
Automatic Identification of Artifacts in Electrodermal Activity 
Data

Sara Taylor1,*, Natasha Jaques1,*, Weixuan Chen1, Szymon Fedor1, Akane Sano1, and 
Rosalind Picard1

1Affective Computing Group, Media Lab, Massachusetts Institute of Technology, 75 Amherst 
Street, Cambridge, U.S

Abstract

Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal 

activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can 

easily be mistaken for a physiological response during analysis, to date there is no automatic 

method for detecting artifacts. This paper describes the development of a machine learning 

algorithm for automatically detecting EDA artifacts, and provides an empirical evaluation of 

classification performance. We have encoded our results into a freely available web-based tool for 

artifact and peak detection.

I. INTRODUCTION

Electrodermal Activity (EDA) refers to the electrical potential on the surface of the skin [1]. 

When the body responds to stress, temperature, or exertion, the sympathetic nervous system 

(SNS) increases sudomotor innervation, causing EDA to increase and perspiration to occur. 

Because the SNS is influenced by the hypothalamus and limbic system —structures in the 

brain that deal with emotion — EDA has frequently been used in studies related to affective 

phenomena and stress (e.g. [5], [6], [7], [8], [10], [12], [14]).

Despite its popularity, little research has been done into detecting noise and artifacts in an 

EDA signal. This is especially problematic given the increasing number of studies that are 

collecting ambulatory EDA data over long time periods using wearable devices (e.g. [2] [5] 

[7] [11] [14]). While these studies may provide profound insight into how affect and stress 

interact with other factors in daily life, continuous and unobtrusive measurement of EDA 

using wearable devices makes the signal collected vulnerable to several types of noise. 

Artifacts can be generated from electronic noise or variation in the contact between the skin 

and the recording electrode caused by pressure, excessive movement, or adjustment of the 

device. If these artifacts remain in the signal when it is analyzed they can easily be 

misinterpreted and skew the analysis; for example, they may be mistaken for a skin 

conductance response (SCR) (a physiological reaction that may indicate increased stress).
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Consequently, many researchers are forced to manually inspect the data in order to decide 

which portions are too noisy to retain (e.g. [3]). This approach cannot scale to the type of 

large-scale EDA studies that are currently being proposed [7], which may involve data 

collected from hundreds of participants over weeks or months. In order to make collecting 

EDA viable in these types of studies, an automated method for detecting and removing noise 

and artifacts must be developed. In this paper we describe the development of both a 

classification algorithm for automatically detecting artifacts, and an online system hosted at 

eda-explorer. media.mit.edu that will apply the algorithm to users’ uploaded EDA files in 

order to provide them with an analysis of which portions contain artifacts.

II. RELATED WORK

Through extensive research into the physiological processes underlying EDA, as well as the 

electrical properties of the recording equipment used in measurement, Boucsein [1] is able 

to provide a complete description of the characteristic shape of an SCR: the response 

typically lasts between 1–5 seconds, has a steep onset and an exponential decay, and reaches 

an amplitude of at least .01μS (see Fig. 1 for an example of a typical SCR). However, despite 

the availability of this knowledge, no accepted technique for removing signal artifacts has 

been developed.

Currently, many researchers deal with signal artifacts and noise by simply applying 

exponential smoothing (e.g. [6]) or a low-pass filter (e.g. [8] [9] [12]). While these 

techniques are able to smooth small variations in the signal, they are not able to compensate 

for large-magnitude artifacts that can result from pressure or movement of the device during 

ambulatory recording. Fig. 2 shows a portion of signal that contains three obvious artifacts, 

in which the sharp decreases could not possibly be produced by human physiology. As is 

evident from comparing the raw and filtered versions of the signal, the low-pass filter has 

not removed the artifacts, and any subsequent analysis based on the filtered signal is likely to 

mistake the artifacts as genuine physiological responses.

Other researchers have used Boucsein’s analysis to develop heuristic techniques for 

removing atypical portions of the EDA signal. Kocielnik and colleagues [8] chose to discard 

portions of their data where the signal increased more than 20% per second or decreased 

more than 10% per second. They verified that this approach removed artifacts based on 

visual inspection. Using a similar approach, Storm and colleagues manually set thresholds 

for the maximum and minimum amplitude, maximum slope, and minimum width of an 

SCR, and discarded responses that did not fit these criteria [13]. In another case, a study 

which collected EDA from two sensors (on both the ankle and the wrist) was able to detect 

artifacts by looking for epochs when only one of the two sensors had an abnormally low 

signal, or showed an unusually rapid increase or decrease [5].

These heuristic thresholds were developed for particular studies and participants, and 

verified only through visual inspection by the researchers conducting them; they may not 

generalize beyond those contexts. We seek to develop an empirically validated automatic 

technique for removing artifacts in EDA signals.
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III. METHODS

In order to validate our automatic artifact detection method, we needed to establish a ground 

truth for what portions of an EDA signal are considered clean, and what portions contain 

artifacts. To do this we had two expert EDA researchers label 5-second epochs of EDA data 

collected from a previous experiment [3]. The labeled data was used as input to our machine 

learning classifier.

A. Data Collection

The data used in this analysis were collected during a study in which 32 participants 

completed physical, cognitive and emotional tasks while wearing Affectiva Q EDA sensors 

on both wrists [3]. The Q sensor collects EDA data by measuring skin conductance (SC) in 

microSiemens (μS) at a frequency of 8Hz. All experimental procedures were approved by 

the Institutional Review Board for human subjects research at MIT.

B. Expert Labeling

We created a data set of 1560 non-overlapping 5-second epochs of EDA data, sampled from 

portions of data that were identified as possibly containing artifacts, true SCRs, or static skin 

conductance level (SCL). As part of our website, we built an interface to allow our two 

experts to review these epochs and assign a label of either ‘artifact’ or ‘clean’. Both experts 

agreed on a set of criteria that defines an artifact in the signal, which is as follows:

• A peak which does not show exponential decay, depending on the context (e.g. if 

two SCRs occur close together in time, the first response may not decay before 

the second begins, yet this is not considered an artifact)

• Quantization error with ≥ 5% of signal amplitude

• A sudden change in EDA correlated with motion

• A SCL ≤ 0

Although our classification labels were created using these criteria, our website provides the 

ability for other researchers to agree to label their own data according to their individual 

application needs. The site allowed the experts to view both the raw signal and a filtered 

signal (to which a standard 1Hz low-pass filter had been applied), as well as the 

accelerometer data, which is simultaneously collected by the Q sensor. We felt that viewing 

the accelerometer data might help the experts to identify motion artifacts. However, we do 

not provide acceleration data to our classification algorithm, for two reasons. Firstly, by 

training the classifier using only EDA data, we enable it to be applied to EDA signal 

collected from devices other than the Q that do not collect accelerometer data. Secondly, 

while it would be simple to discard portions of the signal with high power in the 

corresponding accelerometer data, this is not always desirable; for example, in applications 

such as detecting epileptic seizures, strong accelerometer signal occurs simultaneously with 

high EDA, but the EDA signal is both clean and valuable to the analysis [9]. Because we 

allowed the raters to skip epochs if they did not wish to label them, we eventually obtained 

1301 data points that were labeled by both experts. The percentage agreement was 80.71%, 

and the Cohen’s κ = 0.55.

Taylor et al. Page 3

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2017 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



There are multiple ways to deal with epochs for which the raters’ labels did not agree. The 

first is to discard them, which is reasonable in the sense that we cannot establish a ground 

truth value for those epochs, meaning we have no way to train or assess the performance of 

the classifier. The second technique is to treat disagreements as a third class in which we are 

unsure whether the signal is clean or an artifact. We will present results from both 

approaches. Table I gives the datasets for both.

C. Feature Extraction

We extracted several features for each five second epoch. Given the importance of the shape 

of an SCR, we began by including statistics related to the amplitude and first and second 

derivative of the EDA signal (see Table II). These features were computed for both the raw 

and filtered signal; we are not concerned about including too many features at this stage, 

because we later apply a feature selection procedure to reduce the chance of overfitting.

We then used a Discrete Haar Wavelet Transform to compute additional features that may be 

indicative of sudden changes in the EDA signal. Wavelet Transforms have been successfully 

used in several noise reduction applications; because of their good time-frequency 

localization, they can be considered a spatially aware noise filtration technique [15]. A 

wavelet transform decomposes a signal into coefficients at multiple scales; in our case, we 

obtain coefficients at 4Hz, 2Hz, and 1Hz. Because the Haar wavelet transform involves 

computing the degree of relatedness between subsequent points in the original signal, it is 

excellent for detecting edges and sharp changes [15]. Using this technique applied to the 

participant’s full EDA signal, the 3 levels of detail coefficients were computed, and statistics 

were computed on the coefficients over each 5-second epoch.

D. Feature Selection

Because we computed a large number of potentially redundant features, we used wrapper 

feature selection to ensure that our classifier did not overfit the training data. Unlike simple 

filtering techniques that merely rank features based on their relationship to the classification 

label, Wrapper feature selection (WFS) repeatedly tests subsets of features using a specific 

classifier1 in order to select an independent subset of features that work well in combination 

with each other [4]. Since this is computationally expensive, we used a greedy search 

process, which can quickly search the space of all subsets and is robust to overfitting [4].

E. Classification

In order to perform feature and model selection, we partitioned the data set into training, 

validation, and testing sets, using a randomized 60/20/20% split. Feature selection was 

performed using only the training data. In order to find a suitable machine learning 

technique for this problem, we tested a variety of algorithms including neural networks, 

random forests, naïve Bayes, nearest neighbour, logistic regression, and support vector 

machines (SVM). The algorithm that produced the best accuracy on the validation data set 

was SVM, so we focus on SVM for the remainder of the paper. In order to perform model 

selection we tested a range of settings for the parameters of SVM, including both a Radial 

1WFS was used with SVM after it was found to be the most effective algorithm
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Basis Function (RBF), polynomial, and linear kernel, and selected the settings that produced 

the highest accuracy on the validation set. The held-out test set was not used in feature or 

model selection.

IV. RESULTS

A. Classification results

Table III shows the classification results obtained for both the binary and multiclass 

classifiers on the validation and test sets, as well as the optimal SVM parameters. Although 

the accuracy for the multiclass classifier is lower (three-class classification is a more difficult 

problem), the output may prove more useful for real users. Fig. 3 shows both algorithms 

applied the same portion of EDA signal. As is evident from the figure, portions of the signal 

containing artifacts are detected (in red), while normal SCRs are labeled clean. Fig. 4 shows 

the performance of the algorithms on another sample containing a greater number of 

artifacts, which are also detected by both algorithms. The multiclass algorithm is able to 

label questionable parts of the data that are not clear artifacts in grey. Note that the binary 

classifier labels some epochs as artifacts that the multiclass one does not. The level of 

stringency needed in the classifier may depend on the researchers’ application; computing 

aggregate measures like area under the curve may be less sensitive to artifacts than SCR 

detection.

B. Features selected

The feature selection process only led to a marginal improvement in classification on the 

validation set: 1.3% and 1.4% for the binary and multiclass classifiers, respectively. 

However the features selected provide valuable insight into the signal characteristics that 

best distinguish between normal EDA and an artifact. Table IV shows the features selected 

by the binary classifier; the multiclass version selected extremely similar features. The 

selected features confirm the theoretical assumption that shape, including first and second 

derivative, are important in detecting artifacts. The wavelet features also proved valuable, 

especially the standard deviation of the coefficients. This is intuitive, because these values 

indicate whether there is a change in the wavelet domain, which may be indicative of an 

edge or sharp change in the original signal.

V. CONCLUSION

In summary, we have developed algorithms that can automatically and accurately distinguish 

artifacts in an EDA signal from normal physiological responses. The code we have written 

to develop these algorithms is freely available on our website, and we are currently 

extending the site so that anyone will be able to upload their raw EDA signal and receive an 

output indicating which portions contain noise. This tool could be enormously time-saving 

to researchers dealing with large data sets involving many participants measured over long 

periods of time. In the future we hope to extend our approach using active, semi-supervised 

learning, which will allow the machine learning algorithm to interactively ask the user to 

label specific epochs based on its level of uncertainty. This way, human raters will be 
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required to label fewer epochs that are highly similar, and instead will only label novel data 

for which the classifier has little information.
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Fig. 1. 
Shape of a typical SCR
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Fig. 2. 
A portion of the signal containing artifacts. The raw signal is shown on the left; a 1Hz low-

pass filter has been applied to the signal on the right.
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Fig. 3. 
A subset of a single participant’s data which includes true SCRs and artifacts. The red and 

grey shading shows epochs labeled as artifact and unsure, respectively. We note that both 

classifiers label true SCRs as clean signal.
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Fig. 4. 
An example of a typical artifact similar to Fig. 2 when the participant removed the sensor. 

Red and grey shading show where the classifiers labeled the SC data as artifact and 

questionable, as respectively.
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TABLE I

Number of Epochs in each classifier

Classifier # Clean Epochs # Questionable Epochs # Artifact Epochs

Binary 798 NA 252

Multiclass 798 251 252
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TABLE II

Computed Features

Category Specific Feature

Raw SC
Filtered SC

amplitude: mean
1st derivative, 2nd derivative: max, min, max of absolute value, mean absolute value

Wavelet coefficients max, mean, standard deviation, median, number aboveZero
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TABLE III

Classifier settings and accuracy results

Classifier Parameter settings Baseline Accuracy Validation Accuracy Test Accuracy

Binary RBF, β=0.1, C=1000 76.0% 96.95% 95.67%

Multiclass RBF, β=0.1, C=100 61.33% 88.38% 78.93%
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TABLE IV

Features Selected for Binary Classification

Category Specific Feature

Raw SC
amplitude: mean
1st derivative: max absolute value
2nd derivative: max, mean absolute value

Filtered SC amplitude: mean
2nd derivative: min, max absolute value

Wavelet
Mean: 1st coefficient
St. Dev: 1st, 2nd, 3rd coefficients
Median: 3rd coefficient
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