Skip to main content
. 2016 Apr 27;29(5):768–775. doi: 10.1021/acs.chemrestox.5b00481

Table 3. Performances of Models Developed Using Different Descriptor Selection Proceduresa.

  unsupervised selection
neural network pruning
    RMSE
  RMSE
descriptor set N training test N training test
CDK 159 0.93 1.13 6 0.89 1.2
Dragon 1824 0.93 1.15 18 0.87 1.19
Fragmentor 631 0.98 1.18 12 0.92 1.21
GSFrag 202 0.97 1.1 24 0.97 1.18
Mera, Mersy 242 0.93 1.04 10 0.93 1.18
Chemaxon 97 0.93 1.16 11 0.92 1.16
Inductive 39 0.94 1.17 21 0.93 1.16
Adriana 133 0.93 1.14 8 0.92 1.1
QNPR 381 0.95 1.12 74 0.89 1.13
E-state 185 0.96 1.16 11 0.9 1.24
Consensus 4036 0.88 1.08 186 0.85 1.13
a

N is the number of descriptors selected to develop the respective model. RMSE is the root mean squared error calculated for the training (n = 483) and full test set (n = 143).