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Introduction
"Adaptation…could no longer be considered a static condi-
tion, a product of a creative past, and became instead a con-
tinuing dynamic process" (Mayr, 1982).

In biology, adaptation generally refers to the process that 
enhances the fitness of individuals equipped with plasticity in 
response to imposed conditions (Mayr, 1982). In this sense, 
immune cells can be considered highly adaptive entities. 
First, they display inter- and intratissue migratory capacity. 
Second, they generally leave primary lymphoid organs in a 
low-differentiated stage, and their final commitment and ac-
quisition of effector functions are determined by interactions 
with cells and signals in peripheral lymphoid and nonlymphoid 
organs. Therefore, tissue adaptation is an intrinsic component 
of immune cell development, influencing both resistance to 
pathogens and inflammation-induced tissue damage.

To perform their critical role in maintaining organis-
mal homeostasis in a continuously changing environment, 
immune cells circulate extensively even in tissues initially 
thought to be “immune-privileged” (Shechter et al., 2013). 
Establishment of tissue-resident immune cell populations en-
ables a quicker response to local stress, injury, or infection. 
Tissue-resident cells can then further recruit precursors or 
mature immune cells that participate in the initiation, ef-
fector phase, and resolution of the inflammatory process, 
which is highly dependent on the nature of the initial insult, 
as well as on the target tissue and existing resident immune 
cells (Medzhitov, 2008).

The surfaces of the body are the major sites where 
immune cells traffic and reside. The intestinal mucosa alone 
harbors more lymphocytes than all lymphoid organs com-
bined (Crago et al., 1984; Cerf-Bensussan et al., 1985; van 

der Heijden, 1986; Guy-Grand et al., 1991a). These tissues 
pose numerous challenges to recruited immune cells as they 
are chronically stimulated by a plethora of external agents, 
including microbiota, dietary components, environmental 
noxious substances, and infectious pathogens. Adaptation of 
immune cells to the intestinal environment requires constant 
discrimination between the natural stimulation coming from 
harmless microbiota and food and pathogens that need to be 
cleared. Chronic immune activation can lead to tissue injury 
and proliferation-induced senescence or cancer. Immune cells 
at the intestinal mucosa therefore must maintain careful con-
trol over the balance between inflammation and tolerance. 
This review will focus on the adaptation of immune cells 
to the gut mucosa as an example of how tissue environment 
shapes leukocyte fate and function.

Tissue-imprinting on mature lymphocytes
Early lymphocyte lineage commitment steps that occur in the 
primary immune organs (e.g., B versus T cell lineage commit-
ment) are thought to be irreversible under steady-state con-
ditions. Expression of Notch-induced TCF-1 in the thymus, 
for instance, is a crucial step leading to T cell lineage commit-
ment and Notch-guided TCR rearrangement. It represents 
an irreversible checkpoint in αβ versus γδ specification be-
cause it involves DNA recombination (Weber et al., 2011). 
Further checkpoints during thymic αβ T cell development 
are dependent on the interplay between the transcription 
factors ThPOK/Mazr/Gata-3 and Runx3, leading to mature 
CD4 and CD8 lineage specification, respectively (Sawada et 
al., 1994; Siu et al., 1994; Ellmeier et al., 1997; Taniuchi et 
al., 2002; He et al., 2005, 2008; Muroi et al., 2008; Setogu-
chi et al., 2008; Sakaguchi et al., 2010). Similar to αβ- and 
γδ-specification, αβ T cell CD4- and CD8-MHC (I and II, 
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respectively) restriction is irreversible after commitment. Al-
though differentiation of mature immune cells into activated 
effector cells is generally associated with a reduction in their 
plasticity potential (Fig. 1).

During primary immunization or infections, activated 
effector T cells differentiate into memory T cells with distinct 
phenotypes, plasticity, and functions, depending on which 
lymphoid or nonlymphoid tissues they seed (Schenkel and 
Masopust, 2014). Tissue-resident memory (TRM) T cells rep-
resent a recently identified T cell population that resides in 
nonlymphoid tissues without recirculating and with a dis-
tinct core gene signature (Mackay et al., 2013; Schenkel and 
Masopust, 2014). TRM cells are derived from effector T cell 
precursors and can be recruited to several tissues, particularly 
barrier surfaces, even in the absence of overt inflammation; 
albeit inflammatory processes can significantly increase TRM 
cell differentiation from effector T cell precursors or recruit-
ment to sites such as skin epidermis, vaginal epithelium, lung 
airways, salivary glands, and ganglia (Masopust et al., 2001; 
Mackay et al., 2013, 2016; Shin and Iwasaki, 2013; Laidlaw et 
al., 2014; Schenkel et al., 2014).

Upon migration to the tissue environment, T cells are 
subject to cues that can promote remarkable plasticity and 
functional specialization. For instance, epidermal TRM cells 
adopt a dendritic morphology resembling Langerhans cells, 
which allows them to probe the epidermal layer and main-
tain a slow migrating behavior, whereas dermis T cells bear-
ing the same TCR specificity, maintain the typical lymphoid 
shape, moving considerably faster than epidermal TRM cells 
(Zaid et al., 2014). Additionally, trafficking of effector T cells 
is facilitated by secretion of the chemokine CCL25 (ligand 

for CCR9) in the small intestine, and CCL28 (ligand for 
CCR10) in the colon, as well as the integrin MAdCAM-1 
(ligand for α4β7) expressed by intestinal endothelium (Iijima 
and Iwasaki, 2015). Additional signals secreted by epithelial or 
resident hematopoietic cells, such as IL-15 and TGF-β, fur-
ther regulate T cell accumulation and/or retention in the tis-
sue. Rapid, TGF-β-dependent, up-regulation of the integrin 
αEβ7 (CD103, which binds to E-cadherin on epithelial cells) 
by “memory precursor effector” CD8+ T cells was shown to 
regulate accumulation of TRMs in the intestinal epithelium 
(Sheridan et al., 2014). Induced expression of certain cell sur-
face molecules, such as CRT​AM (class I MHC-restricted T 
cell–associated molecule) and 2B4, a NK-related receptor, 
may also be important in the accumulation or maintenance 
of T cells in the gut epithelial layer (Cortez et al., 2014).

Adaptation to the intestinal epithelium
Intraepithelial lymphocytes (IELs) primarily reside at the 
epithelial layer of mucosal surfaces and skin, displaying both 
innate and adaptive characteristics (Cheroutre et al., 2011). 
IELs comprise a heterogeneous group of lymphocytes, in-
cluding cells considered TRM and innate lymphoid cells, and 
are characterized by high expression levels of activation mark-
ers such as CD69; gut-homing integrins; NK-inhibitory and 
activating receptors such as Ly49 and KIR families; cytotoxic 
T lymphocyte (CTL)–related genes such as Granzyme B; and 
antiinflammatory or inhibitory receptors like LAG-3 (Den-
ning et al., 2007a). Another common characteristic of IELs 
is the surface expression of CD8αα homodimers, which can 
bind both to classical MHC-I and to epithelial cell–associated 
nonclassical MHC-I molecules (Guy-Grand et al., 1991b, 

Figure 1.  T cell plasticity during lineage commitment. Lymphoid precursors exit the bone marrow and migrate to the thymus, where they differentiate 
into mature T cells. Rag1/2-dependent TCR rearrangement gives rise to TCRγδ and TCRαβ lineages, while MHC restriction and TCR strength leads to CD4 
or CD8 commitment of the TCRαβ lineage in a Runx3- and ThPOK-dependent manner. Mature CD4 and CD8 T cells exit the thymus and receive further 
activation and differentiation signals in secondary lymphoid organs and nonlymphoid tissues. Each commitment step is generally associated with loss of 
cell plasticity, although migration to particular tissue or effector sites may allow reacquisition of various levels of plasticity, depending on the target tissue, 
contexts, and intratissue microenvironments.
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2013; Gangadharan et al., 2006; Cheroutre and Lambolez, 
2008; Cheroutre et al., 2011).

Similar to Foxp3-expressing T reg cells (Fan and Ruden-
sky, 2016), IELs can be divided into peripheral (p) or thymic 
(t) IELs, depending on their origin and process of differenti-
ation. tIELs are represented mostly by TCRγδ+CD8αα+ and 
TCRαβ+CD8αα+ cells, which migrate shortly after birth 
from the thymus to the intestinal epithelial layer where their 
maintenance depends on T-bet– and IL-15–dependent path-
ways (Guy-Grand et al., 1991a; Lefrancois, 1991; Suzuki et 
al., 1997; Ma et al., 2009; Malamut et al., 2010; Huang et al., 
2011; Mucida et al., 2013; Klose et al., 2014; Reis et al., 2014). 
However, as evidenced by their migration to the intestinal ep-
ithelium before microbial colonization, tIELs do not require 
microbiota for induction or maintenance and their numbers 
are not altered in germ-free (GF) animals (Bandeira et al., 
1990; Mota-Santos et al., 1990). Nevertheless, dietary metab-
olites, particularly aryl-hydrocarbon receptor ligands found in 
cruciferous vegetables, appear to regulate TCRγδ IEL main-
tenance in the gut epithelium (Li et al., 2011). Additionally, 
absence of intact dietary proteins has been shown to impact 
pIEL numbers (Menezes et al., 2003), suggesting that both 
tIELs and pIELs continuously require lumen-derived signals 
for their development or maintenance.

pIELs are comprised of mature CD4+ and CD8+ 
TCRαβ+ cells that migrate to the gut epithelium upon acti-
vation in secondary lymphoid tissues and acquisition of gut 
homing receptors (Das et al., 2003; Masopust et al., 2006; 
Mucida et al., 2013; Reis et al., 2013; Luda et al., 2016). Con-
trary to tIELs, which show reduced frequency in aging an-
imals, pIELs accumulate with age and are severely reduced 
in GF mice (Mota-Santos et al., 1990; Umesaki et al., 1993; 
Mucida et al., 2013). In a similar fashion to peripheral T reg 
cells, initial tissue imprinting on pIELs likely takes place in 
the gut-draining lymph nodes, where TGF-β- and retinoic 
acid–producing DCs, primarily IRF8-dependent migratory 
DCs, induce gut-homing capacity in naive T cells (Iwata et 
al., 2004; Coombes et al., 2007; Mucida et al., 2007; Sun et 
al., 2007; Konkel et al., 2011; Esterhazy et al., 2016; Luda 
et al., 2016). In contrast to pT reg cells, however, the sec-
ond step of pIEL tissue imprinting (acquisition of an IEL 
phenotype) takes place in the intestinal tissue, likely within 
the epithelium itself (Sujino et al., 2016). Like tIELs, T-bet 
up-regulation downstream of IL-15, IFN-γ, and IL-27 sig-
naling is required for epithelial imprinting on pIELs (Klose 
et al., 2014; Reis et al., 2014). Additionally, the intratissue 
modulation of T-box transcription factors T-bet and Eomes 
was shown to play an essential role in the maturation and 
maintenance of lung and skin TRM cells, suggesting a broad 
role for these transcriptional regulators in lymphocyte tissue 
imprinting (Mackay et al., 2015).

Irrespective of their MHC restriction and TCRαβ 
lineage specification, both CD4+ and CD8+ pIELs progres-
sively acquire CD8αα expression and tIEL markers in the 
gut epithelium, partially reverting their lineage program set 

during thymic development. This feature is particularly re-
markable in CD4+ pIELs (CD4-IELs), which induce postthy-
mic down-modulation of the T helper lineage commitment 
transcriptional factor ThPOK, which is preceded by the in-
duction of both T-bet and Runx3, the latter a CD8 lineage 
commitment transcription factor (Mucida et al., 2013; Reis et 
al., 2013, 2014). This epithelium-specific regulation of T cell 
lineage transcription factors results in a broad suppression of 
programming associated with mature CD4+ T cells, includ-
ing expression of co-stimulatory molecules, T helper cyto-
kines, and T reg cell–associated transcription factor Foxp3 
(Mucida et al., 2013; Reis et al., 2013, 2014; Sujino et al., 
2016). The exact mechanisms by which CD4+ T cells un-
dergo such drastic functional adaptation toward the IEL pro-
gram remain to be defined. Nevertheless, in sharp contrast to 
all other known peripheral CD4+ T cells, CD4-IELs acquire 
CD8αα expression and hence the capacity to engage class I 
MHC or thymus leukemia antigen (TL), expressed on the 
surface of gut epithelial cells (Hershberg et al., 1990; Wu et 
al., 1991; Leishman et al., 2001). Peripheral CD8+ T cells also 
progressively up-regulate CD8αα homodimers in the process 
of tissue adaptation, a feature that allows these cells to further 
differentiate into long-lived memory cells, and to respond to 
epithelium-specific challenges (Huang et al., 2011). Regard-
less of the subset in which it is expressed, CD8αα decreases 
antigen sensitivity of the TCR negatively regulating T cell 
activation (Cheroutre and Lambolez, 2008). Therefore, both 
CD4+ and CD8+ pIELs acquire features that distinguish these 
cells from other peripheral T cells and likely allow them to 
quickly respond to lumen- or epithelium-specific cues, al-
though a detailed characterization of pIEL populations in 
additional mucosal sites is yet to be performed. Intriguingly, 
similar epithelial imprinting has been described in an innate 
lymphocyte population, which lacks expression of rearranged 
TCR or CD4/CD8, but does express several of the hall-
marks observed in gut epithelial T cells, including CD8αα 
(Van Kaer et al., 2014).

Although IELs exhibit cytotoxic potential, their killing 
activity is kept in check by tissue imprinting. A positive reg-
ulator of the cytotoxic activity of IEL populations is IL-15, a 
cytokine produced by a wide range of cells including epithe-
lial, stromal, and several myeloid cell populations (Jabri and 
Abadie, 2015). IL-15 is up-regulated in several chronic inflam-
matory diseases, acting both as a local danger signal that pro-
motes Th1 cell–mediated immunity and as a co-stimulatory 
signal to effector cytotoxic T cells (Jabri and Abadie, 2015). 
In contrast to CD8αα expression, which increases the TCR 
activation threshold of IELs, IL-15 reduces it, hence promot-
ing their lymphokine-activated killer (LAK) activity (Meresse 
et al., 2004, 2006; Tang et al., 2009; Ettersperger et al., 2016). 
Whereas physiological levels of IL-15 contribute to the de-
velopment of intestinal T cells and provide a complementary 
stress signal to trigger protective CTL functions during in-
tracellular infections, uncontrolled IL-15 production during 
inflammation can result in T cell–mediated disruption of the 
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epithelial barrier and promote disorders such as celiac dis-
ease (Meresse et al., 2004, 2006; Tang et al., 2009; DePaolo 
et al., 2011; Jabri and Abadie, 2015). An analogous process 
was described in the skin epidermis and lung, where intra-
tissue modulation of T-bet expression allowed for continu-
ous expression of CD122 (IL-15Rβ) by CD103+ TRM cells, 
promoting effector function and IL-15–dependent survival 
(Mackay et al., 2013, 2015). In contrast to both skin and lung 
TRM cells, as well as to CD8αα+ IELs, virus-specific CD8αβ+ 
TRM cells were reported to be maintained within intestinal 
mucosa independently of IL-15 (Schenkel et al., 2016). This 
observation may indicate that IL-15 dependence may vary 
not only according to the anatomical location, but also to the 
nature of tissue-resident lymphocytes.

In summary, the epithelial milieu tightly adjusts the 
phenotype of its resident lymphocytes, as evidenced by the 
strikingly similar gene programs acquired by intestinal IELs, 
irrespective of their T cell receptor or co-receptor expres-
sion, lineage, or subtype (Denning et al., 2007a). Although 
an understanding of the physiological roles played by IELs, 
or their role in controlling pathogen invasion and intesti-
nal inflammation, still requires further studies, several lines 
of evidence point to their function in maintaining the epi-
thelial cell barrier and responding to pathogens (Boismenu 
and Havran, 1994; Lepage et al., 1998; Chen et al., 2002; 
Poussier et al., 2002; Das et al., 2003; Meresse et al., 2006; 
Olivares-Villagómez et al., 2008; Ismail et al., 2009, 2011; 
Tang et al., 2009; Edelblum et al., 2015; Sujino et al., 2016). 
These studies highlight examples of T cell adaptation to the 
single-layered intestinal epithelium, a uniquely challenging 
location for both resistance and tolerance given its close prox-
imity to the highly stimulatory gut lumen.

Tissue-dependent immune regulation of T reg cells
T reg cells are also prone to tissue conditioning and represent 
a noteworthy example of late adaptation to specific environ-
mental signals. Similar to other T cell subsets, pT reg cells 
acquire tissue-homing capacity during their differentiation or 
activation (Fan and Rudensky, 2016). Recent studies indi-
cated that highly suppressive breast tumor–infiltrating T reg 
cells shared a gene program similar to T reg cells from nor-
mal breast tissue but not to other peripheral activated T reg 
cells (De Simone et al., 2016; Plitas et al., 2016). Mechanisms 
employed by pT reg cells to prevent or suppress overt inflam-
mation vary depending on the target tissue. For instance, T 
reg cell–specific ablation of IL-10 or IL-10 receptor does not 
result in systemic inflammatory diseases but rather induces se-
vere inflammation in mucosal tissues and in the skin (Rubtsov 
et al., 2008; Chaudhry et al., 2011; Huber et al., 2011).

The capacity of tissue-resident T reg cells to sense par-
ticular inflammatory cues is paramount for their regulation 
of associated responses. This idea is also supported by several 
studies targeting T reg cell transcriptional programs associated 
with specific pathological cues. T-bet expression by T reg cells 
is required for their suppression of T-bet dependent effector 

T cell responses. Hence, mice carrying T-bet–deficient T reg 
cells develop severe Th1 inflammation, including lymphade-
nopathy and splenomegaly, whereas other responses are still 
kept in check (Koch et al., 2009). Additionally, T reg cell–spe-
cific ablation of Stat3, a key transcription factor for Th17 cell 
differentiation, results in uncontrolled Th17 inflammation in 
the intestine (Chaudhry et al., 2009). However, ablation of 
transcription factors IRF4 or GATA-3, which are required 
for Th2 differentiation in T reg cells, results in selective and 
spontaneous development of allergic and Th17 responses at 
mucosal tissues and skin (Zheng et al., 2009; Cretney et al., 
2011; Wang et al., 2011; Wohlfert et al., 2011). Conversely, 
conditional deletion of Rorc, associated with Th17 develop-
ment, in T reg cells results in increased mucosal Th2 immu-
nity, suggesting that during inflammation T reg cell sensing 
of the tissue milieu might reestablish equilibrium by regu-
lating additional arms of the immune system (Ohnmacht et 
al., 2015; Eberl, 2016). Both T reg cells and T reg cell–in-
ducing signals can also be overturned by certain signals from 
inflamed tissues. Whereas retinoic acid (RA) is described to 
induce T reg cell development (Mucida et al., 2007), in the 
presence of IL-15, RA was shown to rapidly trigger mucosal 
DCs to release the proinflammatory cytokines IL-12p70 and 
IL-23, inhibiting pT reg cell differentiation while promoting 
differentiation of Th1 cells and cytotoxic T cell function (De-
Paolo et al., 2011; Hall et al., 2011). These effector T cell sub-
types can then induce tissue damage in response to luminal 
antigens, as in gluten intolerance responses observed in celiac 
disease patients (DePaolo et al., 2011).

The reported plasticity of the T reg cell lineage during 
inflammatory or tissue-specific responses does not result in 
instability of the Foxp3-dependent T reg cell program in non-
lymphopenic settings, as suggested by fate-mapping strategies 
using dual reporter strains (Rubtsov et al., 2010). Nevertheless, 
studies performed under lymphopenic or inflammatory set-
tings raised the possibility that uncommitted T reg cell pop-
ulations, preferentially pT reg cells, lose Foxp3 and in some 
cases even differentiate into effector T cells (Komatsu et al., 
2009; Tsuji et al., 2009; Zhou et al., 2009; Miyao et al., 2012). 
These studies suggest that some level of instability or plasticity 
can exist even in committed T reg cell populations. Using the 
tamoxifen-inducible Foxp3-driven Cre recombinase strain to 
fate-map bona fide T reg cells, we confirmed previous reports 
that T reg cells show stable Foxp3 expression over time in all 
tissues examined (Rubtsov et al., 2010), including the intesti-
nal lamina propria (Sujino et al., 2016). The only exception to 
this rule was observed in the intestinal epithelium, where we 
found that roughly 50% of former T reg cells physiologically 
lose Foxp3 over a period of 5 wk, in a microbiota-dependent 
manner (Sujino et al., 2016). These former T reg cells de-
veloped an IEL phenotype, including acquisition of Runx3 
and loss of ThPOK (Sujino et al., 2016). Perhaps one of the 
clearest demonstrations of tissue adaptation of T reg cells was 
reported recently in a transnuclear mouse strain generated by 
somatic cell nuclear transfer from a single pT reg cell. The 
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authors found that CD4+ T cells carrying a monoclonal natu-
rally-occurring pT reg cell TCR preferentially generated pT 
reg cells in gut draining LNs, but almost exclusively produced 
CD4-IELs in the intestinal epithelium, both in a microbiota- 
dependent manner (Bilate et al., 2016).

It is currently thought that T reg cells use several redun-
dant and complementary mechanisms to suppress inflamma-
tory responses and the aforementioned studies emphasize the 
role of environmental sensing in T reg cell function. The in-
stability of the T reg cell lineage within the intestinal epithe-
lium may represent an important modulation of regulatory 
activity that is coordinated by this particular environment 
(Hooper and Macpherson, 2010; Atarashi et al., 2011; Jose-
fowicz et al., 2012; Bollrath and Powrie, 2013; Furusawa et 
al., 2013). However, a specific role for CD4-IELs in cyto-
lytic responses against intracellular pathogens or in trigger-
ing inflammation remains to be defined (Mucida et al., 2013; 
Jabri and Abadie, 2015). An interesting possibility is that these 
potentially cytotoxic CD4+ T cells could play a crucial role 
in the immune responses against viral infections tropic for 
MHC-II target cells, including HIV-1–infected human CD4+ 
T cells (Khanna et al., 1997) or viruses that managed to escape 
conventional cytotoxic CD8+ T cell–dependent surveillance, 
including cytomegalovirus and HIV-1 itself (Ko et al., 1979; 
Simon et al., 2015). Nevertheless, the observation that tissue 
sensing of particular environmental cues, such as dietary or 
microbiota metabolites, results in coordinated immune reg-
ulation, represents an important step in the understanding of 
diseases triggered by uncontrolled inflammation.

Gut imprinting on antibody production
Tissue adaptation of B cells in the gut mucosa also involves 
cross talk between these cells and the luminal factors influenc-
ing their differentiation. For instance, GF mice show reduced 
levels of secretory IgA, whereas serum IgM levels are preserved 
relative to SPF animals (Benveniste et al., 1971). Conversely, 
polyreactive IgA secretion is fundamental to maintenance of 
microbiota diversity, as evidenced by dysbiosis and additional 
phenotypic variations observed in IgA-deficient mice (Su-
zuki et al., 2004; Fransen et al., 2015; Moon et al., 2015). Two 
distinct populations of B cells can be found in the intestinal 
lamina propria: conventional B2 cells and B1 cells. Both pop-
ulations undergo differentiation into IgA-producing plasma 
cells, a hallmark of mucosal sites. B2 cells originate in the 
bone marrow and undergo isotype switching into IgA+ B 
cells in Peyer’s patches (Craig and Cebra, 1971), cecal patches 
(Masahata et al., 2014), and isolated lymphoid follicles (ILFs; 
Macpherson et al., 2000; Fagarasan et al., 2001; He et al., 
2007). A small population of IgA+ B1 cells is found exclu-
sively in the lamina propria and the origin of this population 
is yet to be confirmed, although early reports suggested they 
arise from peritoneal B1 cells (Beagley et al., 1995; Bao et al., 
1998) in a microbiota-dependent fashion (Ha et al., 2006).

Several features of the gut mucosa seem to influence the 
preferential differentiation of gut B cells toward IgA-producing 

cells (Fagarasan et al., 2010; Cerutti et al., 2011; Pabst et al., 
2016; Reboldi and Cyster, 2016). First, in response to micro-
biota, intestinal follicular T helper cells (Tfh), which provide 
help for class switch recombination (CSR) and affinity mat-
uration of B cells in the germinal centers of Peyer’s patches 
(Fagarasan et al., 2002; Kawamoto et al., 2012) preferentially 
arise from differentiated Th17 and secrete large amounts of 
TGF-β and IL-21, cytokines associated with IgA class switch-
ing (Seo et al., 2009; Hirota et al., 2013; Cao et al., 2015). 
One example of the importance of this microbiota-induced 
IgA is the finding that bacterial species known to strongly in-
duce Th17 responses, such as segmented filamentous bacteria 
(SFB), overgrow in IgA-deficient mice (Suzuki et al., 2004; 
Fransen et al., 2015). Second, T cell–independent IgG- and 
IgA-class switching (Macpherson et al., 2000; Bergqvist et al., 
2006) ensures innate-like tissue imprinting in B cells, which 
can be triggered by microbial recognition via TLRs expressed 
on gut B cells (Koch et al., 2016) or nonhematopoietic cells 
(Tsuji et al., 2008). In addition to microbial products, sensing 
of gut factors, such as retinoic acid by follicular DCs, which 
in turn secrete TGF-β and the B cell–activating factor of the 
TNF family (BAFF), has also been shown to trigger class 
switch recombination into IgA+ B cells (Suzuki et al., 2010). 
Finally, B1 cells are also associated with T cell–independent 
IgA class switching in the lamina propria, although this site 
of B cell commitment to IgA is still debated (Macpherson 
et al., 2000; Fagarasan et al., 2001). There is a large body of 
evidence supporting the precommitment of plasma cells to 
IgA in Peyer’s patches, as well as other peripheral sites in-
cluding spleen, mesenteric LNs, ILFs, and peritoneal cavity, 
before their recruitment to the intestinal LP (de Andrés et al., 
2007; Koch et al., 2009; Lindner et al., 2015; Reboldi et al., 
2016). A post-recruitment adaptation (i.e., CSR) of B1 cells 
into IgA-producing plasma cells within the lamina propria 
has been proposed based on detection of activation-induced 
cytidine deaminase (AID) expression and DNA excision cir-
cles in LP B cells (Macpherson et al., 2000; Fagarasan et al., 
2001). It still remains possible, however, that this process pri-
marily takes place in ILFs interspersed in the mucosal region 
(Bergqvist et al., 2006). Another issue is that most of the fac-
tors involved in CSR to IgA are also required for IgA plasma 
cell survival in the LP, which confounds loss-of-function 
studies. Therefore, further confirmatory studies are required 
to demonstrate the existence of a post-recruitment adaptation 
of B1 cells in the gut lamina propria.

Unlike peripheral lymphoid organs where plasma cell 
differentiation occurs in the vicinity of the follicular areas, 
IgA-plasma cells are imprinted with mucosal-homing prop-
erties and migrate to effector niches in the lamina propria, 
a process dependent on RA and TGF-β signaling (Pabst 
et al., 2004; Mora et al., 2006; Seo et al., 2013; Lindner et 
al., 2015). Additionally and similar to the bone marrow, the 
lamina propria contains specialized niches for plasma cell 
survival. Both nonhematopoietic cells, such as intestinal epi-
thelial cells (IECs), and hematopoietic cells, including intesti-
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nal DCs and eosinophils, were shown to secrete pro-survival 
factors such IL-6, CXCL12, BAFF, APR​IL and thymic stro-
mal lymphopoietin (Jego et al., 2003; He et al., 2007; Xu et 
al., 2007; Suzuki et al., 2010; Chu et al., 2011, 2014; Tezuka 
et al., 2011; Jung et al., 2015). Gut-specific factors including 
TGF-β and RA are therefore associated with a highly diverse 
set of lumen-derived metabolites and antigens, which con-
tribute to the specific imprinting of gut-associated B cells, 
though their influence will also vary depending on intra-
tissue microenvironments.

Tissue microenvironments and niches
Organs and tissues are not homogeneous structures, but 
rather organized spaces with specific niches and microenvi-
ronments where different cell types reside and physiological 
processes take place. The intestinal mucosa show a high de-
gree of architectural complexity and intratissue specialization 
occurs according to anatomical features. For instance, epi-
thelial and subepithelial niches host the majority of immune 
cells and are in closer proximity to luminal stimulation than 
submucosal and muscularis regions, which in turn are heavily 
populated by neuronal processes. The microbiota is mostly 
located in the colon and ileum, whereas soluble antigens are 
absorbed in the duodenum and jejunum (Mowat and Agace, 
2014). Additionally, different microbial species colonize spe-
cific regions along the proximal–distal axis and in regards to 
their proximity to the epithelial layer, whereas specific dietary 
components are absorbed at different regions of the intestines. 
In turn, the cells that comprise the epithelial layer are them-
selves highly diverse and regionally specialized. For instance, 
the follicle-associated epithelium (FAE) of Peyer’s patches and 
ILFs typically lack goblet and Paneth cells, and enteroendo-
crine cells (de Lau et al., 2012). Paneth cells and M cells are 
exclusively found in the small intestine, whereas goblet cells 
predominate in the colonic epithelium. These intratissue spe-
cialized environments are critical for the developmental and 
functional adaptation of immune cells in the gut (Fig. 2).

Between the epithelium and lamina propria
Intestinal epithelial cells express sensors for nutrients, mi-
crobial antigens, and metabolites, as well as for products de-
rived from the interaction between microbes and dietary 
substances, such as short-chain fatty acids (Hooper and 
Macpherson, 2010; Shulzhenko et al., 2011; Faria et al., 2013; 
Derebe et al., 2014). The expression of these various sens-
ing molecules by IECs is tightly regulated by their location 
along the intestine (e.g., duodenum versus ileum), their posi-
tioning within the epithelial layer (e.g., top of the villi versus 
crypts), their lineage (e.g., Tuft versus enterochromaffin cells), 
circadian rhythm (Mukherji et al., 2013; Yu et al., 2013), and 
even by their cellular orientation (basolateral versus apical). 
These sensing molecules must convey luminal information 
to neighboring immune cells such as IELs and lamina pro-
pria cells as well as to systemic sites (Esterházy et al., 2016; 
Loschko et al., 2016). Such IEC-sensing mechanisms are 

coupled to their role in food absorption, metabolic activities 
and in their maintenance of surface barriers (Matzinger, 1994; 
Hooper, 2015). Indeed, recent studies uncovered the impact 
of microbiota during gestational and preweaning periods in 
the activation and differentiation of IECs and lamina propria 
cells (Gomez de Agüero et al., 2016; Koch et al., 2016). These 
effects appeared to be, at least in part, mediated by breast 
milk– and placenta-derived microbial metabolite-bound an-
tibodies (Gomez de Agüero et al., 2016; Koch et al., 2016), 
which can be directly sensed by IECs or by underlying lamina 
propria cells, including B cells and ILCs (Gomez de Agüero et 
al., 2016; Koch et al., 2016; Zeng et al., 2016). These pathways 
operate at a critical timeframe between birth and weaning by 
boosting resistance mechanisms against pathogens, as well as 
regulating excessive activation in intestinal immune cells (Ver-
hasselt et al., 2008; Mosconi et al., 2010; Gomez de Agüero 
et al., 2016; Koch et al., 2016). Therefore, physiological cues 
derived from the gut lumen at specific life stages support the 
developmental fitness of the mucosal immune system.

The epithelial layer is separated from the underlying 
lamina propria by a thin membrane of collagen (basement 
membrane). Together, the lamina propria and the epithelium 
harbor the vast majority of immune cells in the body, although 
the cell populations occupying each layer are strikingly dis-
tinct (Mowat and Agace, 2014). In addition, it is also reported 
that the T cell repertoire differs strongly between the lamina 
propria and the epithelium (Regnault et al., 1994, 1996; Arstila 
et al., 2000; Lathrop et al., 2011; Yang et al., 2014). Consistent 
with their innate-like phenotype, TCRγδ and TCRαβ tIELs 
express restricted oligoclonal T cell repertoires not only in the 
gut but also in the skin (Kaufmann, 1996; Probert et al., 2007; 
Gensollen et al., 2016). Intestinal TCRγδ tIELs express Vγ7 
(or Vγ5 depending on the nomenclature used) although their 
ligands are not known and this population seems to be influ-
enced by dietary metabolites found in cruciferous vegetables 
(aryl hydrocarbon receptor ligands), rather than microbiota 
antigens (Li et al., 2011). The TCR repertoire of double neg-
ative (DN) IELs (CD8αα+) is also oligoclonal and naturally 
occurring DN IEL TCRs are sufficient to induce IEL differ-
entiation when transgenically expressed in developing T cells 
(Mayans et al., 2014; McDonald et al., 2014). In contrast, the 
repertoire of colonic lamina propria T reg cells is polyclonal 
and shows little, if any, overlap with the repertoire of naive 
or effector CD4+ T cells found at the same location, or with 
other peripheral T reg cells (Lathrop et al., 2011). Likewise, 
the repertoire of intestinal Th17 cells differs significantly from 
that of other intestinal T cells (Yang et al., 2014). Whereas 
colonic commensals such as Clostridium spp. favor peripheral 
T reg cell development (Lathrop et al., 2011; Atarashi et al., 
2013), SFB induces differentiation of conventional CD4+ T 
cells into Th17 cells in the distal small intestine (Ivanov et al., 
2009; Yang et al., 2014). Additionally, a recent study found a 
role for dietary antigens in the differentiation of peripheral T 
reg cells occupying the small intestine lamina propria (Kim et 
al., 2016). Finally, in addition to the divergence of repertoire 
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between lymphocytes occupying the epithelium or lamina 
propria layers, a study discussed above also indicated that tissue 
adaptation involves divergence in lineage commitment within 
the same TCR, as a monoclonal, microbiota antigen-specific 
TCR elicited strong CD4+ pIEL development in the intestinal 
epithelium, but pT reg cell induction in the lamina propria 
(Bilate et al., 2016). Thus, the fate of T cells in the intestine is 
likely influenced by a combination of their repertoire, luminal 
stimulation, and downstream TCR signaling.

The aforementioned IEL program and cell dynamics 
are unique to the epithelial layer, whereas the vast majority 
of macrophages, DCs, ILCs, B cells, and T reg cells reside in 
the lamina propria region. Despite differences in their cel-
lular compositions, the epithelial layer constantly influences 
the state of the lamina propria immune cells. The commensal 
SFB, which preferentially colonizes the ileum, triggers robust 
Th17 and IgA responses in the same region (Ivanov et al., 
2009). Using complementary strategies to interfere with the 

Figure 2.  Intestinal microenvironments and niches. The intestine is exposed to constant luminal stimulation and harbors a dense and very diverse set 
of immune cells. Different layers of the intestinal tissue and regions along the gastrointestinal tract are subjected to particular stimuli, which are coupled 
with site-specific adaptation of immune cell subsets. The figure depicts the main characteristics of the intestinal layers, proximal-distal regions and immune 
cells populations exposed to chronic stimulation by dietary and microbial antigens. Although stimulation by dietary antigens or metabolites decreases from 
proximal to distal intestine, microbial stimulation follows the opposite direction. An approximate illustration of the changes in abundance of each cell type 
per intestinal region is shown on the bottom.
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bacterium or IECs, studies demonstrated that this adaptive 
immune response is highly dependent on SFB adhesion to 
the ileal epithelium (Atarashi et al., 2015; Sano et al., 2015). 
The authors found that attachment of SFB to the epithe-
lium triggered serum amyloid A (SAA) secretion by IECs. 
SAA1/2 contributed to both initial Th17 commitment 
(RORγt expression) in the draining lymph nodes and pro-
liferation of these poised Th17 cells (Sano et al., 2015), a pro-
cess apparently dependent on monocyte-derived CX3CR1+ 
cells (Panea et al., 2015).

Reciprocal to the role of IECs in influencing neigh-
boring lamina propria cells, the latter can indeed directly 
influence the development, proliferation, survival, and activ-
ity of IECs. ILC subsets, which are segregated into distinct 
areas of the intestinal mucosa (Sawa et al., 2010; Nussbaum 
et al., 2013), are particularly relevant players in the crosstalk 
between the epithelium and lamina propria regions (Cella et 
al., 2009; Sanos et al., 2009; Buonocore et al., 2010; Geremia 
et al., 2011; Sawa et al., 2011; Sonnenberg et al., 2012; Fuchs 
et al., 2013). Besides Th17 differentiation, SFB adhesion was 
linked to ILC3 production of IL-22 in the lamina propria 
of the small intestine. ILC3-derived IL-22, in turn, further 
enhanced IL-17 expression via IEC-derived SAA (Atarashi et 
al., 2015). Nevertheless, contrary to RORγt+ T cells, RORγt+ 
ILCs constitutively secrete IL-22, which is physiologically 
repressed by IEC-derived IL-25 in a microbiota-dependent 
manner (Sawa et al., 2011). Whereas IL-22 plays a role in ep-
ithelial growth and repair (Lindemans et al., 2015), IFN-γ 
production by RORγt+ ILCs was reported to be required for 
the protection of the epithelial barrier during enteric infec-
tions (Klose et al., 2013).

Several other immune cell types actively participate in 
the epithelium–lamina propria crosstalk. A subset of B cells 
has been shown to migrate toward the CCL20 gradient de-
rived from the FAE of the Peyer’s patches, and to influence 
the differentiation of the specialized M-cells (Golovkina et 
al., 1999; Ebisawa et al., 2011; Kobayashi et al., 2013). More-
over, in the absence of IgA secretion by lamina propria 
plasma cells, IECs up-regulate resistance mechanisms such as 
interferon-inducible genes at the expense of their fatty acid 
processing function, resulting in lipid malabsorption (Shul
zhenko et al., 2011). The above studies constitute several par-
allel examples of coordinated IEC-immune cell responses 
to luminal perturbations.

Antigen-presenting cells across intestinal layers
Macrophages and DCs are spread throughout the intestine 
but display distinct phenotypes and functions depending on 
the anatomical site they inhabit. A major determinant for 
such diversity is the ability of migrating monocytes to adapt 
to specific environmental conditions in the distinct regions of 
the intestine (Zigmond and Jung, 2013).

Monocyte/macrophage-derived, but not preDC- 
derived, intestinal APC populations express the fractalkine 
receptor (CX3CR1), and these cells constitute the vast ma-

jority of intestinal APCs in the mucosal, submucosal, and 
muscularis layers (Gabanyi et al., 2016). Gut macrophage 
populations play both protective and antiinflammatory roles, 
depending on the region they reside or context (Denning 
et al., 2007b; Bogunovic et al., 2009; Bain et al., 2013, 2014; 
Parkhurst et al., 2013; Zigmond et al., 2014). Lamina propria 
macrophages were shown to actively sample luminal bacteria 
through trans-epithelial dendrites and initiate adaptive im-
mune responses to clear pathogenic bacteria (Rescigno et al., 
2001; Niess et al., 2005). On the other hand, these cells were 
also linked to the initiation and establishment of tolerance to 
dietary antigens (Hadis et al., 2011; Mazzini et al., 2014).

Pre-DC–derived intestinal (CD103+) DCs comprise 
<10% of lamina propria APCs and are virtually absent from 
the muscularis layer (Bogunovic et al., 2009; Varol et al., 2009; 
Schreiber et al., 2013). In contrast to other DC populations 
found in peripheral lymphoid tissues, but similar to other DC 
populations found in the lung and in the gut-draining lymph 
nodes, lamina propria DCs constitutively produce RA and 
TGF-β, which induce gut-homing, differentiation of pT reg 
cells and pIELs, and contribute to IgA class switching (Mora 
et al., 2003, 2006; Iwata et al., 2004; Johansson-Lindbom et 
al., 2005; Coombes et al., 2007; Mucida et al., 2007; Sun et al., 
2007; Luda et al., 2016). Similar to gut macrophages, lamina 
propria DC function has also been associated with trigger-
ing effector T cell differentiation and inflammation (Johans-
son-Lindbom et al., 2005; Laffont et al., 2010; Siddiqui et al., 
2010; Semmrich et al., 2012; Persson et al., 2013). However, 
whereas lamina propria macrophages contact the epithelial 
layer through their cytoplasmic extensions, CD103+ DCs are 
able to migrate across the basement membrane to the epi-
thelial barrier and sample entire bacteria, a process further 
enhanced during enteric infections (Farache et al., 2013). 
Further, whereas lamina propria macrophages most efficiently 
sample soluble luminal proteins (Schulz et al., 2009; Farache 
et al., 2013), epithelial CD103+ DCs, but not lamina propria 
DCs, are also capable of this process (Farache et al., 2013). 
Therefore, the functional differentiation of DCs and macro-
phages in the gut mucosa also appears to be a consequence of a 
regional adaptation process modulated by environmental cues.

Gut macrophages also exhibit a high degree of func-
tional specialization dependent on their proximity to the gut 
lumen. Lamina propria macrophages preferentially express a 
proinflammatory phenotype whereas macrophages located at 
the muscularis region, distant from luminal stimulation but 
near neuronal plexuses, display a tissue-protective phenotype 
that includes genes associated with alternatively activated 
macrophages (Gabanyi et al., 2016). Moreover, muscularis 
macrophages were shown to regulate physiological processes 
such as the basal firing of enteric neurons and peristalsis via 
secretion of BMP-2 in a microbiota-dependent manner 
(Muller et al., 2014). Conversely, live imaging indicated that 
these macrophages are able to sense neuronal signals (Gabanyi 
et al., 2016). Indeed, commensal colonization was associated 
with secretion of M-CSF by enteric neurons (Balmer et al., 
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2014), whereas enteric infections were linked to the quick ac-
tivation of extrinsic sympathetic ganglia, which in turn mod-
ulate adrenergic β2R+ muscularis macrophages to further 
boost their tissue-protective program (Gabanyi et al., 2016). 
This intratissue adaptation of gut macrophages may have im-
portant implications for infection- or inflammation-induced 
tissue damage (Medzhitov et al., 2012).

Conclusion
Adaptation, as we propose, is a lifelong process rather than a 
once-for-all event. Because mucosal surfaces are constantly 
challenged by fluctuating environmental perturbations, these 
tissues themselves need to adapt continuously, and recent 
work has demonstrated that mature immune cells at these sites 
display a remarkable adaptive capacity. Although progress has 
been made in defining how immune cells use their plasticity 
to deal with complex environments such as skin and mucosal 
surfaces, several questions remain in the field: What are the 
environmental cues that trigger immune cell adaptation and 
how do they influence each particular step of lineage com-
mitment? How do changes associated with cellular aging in 
different tissues influence immune cell adaptation? What are 
the molecular, including genetic and epigenetic, mechanisms 
that operate during convergence of distinct immune cell pop-
ulations within a tissue, or divergence of identical populations 
in different tissues or under distinct insults? To tackle these 
questions appropriately, further cross talk between immunol-
ogy and additional areas of biology, such as neuroscience, me-
tabolism and ageing, is conditio sine qua non.
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