � 0.11 t(84) � 0.601; p � 0.55 t(83) � 1.468; p � 0.15 t(83) � 0.083; p � 0.93 t(82) � �1.184; p � 0.24 t(82) � �0.959; p � 0.34
Right FPCN t(84) � 0.501; p � 0.62 t(84) � �0.133; p � 0.89 t(83) � 0.575; p � 0.57 t(83) � �0.316; p � 0.75 t(82) � �2.237; p � 0.03 t(82) � �2.293; p � 0.02

Inferior parietal AV1451
DMN t(84) � 1.086; p � 0.28 t(84) � 0.557; p � 0.58 t(83) � 0.960; p � 0.34 t(83) � 0.255; p � 0.80 t(82) � �1.890; p � 0.06 t(82) � �1.450; p � 0.15
Salience t(84) � 0.478; p � 0.63 t(84) � �0.381; p � 0.70 t(83) � 0.612; p � 0.54 t(83) � �0.540; p � 0.59 t(82) � �2.668; p � 0.01 t(82) � �2.369; p � 0.02
DAN t(84) � 0.601; p � 0.55 t(84) � �0.149; p � 0.88 t(83) � 0.670; p � 0.50 t(83) � �0.337; p � 0.74 t(82) � �1.010; p � 0.32 t(82) � �0.982; p � 0.33
Left FPCN t(84) � 1.596; p � 0.11 t(84) � 0.594; p � 0.55 t(83) � 1.476; p � 0.14 t(83) � 0.145; p � 0.89 t(82) � �0.834; p � 0.41 t(82) � �0.466; p � 0.64
Right FPCN t(84) � 0.501; p � 0.62 t(84) � �0.034; p � 0.97 t(83) � 0.530; p � 0.60 t(83) � �0.186; p � 0.85 t(82) � �1.968; p � 0.05 t(82) � �1.777; p � 0.08

Robust effects are limited to amyloid by inferior temporal (IT) AV1451 interactions for the DMN and Salience networks. Of note, the main effects outside of the context of the interaction term are nonsignificant. Effects highlighted with
bold/italicized font survive FWE of p � 0.0033 (0.05/15 tests); effects highlighted with bold font are significant at an uncorrected p value of �0.05. Results for IT AV1451 in DMN and Salience networks are present when using PiB
continuously or dichotomously using PiB group (PG).

Figure 1. Visualization of the PiB � IT AV1451 interaction term vs DMN connectivity (left) and salience (SAL) connectivity (right). Both networks show a significant quadratic pattern that can be
described as a positive relationship with amyloid when the IT AV1451 signal is low and as a negative association with the IT AV1451 signal when the PiB signal is high. The significant interaction is
driven in large part by the relatively elevated connectivity seen in high-PiB low-IT AV1451 participants (triangular points near the middle of the x-axis).
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AV1451 (N � 45) group was not significant for the DMN (partial
r � �0.14, p � 0.380) and only marginally significant for the
salience (partial r � �0.27, p � 0.090). This pattern of simple
effects (Fig. 2) shows that the PiB by AV1451 interaction term in
the full model is driven by the positive effect of PiB when IT
AV1451 is relatively low, and the negative effect of IT AV1451
when PiB is high.

Node-based connectivity analysis
Figure 3 depicts the statistical results for the PiB by IT AV1451
interaction term from model 4 on the node to node connections
(406 pairs in total) thresholded at a liberal exploratory p � 0.01
uncorrected to reveal the global pattern of the effect. Lines out-
side the circle represent within-network connections, lines inside
the circle represent between-network connections. The sign of
the effects corresponds to whether the direction of the PiB �
AV1451 interaction effect was related to increased connectivity
(Fig. 3, yellow, away from 0 connectivity) or decreased connec-
tivity (Fig. 3, purple, toward 0 connectivity). This analysis re-
vealed that nearly all effects of decreasing connectivity are
localized to the DMN and salience networks, providing addi-
tional support for the specificity of this effect to the DMN–sa-
lience axis. Of interest, the number of significant connections
among salience nodes is smaller than observed for DMN and

connections between DMN and salience nodes. This may indi-
cate that the PiB by AV1451 interaction effect is most sensitive to
the DMN–salience axis as a whole.

Discussion
We examined the relationship between amyloid burden as mea-
sured by PiB-PET, PHF Tau burden as measured by AV1451-
PET, and network integrity as measured by fcMRI in a sample of
clinically normal elderly. The results point to an interaction be-
tween amyloid and regional PHF Tau in the IT cortex relating to
fcMRI in the default mode and salience networks. Furthermore,
the pattern of this interaction suggests a hyperconnectivity phase
among a�� individuals who have low levels of AV1451 binding
and a hypoconnectivity phase as IT Tau pathology accrues in the
presence of elevated amyloid burden.

The amyloid cascade hypothesis in its most common formu-
lation posits that amyloid accumulation precedes neocortical
Tau accumulation and neurodegeneration (Hardy and Higgins,
1992). As such, molecular AD pathology can be described as a
two-phase process of amyloid accumulation followed by contin-
ued amyloid accumulation and the spread of neurofibrillary tan-
gles into neocortex. The results presented here suggest that these
two periods of AD pathology have differential effects on func-
tional connectivity, with the early amyloid accumulation phase

Figure 2. The top two panels show the relationship between inferior temporal (IT) AV1451 signal in the high PiB group (top) with DMN connectivity (left) and salience (SAL) connectivity (right).
Within the context of high amyloid level, increased levels of IT AV1451 are associated with decreased connectivity in the DMN and SAL networks. The bottom two panels show the association
between amyloid burden in the low-IT AV1451 signal subjects (median split) with DMN connectivity (left), and SAL (right). These two effects, the positive effect of amyloid when the IT AV1451 signal
is low and the negative effect of IT AV1451 signal when amyloid level is high, account for the observed interaction effect and the absence of main effects.
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characterized by increased functional connectivity, followed by
the progressive decline of functional connectivity with increased
neocortical Tau pathology.

Interpreting hyperconnectivity
While the effect of Tau in amyloid-positive individuals accords
nicely with our expectations of decreased connectivity accompa-
nying increased pathology, the evidence for increased connectiv-
ity with increased amyloid presents something of a puzzle when
taken in the context of loss of connectivity later in the disease
trajectory.

Evidence for a preclinical hyperconnectivity phase was re-
ported in the study by Jack et al. (2013), where incident a� posi-
tivity was cross-sectionally associated with increased posterior
DMN connectivity. Increased functional connectivity has also
been reported in individuals carrying the apolipoprotein �4
(APOE�4) risk allele for AD (Filippini et al., 2009; Sheline et al.,
2010b; Westlye et al., 2011). APOE�4 carriers have also been
shown to have increased task-related activity during the perfor-
mance of episodic memory tasks (Sperling et al., 2010; Huijbers et
al., 2015; Oh et al., 2015, 2016). Hyperconnectivity has also been
observed in psychiatric disorders such as schizophrenia and bi-
polar disorders (Whitfield-Gabrieli et al., 2009; Baker et al.,
2014). Together, these findings indicate that hyperconnectivity
likely has pathologic connotations.

From a more mechanistic perspective, hyperconnectivity may
be an important component of a pathological feedback mecha-
nism that is both being driven by and driving the production of

amyloid and the accumulation of amyloid plaques (Busche and
Konnerth, 2015). Recent studies have linked AD pathology with
an increased incidence of late-onset seizure disorders and non-
convulsive epileptiform discharges (Palop and Mucke, 2009;
Vossel et al., 2013; Born, 2015). In turn, nonconvulsive epilepti-
form activity has been linked to hypersynchronous neuronal ac-
tivity (Khambhati et al., 2015). If correct, early amyloid-related
hyperconnectivity would signify a disruption to the healthy func-
tioning of large-scale neuronal networks.

There are alternative accounts for the observed pattern of re-
sults. First, it is possible that the effect we see is due to a survival
bias such that high-amyloid individuals who are clinically normal
are more likely to harbor a low Tau burden. The data from our
laboratory and others suggest that individuals with high amyloid
and high Tau burden are unlikely to remain clinically normal
(Jack et al., 2016; Johnson et al., 2016). If increased connectivity is
protective, one could easily imagine that within this group we are
selecting for people with protective endophenotypes. These
amyloid-resilient individuals could then be responsible for driv-
ing the interaction.

Second, increased connectivity may be compensatory and
could represent a systems-level response to neuronal injury from
pathological insult that allows for the maintenance of behavioral
performance. This would result in a period of hyperactivity until
the compensatory mechanisms are overwhelmed by neuronal
loss, which would then lead to decreased connectivity.

Third, our interpretation of hyperconnectivity versus hypo-
connectivity may be underdeveloped relative to the dynamic re-

Figure 3. Node-level analysis of the IT AV1451 � PiB interaction term on connectivity between each pair of nodes. Lines on the outside of the figure correspond to within network connections.
Lines on the inside correspond with between network connections. Purple colors represent decreased connectivity (movement toward 0); yellow colors represent increased connectivity (movement
away from 0). Only connections with an effect of p�0.01 are shown. The patterns of significant nodes correspond well to the whole-network analysis and demonstrate that the sensitivity to AV1451
and PiB is largely focused within and between the DMN and salience (SAL).
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ality of brain connectivity. For instance, a loss of functional
dynamicity could result in the over-representation of specific
brain activity states. This reduced dynamic flexibility would then
manifest in our measures as increased connectivity in the “typi-
cal” brain states that form the basis of functional networks.

To explicate which of these models best characterizes the net-
work disruption in preclinical AD will require cross-sectional
replication of these results in other samples, longitudinal assess-
ment of fcMRI data, and development of new analytic tools and
functional sequences to more fully understand and measure the
dynamic properties of connectivity.

Interpreting hypoconnectivity
The hypoconnectivity effect is more straightforward, suggesting
that the loss of functional connectivity—as with loss of structure
and neuronal death—is more closely associated with neocortical
Tau pathology than with amyloid. Notably, this suggests that the
loss of connectivity is not directly caused by a� toxicity but rather
by Tau pathology, although a� toxicity may impair the function-
ing of these networks, resulting in hyperconnectivity.

Relationship to existing amyloid-fcMRI literature
Our present results also hold implications for prior studies of
amyloid and APOE�4 status with fcMRI data. Namely, the ob-
served results are likely to be dependent on the specific makeup of
the amyloid-positive group. If the amyloid-positive individuals
are biased toward low Tau levels (e.g., young �4 carriers), there
may be an increased likelihood of observing hyperconnectivity
effects. Conversely, if the amyloid-positive individuals in a given
sample are biased toward elevated levels of neocortical Tau, then
there likely will be a hypoconnectivity effect. If the amyloid-
positive individuals are relatively balanced between low and ele-
vated levels of Tau, then there may be no observable effect of
amyloid. Thus, the pattern of hyperconnectivity followed by hy-
poconnectivity observed here may help to explain the varied ef-
fects reported in the literature, highlighting the need to consider
additional pathologies beyond amyloid burden.

Additionally, given that there is a non-negligible AV1451 sig-
nal in low-amyloid subjects in both allocortical (i.e., entorhinal
and parahippocampus) and neocortical (i.e., fusiform and infe-
rior temporal) regions, it will be important to consider the effects
of PHF-Tau on fcMRI in the absence of amyloid as it relates to
generic aging processes and nonamyloid tauopathies.

A great deal of work remains to elucidate the relationship
between fcMRI and preclinical AD pathology; however, it ap-
pears clear that in vivo Tau imaging will be critical to providing
new insights into the sequence and consequences of the AD path-
ological cascade. One area of particular interest will be in discern-
ing how propagation of Tau pathology is related to functional
and structural network architecture. Recent work by Ossenkop-
pele et al. (2016) looking at clinically impaired AD variants found
that spatial patterns of Tau pathology across AD phenotypes mir-
rored atrophy patterns and metabolic patterns, suggesting non-
local spread of Tau, presumably via network connections. Recent
work by Wu et al. (2016) demonstrated that neuronal activity can
modulate the release of Tau, and that this Tau can spread through
extracellular space, providing a potential mechanism for local
spread of Tau pathology associated with hyperactivity. The extent
to which the spread of nascent Tau pathology in preclinical pop-
ulations mirrors functional network architecture remains to be
elucidated.

Interpreting default mode/salience effects
The observed effects were limited to default mode/salience net-
work and were not observed in dorsal attention or control net-
works. Given the anticorrelated nature of the default mode/
salience network in our dataset, observing the effect in both is not
surprising and corresponds with previously reported functional
connectivity effects across the AD spectrum (Brier et al., 2012).
Furthermore, given the preclinical nature of this cohort, our find-
ings support the hypothesis that the default-mode network is the
first to be affected by nascent AD pathology, which is consist-
ent with other reports (Hedden et al., 2009; Lim et al., 2014; Jones
et al., 2016). Previous work in autosomal-dominant AD and
APOE4 carriers have also implicated the DMN and salience net-
works in younger asymptomatic genetic at-risk individuals (Fil-
ippini et al., 2009; Machulda et al., 2011; Chhatwal et al., 2013).

AD is characterized by two primary molecular pathologies,
both of which appear to be necessary for cognitive decline and
progression to dementia (Vos et al., 2015). Amyloid-� deposition
begins in heteromodal cortices, largely overlapping the topology
of the cortical connectivity hubs (Buckner et al., 2009), whereas
Tau pathology accumulates early in the MTL, in regions strongly
connected to cortical DMN regions (Ward et al., 2014). More-
over, episodic memory is typically the most salient cognitive
symptom of early AD and relies on the interplay of DMN and
MTL activity (Miller et al., 2008; Ward et al., 2015). Executive
function also commonly declines in concert with episodic mem-
ory in aging and early AD, which may particularly implicate in-
terplay between DMN network and salience networks (La Corte
et al., 2016). Ongoing work in our group and others seeks to
further differentiate the network alterations associated with aging
and the earliest alterations specifically associated with the molec-
ular pathologies of AD. These observations will guide the use of
functional connectivity as an exploratory outcome measure in
AD secondary prevention trials, aiming to decrease amyloid ac-
cumulation to prevent the spread of Tau pathology and cognitive
decline associated with AD (Sperling et al., 2014).
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